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Modeliranje, analiza i numeričke simulacije
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Chapter 1

Introduction

This work is closely related to the area of modelling of multiphase flow in porous me-

dia which is significant for many petroleum and environmental engineering problems. In

present-day industry, chlorinated hydrocarbons, petroleum products and similar materials

are essential and very frequent. Uncontrolled spreading of such materials may have strong

environmental influence. Furthermore, the storage of nuclear waste and recent advances

towards underground storage of CO2 additionally raise safety and environment concerns.

A certain risk of accidental spillage of harmful materials always exists. Such spills may

result in release of these materials into the environment, which may cause pollution of

the groundwaters. With regards to geological repositories of nuclear waste, problems are

related to the flow of water and gas. In such cases the gas is most commonly hydrogen

and the most important source of the gas is the corrosion of metallic components (waste

containers) and water radiolysis by radiation issued from nuclear waste. It is important

to model and predict underground gas migration, in order to avoid overpressure and pre-

vent mechanical damages. Mathematical models and numerical simulations of multiphase

flows help in the development of cost-efficient, safe and suitable methods for the storage

of hazardous materials. Numerical simulations of such models can give an answer about

the pressure, saturation and velocity of the fluids involved in the flow, as functions of the

space and time.

This thesis is devoted to the study of immiscible, compressible two-phase flow in porous

media, taking into account gravity, capillary effects, and heterogeneity. A general case of

two compressible fluids will be considered. The usual set of equations describing this type

of flow is given by the mass balance law and Darcy-Muscat law for each phase, which

leads to the system of strongly coupled nonlinear partial differential equations. In such
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systems there are several choices of primary variables. By algebraic manipulation over these

equations a fractional flow formulation can be obtained. In the fractional flow approach, the

two phase problem is seen as a total fluid flow of a one mixed fluid. In such a formulation,

the saturation of one of the phases and the global pressure are independent variables.

Motivation for introducing the global pressure is due to the strong coupling of the equa-

tions. Setting the global pressure as a primary unknown lessens the strength of coupling

between the coupled equations: the global pressure equation and the saturation equation.

The global pressure was first introduced in [15,25] and afterwards considered by other

authors, see [28]. The study of immiscible incompressible two-phase flow using the feature

of global pressure is well known, see [15, 25, 30]. This is not the case for two compressible

phases, except in the case of low capillary pressure so that the densities are assumed to

depend upon the global pressure which gives an approximative model, see [25,43] and the

references therein. In these situations, it is assumed that the nonlinear functions appearing

in the system depend upon the global pressure by ignoring the error caused by calculating

fluid phase densities at the global pressure instead of calculating them at the phase pressure.

These assumptions have limited the use of the global pressure formulation in numerical

simulations algorithmic implementations. A fully equivalent global pressure formulation

to the original system for the flow of water and gas was derived in [7]. A fractional flow

formulation for the general case of immiscible compressible two-phase flow was recently

derived in [8] without any simplifying assumptions, and this formulation is fully equivalent

to the original phase equations formulation, i.e. where the phase pressures and the phase

saturations are primary unknowns. A fully equivalent formulation for a case of three phase

flow was established in [24], and it has been further investigated in [31–33].

Comparison with other formulations [30] shows the computational effectiveness of the

global pressure when it can be employed. This may explain the current revival of interest for

the concept of global pressure for numerical modelling of multiphase flow in porous media,

especially in the case of compressible flow. Recently, the most common numerical methods

used to approximate derived systems are finite volume method combined with mixed finite

element method and discontinuous Galerkin finite element method. Methods where mixed

finite elements are used for the pressure equation have proven efficient in the case of

incompressible flow. In this thesis the vertex centred finite volume method is applied on

the derived system of equations. Vertex centred finite volume method allows the application

of an approximation of the finite element type so it can be naturally implemented with

libraries implementing finite elements [50].
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Discontinuous porous media is a special problem for numerical methods, since at the

discontinuities the fluxes and (in general) phase pressures are continuous through the dis-

continuity of the medium, which would generally produce discontinuities in the main un-

knowns of the derived system. All these values need to be calculated locally, from the

globally assigned values. The discontinuous media has been a problem of study of many

authors, see [17,46,54–56,59].

Mathematical analysis of the two-phase flow in porous media has been a problem

of interest for many years and many methods have been developed. One may refer

to [6, 15, 16, 20, 25, 27, 36, 38, 40, 49, 66, 67] for more information on the analysis, espe-

cially on the existence of solutions of immiscible incompressible two-phase flow in porous

media. The case of miscible compressible flow in porous media is treated in [10–12,34,39].

However, the situation is quite different for immiscible compressible two-phase flow in

porous media, where only recently a few results were obtained. In the case of immiscible

two-phase flows with one (or more) compressible fluids without any exchange between the

phases, some approximate models were studied in [41–43]. In [41] certain terms related

to the compressibility are neglected, and in [42, 43] the mass densities are assumed not

to depend on the physical pressure, but on the Chavent’s global pressure. In [44, 48], a

more general immiscible compressible two-phase flow model in homogeneous porous media

is considered with the assumption of the bounded capillary pressure function, which is too

restrictive for some realistic problems. In the case of immiscible two-phase flows with one

(or more) compressible fluids with the exchange between the phases, i.e. a multicomponent

model, the existence of weak solutions for these equations under some assumptions on the

compressibility of the fluids has been recently established in [51,62,63].

This thesis is organized as follows: in chapter 2 basic terms and equations on the de-

scription of the two-phase flow model in porous media are presented [17–19, 25, 30, 46].

At the end of the chapter several formulations of the model are presented with different

primary variables chosen. Also, since most of the simulations in chapter 4 involve het-

erogeneous porous medium, general treatment of the heterogeneity in the porous media is

discussed.

A new model using global pressure as a primary variable, fully equivalent to original

equations, derived in chapter 2, is described in chapter 3. The new model was introduced

in [7] for water-gas flow. In this chapter, the model is presented for the flow of two com-

pressible fluids, and is mainly represented in the article [8]. By setting the global pressure

as primary variable in the new fractional flow formulation, a computation of phase pres-



4

sures corresponding to a given global pressure requires a solution of a differential equation

(see (3.14)). The evaluation of the coefficients depending on phase pressures requires more

calculation in the fully equivalent fractional flow model (3.23)–(3.25) as compared to the

original model (2.20), (2.21). Numerically, this calculation can be performed by using

standard numerical libraries present in the literature. For this reason, a simplified frac-

tional flow formulation, which is not fully equivalent to the corresponding phase equations,

is presented. The simplified fractional flow formulation is compared to fully equivalent

fractional flow formulation by comparing the coefficients. The goal of the comparison is to

recognize situations in which approximate fractional flow formulation can be safely used

and to show differences in approximate and fully equivalent formulations in the cases where

these are significant.

In chapter 4 the finite volume method in one dimensional case for the new model is

presented. Special attention is paid to the treatment of the heterogeneities. In numerical

simulations, the fluids observed are water, considered as incompressible, and compressible

gas, such as hydrogen, concerning the gas migration through engineered and geological

barriers for the deep repository of radioactive waste. In the development and usage of

numerical models for immiscible compressible flow in porous media it is important to

verify the numerical model by means of adequate benchmark problems.

Recently, the French research group MoMaS (http://www.gdrmomas.org/) proposed

benchmark tests (http://www.gdrmomas.org/ex qualifications.html) designed to improve

the simulation of the water–hydrogen flow related to corrosion of nuclear waste containers

in an underground storage.

The verification of the new global pressure model is shown on several test cases [52]

in the heterogeneous porous media. In the first test case, the initial conditions for phase

pressures are taken to be continuous and constant in the whole domain, so that the capillary

pressure is continuous and nonzero at the initial moment. The new and the simplified model

are applied to this test case, and the results are compared afterwards. In the second test

case, the initial capillary pressure is taken to be discontinuous, and the intensity of the

capillary pressure is taken to be very high compared to the initial gas pressure, which can

lead to numerical difficulties. The third test case is chosen to represent the effect of the

entry pressure, when the porous medium is initially fully saturated by the water.

In chapter 5 existence results of weak solutions for this new formulation for the two-

phase compressible flows are obtained. This section contains results from [9]. The equations

are rewritten by expressing the phase fluxes in terms of nonwetting saturation and global
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pressure. Under certain realistic assumptions on the data also presented in this chapter,

an existence result, with the help of appropriate regularizations and the time discretization

is obtained. The system is firstly regularized with a parameter η > 0 in order to make

capillary pressure bounded, and a small constant is added to diffusivity term to obtain the

ellipticity of the discretized system. The existence of the weak solution for a regularized

system is shown, by introducing time discretization, so a small parameter h > 0 relating

to the time discretization is introduced. Afterwards, the existence of the solution for a

discretized problem is shown by applying Schauder’s fixed point theorem. A set of suitable

test functions is employed to get a priori estimates independent on h and the regularization

parameter η, in order to pass to the limit in nonlinear terms when h tends to zero. This

gives the existence result for a regularized system. To pass to the limit as η tends to zero a

generalization of compactness lemma from [25,43,48] and a compactness lemma from [60]

is used. This approach permits considering heterogeneous media.

Appendix A contains further explanation on the implementation of the coefficients

of the fully equivalent global pressure formulation of compressible, immiscible two-phase

flow. The numerical code for their calculation is developed and implemented in C++

programming language.
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Chapter 2

Two-phase Flow in Porous Media

In this chapter the basic terms and equations for immiscible compressible two-phase fluid

flow in porous media are explained. The chapter is organized as follows: in the first section

the basic terms and laws regarding the porous media are presented. The second section is

devoted to two-phase immiscible compressible flow, and explanation of the terms needed

to describe this flow. The third section starts with the presentation of the governing

equations describing two-phase immiscible flow in porous media, written on macroscopic

level, and afterwards some basic formulations are presented. At the end of the chapter, the

treatment of the heterogeneous porous media is considered. Most of this chapter follows

the references [19], [17], [25], [46].

2.1 Porous Media

2.1.1 Basic Definitions

Every material composed of a solid part called solid matrix and a connected pore space

(void space) can be identified as a porous medium. The pore space can be filled with

one or more fluids. In order to derive valid mathematical model of fluid flow through a

porous medium, the medium must satisfy some additional properties [35], [17]:

• Pore space is interconnected.

• The smallest dimension of the pore space must be large enough to contain fluid par-

ticles. This property allows the application of the continuum approach at the pore

space scale.
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• Dimensions of the pore space must be small enough so that the fluid flow is controlled

by adhesive forces of fluid-solid interfaces and cohesive forces of fluid-fluid interfaces.

This property eliminates the case of network pipes.

Some of the examples of the porous media are: sand, soil, clay, sponge, etc.

If the pore space is filled by a single, or by several, completely miscible fluids, one speaks

about single-phase fluid flow in porous media. The term phase, as employed in [46] is used

to differentiate one or more fluids separated by a sharp interface. Two fluids are said to

be immiscible if a strictly defined interface between them exists. In such a system, each

fluid represents a different phase. The solid matrix is considered to be the solid phase.

Different phase properties are assigned to each phase, one fluid phase may differ from the

others by its density, dynamic viscosity and compressibility. Phases can also be composed

of different components. However, multicomponent flows are not considered in the scope

of this work. Further details may be found in [17,25,46].

2.1.2 Fluid Properties

Mass density of the fluid will be denoted by ρ. Generally, it is assumed to be a function

of the fluid pressure P , and temperature T . In this work, only the isothermal flow is con-

sidered, which means that it is assumed that the density depends only upon the pressure,

and temperature T is involved only as a parameter. The density is constant if the fluid is

incompressible. In the case of the ideal gas the density is given by the equation of the

state:

ρ(P ) =
PM

RT
,

where R is the universal gas constant (R = 8.31J/Kmol), T is the temperature, and M is

the fluid molar mass.

Compressibility of the fluid is defined as

ν =
1

ρ(P )

dρ(P )

dP
.

It is usually assumed to be a constant so, generally, the density can be given as

ρ(P ) = ρ0e
ν(P−P0),
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where P0 is the reference pressure and ρ0 = ρ(P0).

In the case of liquids, ν is usually assumed to be very low. For example, the compress-

ibility of water is 5.1 × 10−10Pa−1. Fluids with low compressibility can be modeled as

incompressible, or the density is modeled as

ρ(P ) = ρ0 + ν(P − P0) (2.1)

Such fluids are called slightly compressible fluids.

Another property of the fluid is dynamic viscosity [Pas, cP ] which, in this work, will

be called simply viscosity. In this work it is assumed constant, though it can also depend

on pressure and temperature.

2.1.3 Macroscopic Scale

In the mathematical modelling of flow through porous media, different scales can be used.

Besides molecular scale (≈ 10−9m) one can use microscopic and macroscopic scale.

At the microscopic scale the system of Navier-Stokes equations is used, with some

assigned boundary conditions. The task of solving the Navier-Stokes equations in the pore

space is not practical due to the unknown pore space geometry. Moreover, the fluid flow

variations at the pore space scale, are not of interest. Therefore, one needs to set up

mathematical model at a larger scale.

Because of these reasons, the macroscopic scale is usually used, and in the flow de-

scription a continuum approach is applied. At the macroscopic scale, the porous medium

is assumed to be a continuum in which one does not distinguish the solid phase from the

fluid phases present in the pore space. On macroscopic level, macroscopic quantities repre-

sent average values of the quantities given on the microscopic level. Therefore, quantities

appearing in the macroscopic model, i.e. pressure and velocity, actually represent average

values over sufficiently large volumes.

Porous medium is called homogeneous if its properties do not vary in space or time.

Otherwise, the medium is called heterogeneous.
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Figure 2.1: Determination of the REV

Rock Properties

The porosity is obtained by an averaging procedure over elementary volume of the fol-

lowing pore space indicator function defined at the microscopic level

ϕ(x) =







1 x ∈ pore space

0 x ∈ solid
∀x ∈ Ω. (2.2)

The porosity at the position x0 is the following value:

φ(x0) =
1

meas(K(x0, r))

∫

K(x0,r)

ϕ(x) dx.

Here, K(x0, r) = {x : d(x,x0) < r} is called representative elementary volume (REV).

In the definition of macroscopic properties it is important to determine which radius

can be used to obtain a valid model. For example, when defining the porosity at the

point x0, the porosity is calculated for different radii. For very small radius the oscillatory

behavior is obtained, and after a certain value of the radius, the values of the porosity stop

behaving oscillatory. This is presented in the figure (2.1). A similar observation can be

found in [17], [19]. As explained in [19], the radius of the REV should satisfy

d ≤ 2r ≤ L

where d is the length that characterizes the microscopic structure of the void space, and L

is the characteristic length of the porous medium domain.

The porosity is therefore a function of space, but, in more complex models, where the
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rock is deformable, it is assumed to be a function of the pressure.

Another macroscopic property of the porous medium is the absolute permeability K

[m2,Darcy], usually a symmetric tensor describing the ability of the porous media to trans-

mit fluids. In the heterogeneous media it is space dependent and the media is isotropic

if K = kI.

The absolute permeability appears in Darcy’s law, which will be described in the next

subsection. In the two-phase flow system, besides the absolute permeability, the relative

permeabilities must be introduced, since the flow of each phase depends upon the presence

of other phases.

2.1.4 Derived Macroscopic Equations

At the macroscopic level, the macroscopic balance law for the one-phase system in a

porous medium Ω ⊆ R
n can be rewritten as [17], [25]:

∂(Φρ(P ))

∂t
+ div(ρ(P )q) = F (2.3)

where q [m/day] is a macroscopic apparent velocity, and F is a source (sink) term.

The macroscopic apparent velocity or Darcy velocity q [m/year] relates to the pressure

of the fluid with the equation called Darcy’s law.

q = − 1

µ
K(∇P − ρg) (2.4)

where g is the gravitational, downward-pointing, constant vector and, as already men-

tioned, ρ is the fluid density, and P is the fluid pressure. Darcy’s law is actually the

momentum conservation of the Navier-Stokes equation on the macroscopic level [17].

Therefore, the equation which describes monophasic flow in the porous domain Ω ⊆ R
n,

with P as unknown (and q as unknown which is calculated by Darcy’s law) is:

∂(Φρ(P ))

∂t
− div(

ρ(P )

µ
K (∇P − ρ(P )g)) = F , in Ω. (2.5)
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To this equation the following initial and boundary conditions are usually assigned:

P (x, 0) = P0(x), P (x, t) = Pd(x, t) on Γd ρq · n = qn on Γn,

where ∂Ω = Γd ∪ Γn.

In the case of incompressible fluid flow, the initial condition for the pressure is not

necessary, since in that case one deals with an elliptic equation. Equations (2.4)-(2.3) can

also be rewritten for the case of a two-phase flow. In that case, however, several additional

definitions are needed. These will be presented in the next section.

2.2 Two-phase Flow in Porous Media

In the two-phase flow system, a wetting and a nonwetting phase are introduced. One

example of this kind of system is water-gas system, where the water is the wetting phase.

In the flow of oil and water, water is considered as a wetting phase, and in the flow of oil and

gas, oil is considered to be the wetting fluid. The wetting phase can be easily determined

by the following action: if one looks at a capillary tube, the convexity of meniscus is always

oriented towards wetting fluid, as presented in the figure (2.2). In this work the indices

Figure 2.2: Determining the wetting fluid

α = w, g, will denote the wetting and nonwetting phases respectively. To rewrite the

equations (2.3) and (2.4) in a two-phase flow case one needs to introduce aditional terms:

saturations, capillary pressure and relative permeabilities.

2.2.1 Saturation

Phase saturations Sα, α = w, g are macroscopic variables introduced in order to describe

the quantity of the volume of the phase at the point x0 of the porous medium. Its definition

is similar to the definition of the porosity. For a phase α = w, g the phase indicator function

is [17]:
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ϕα(x, t) =







1 x ∈ phase α at time t

0 x /∈ phase α at time t

The saturation of the phase α is defined as

Sα(x0, t) =

∫

REV
ϕα(x,t) dx

∫

REV
ϕ(x) dx

. ∀x0 ∈ Ω

where ϕ(x) is the function defined by (2.2), and REV is assigned to the point x0

It clearly follows
∑

α Sα(x, t) = 1, and 0 ≤ Sα ≤ 1, α = w, g.

2.2.2 Capillary Pressure

On the microscopic level two immiscible fluids are separated by clearly defined interface

which leads to a jump of pressure. This jump of pressure is called capillary pressure and

is equal to

Pc = Pg − Pw. (2.6)

It is described by

Pc = σ

(

1

r1
+

1

r2

)

(2.7)

where σ is the interfacial tension, and r1 and r2 are the main curvature radii of the surface

between the fluids. For smaller meniscus radii the capillary pressure is higher and vice

versa, for larger radii the capillary pressure is lower. One can conclude from this, that,

in the case of drainage - injection of the nonwetting phase in the area fully saturated by

the wetting phase - the wetting phase flows to smaller pores. On the contrary, when the

imbibition -injection of the wetting phase in the area fully saturated by the nonwetting

phase - is performed the wetting phase starts to fill the largest pores first.

Capillary pressure is always positive since the pressure of the nonwetting phase is higher

than the pressure of the wetting phase.

Macroscopic capillary pressure is an average value of the microscopic capillary pressure.

On the macroscopic level, there is no interface between phases, and in every point of the
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porous medium domain one observes wetting and nonwetting pressure Pw and Pg, and

these are the average values of the values of the fluid pressures defined on the microscopic

level. Thus the equation (2.6) is also valid at the macroscopic level.

The macroscopic capillary pressure is assumed to depend on the saturation since, for ex-

ample, when drainage is performed one can conclude from the previous discussion that the

decrease of wetting phase saturation would produce the increase of the capillary pressure.

The values of capillary pressure function can be obtained experimentally by performing

drainage, or by performing imbibition. Since the measurements require certain amount of

time, theoretical formulae are commonly used in practice.

When the saturation of the wetting phase in the porous medium is equal to a cer-

tain small value Swr, the increase of the gas pressure will not displace the wetting phase.

Value Swr is called the residual saturation of the wetting phase. The capillary pressure

is expected to have vertical asymptote at that point. Similarly, in the case of imbibition,

certain amount of nonwetting phase that cannot be displaced by a wetting phase exists,

so the saturation of the nonwetting phase cannot be lower than Snr, (the residual non-

wetting saturation). Therefore, the capillary pressure is naturally defined on the interval

]Swr, 1 − Snr] .

It is natural to introduce the effective saturation

Sew =
Sw − Swr

1 − Swr − Sgr

Seg =
Sg − Sgr

1 − Swr − Sgr

(2.8)

which means that

Sw = Swr ⇒ Sew = 0 and Sw = 1 − Sgr ⇒ Sew = 1

and clearly:

Sew + Seg = 1.

The capillary pressure is usually considered to be a function of the effective saturation.

Several analytical expressions of the capillary pressure exist. The two most important,

usually used in the description of water-gas flows are:

• Van Genuchten capillary pressure [64]

Pc(Sew) = Pr(S
−

1
m

ew − 1)
1
n Sew ∈ ]0, 1] , (2.9)
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Figure 2.3: Capillary pressure for the van Genuchten and the Brooks and Corey models

where m = 1 − 1
n
, and usually n ∈ [1.49, 5.0] .

• Brooks and Corey capillary pressure [23]

Pc(Sew) = PdS
−

1
λ

ew Sew ∈]0, 1], (2.10)

Pd is the entry pressure and the parameter λ is related to the structure of the porous

medium. A value that is commonly used is λ ∈ [0.2, 3.0] .

Macroscopic capillary pressure can also depend on temperature and surface tension, but,

in this work, it is assumed that it is a function of the saturation only.

Remark 2.1. An equivalence can be established between the Brooks and Corey and van

Genuchten parameters. The main results are given in [53], and the equivalence is given by

the formulae

λ = n− 1, Pd = Pr
(p+ 3)

2p(p− 1)

(

147.8 + 8.1p+ 0.092p2

55.6 + 7.4p+ p2

)

, where p = 3 +
2

λ
. (2.11)

Figure 2.3 presents a graphical illustration of the capillary pressures of the van Genuchten

and the Brooks and Corey models, for the equivalent respective parameters.

2.2.3 Relative Permeabilities

Each phase’s relative permeability is considered to be an increasing function of its own

saturation, which means that the phase is more mobile if it is more present in the domain.

It is always valid krw(Sew = 0) = 0 and krg(Sew = 1) = 0. Two models of deriving
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the relative permeability functions form the given capillary pressure function are described

here, (Mualem’s and Burdine’s). More detailed presentations of these models can be found

in [26], [46].

• In the Mualem model, relative permeability functions are defined by the following

formulae

krw(Sew) = S
1
2
ew

(∫ Sew

0
ds

Pc(s)
∫ 1

0
ds

Pc(s)

)2

(2.12)

krg(Sew) = (1 − Sew)
1
2

(∫ 1

Sew

ds
Pc(s)

∫ 1

0
ds

Pc(s)

)2

. (2.13)

• In the Burdine model, relative permeability functions are defined by the following

formulae

krw(Sew) = S2
ew

(∫ Sew

0
ds

P 2
c (s)

∫ 1

0
ds

P 2
c (s)

)

(2.14)

krg(Sew) = (1 − Sew)2

(∫ 1

Sew

ds
P 2

c (s)
∫ 1

0
ds

P 2
c (s)

)

. (2.15)

Calculation gives the following van Genuchten Mualem relative permeability functions:

krw(Sew) =S
1
2
ew

(

1 − (1 − S
1
m
ew)m

)2

(2.16)

krg(Sew) =(1 − Sew)
1
2 (1 − S

1
m
ew)2m. (2.17)

Also, the following Brooks and Corey Burdine functions are obtained:

krw(Sew) = S
3+ 2

λ
ew (2.18)

krg(Sew) = (1 − Sew)2
(

1 − S
2+λ

λ
ew

)

. (2.19)

These functions are presented in the figure 2.4 for the Swr = Sgr = 0.05.

Remark 2.2. For the formulae (2.16)-(2.19) one obtains:

1. lim
Sew→0

krw(Sw)P ′

c(Sw) = 0 for Brooks and Corey functions and for van Genuchten

functions.
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Figure 2.4: Relative permeability functions in the van Genuchten and Brooks and Corey
models for Swr = Sgr = 0.05.

2. lim
Sew→1

krg(Sw)P ′

c(Sw) = 0 for Brooks and Corey functions and for van Genuchten

functions.

3. krw(Sw)P ′

c(Sw) < ∞ as Sew → 1 for Brooks and Corey functions, but not for van

Genuchten functions.

In this work it is mostly considered that Swr = Sgr = 0, unless it is other specified.

2.3 Governing Equations

The equations describing the immiscible, compressible two-phase fluid flow in the porous

medium are given by the mass balance equation for each phase and the Darcy-Muscat

law which relates the phase pressure gradient and volumetric phase velocity (see, e.g.,

[18, 25,30,46]):

Φ
∂

∂t
(ραSα) + div(ραqα) = Fα and qα = −K

krα(Sα)

µα

(∇Pα − ραg), (2.20)

where, as mentioned previously, Φ and K are the porosity and the absolute permeability, of

the porous medium, which depend only on the space variable; and for α = w, g ρα, Sα, Pα,

qα and µα are, the mass density, saturation, pressure, volumetric velocity, and viscosity of

the α-phase; Fα is the source/sink term, krα is the relative permeability of the α-phase,

and g is the gravitational, downward-pointing, constant vector. In addition to (2.20), the
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following equations apply

Sw + Sg = 1, and Pc(Sw) = Pg − Pw. (2.21)

The primary variables are Sα, Pα, and qα. Here the porosity Φ and the absolute permeabil-

ity K are functions of space and the viscosities µw, µg are constant. Finally, the capillary

pressure and relative permeabilities are considered to be functions of the saturation only.

To simplify the notation their spatial dependence is omitted. The governing equations

(2.20)–(2.21) are strongly coupled, nonlinear partial differential equations. These equa-

tions can be transformed in other forms (see [29], [30]) by algebraic manipulation over

these equations and choice of primary unknowns.

2.3.1 Pressure-Pressure Formulation

In the system (2.20)-(2.21) one may select phase pressures as the main unknowns. Given

that the capillary pressure is an invertible function, the phase saturations are

Sα = Sα(Pc) = Sα(Pg − Pw).

Thus the governing equations can be reformulated in the following way

Φ
∂

∂t
(ρg(Pg)Sg(Pg − Pw)) + div(ρg(Pg)qg) = Fg (2.22)

Φ
∂

∂t
(ρw(Pw)Sw(Pg − Pw)) + div(ρw(Pw)qw) = Fw (2.23)

qg = −K
krg(Sg(Pg − Pw))

µg

(∇Pg − ρg(Pg)g) (2.24)

qw = −K
krw(Sw(Pg − Pw))

µw

(∇Pw − ρw(Pw)g). (2.25)

The derived system is strongly coupled through the expression for the saturation. This

formulation is not commonly used [46], since it is inefficient for very small capillary pressure

gradients, which often occur in heterogeneous porous media.
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2.3.2 Pressure-Saturation Formulation

This approach will be explained on a system where the wetting phase saturation and the

nonwetting pressure are chosen as main unknowns. From (2.21) one easily obtains

Sg = 1 − Sw Pw = Pg − Pc(Sw).

Putting this into (2.20) the following system of equations in the porous domain Ω ⊆ R
nis

obtained:

Φ
∂

∂t
(ρg(Pg)(1 − Sw)) + div(ρg(Pg)qg) = Fg (2.26)

Φ
∂

∂t
(ρw(Pw)Sw) + div(ρw(Pw)qw) = Fw (2.27)

qg = −K
krg(Sw)

µg

(∇Pg − ρg(Pg)g) (2.28)

qw = −K
krw(Sw)

µw

(∇Pg −∇Pc(Sw) − ρw(Pw)g) (2.29)

The derived system is strongly coupled and it can be assumed as a parabolic system. By

reformulation, one can see that this is not true [17]. The boundary and initial conditions

can be chosen as [17]:

Sw(x, 0) = S0
w(x) Pg(x, 0) = P 0

g (x) x ∈ Ω (2.30)

Sw(x, t) = Sd
w(x, t) on ΓSw

d Pg(x, t) = P d
g (x, t) on Γ

Pg

d (2.31)

ρw(Pw)qw · n = Qw on ΓSw
n ρg(Pg)qg · n = Qg on ΓPg

n (2.32)

Note that in the above: ∂Ω = Γ
Pg

d ∪ Γ
Pg
n = ΓSw

d ∪ ΓSw
n .

In order to reveal the type of the system (2.26)-(2.29), it is worthwhile to examine

an another formulation which also includes one pressure, and one saturation as the main

unknowns. Therefore, the phase mobility functions are introduced:

λα(Sw) =
krα(Sw)

µα

, α = w, g (2.33)

and the total mobility is

λ(Sw, Pg) = ρw(Pw)λw(Sw) + ρg(Pg)λg(Sw). (2.34)
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Then the fractional flow functions

fα(Sw, Pg) =
ρα(Pα)λα(Sw)

λ(Sw, Pg)
, α = w, g, (2.35)

and also the following nonlinear functions:

ρ(Sw, Pg) =
(λw(Sw)ρw(Pw)2 + λg(Sw)ρg(Pg)

2)

λ(Sw, Pg)
, (2.36)

α(Sw, Pg) =
ρw(Pw)ρg(Pg)λw(Sw)λg(Sw)

λ(Sw, Pg)
, (2.37)

bg(Sw, Pg) = (ρw(Pw) − ρg(Pg))α(Sw, Pg), a(Sw, Pg) = −α(Sw, Pg)P
′

c(Sw). (2.38)

are introduced. In the above formulae the nonwetting pressure Pg and the wetting phase

saturation Sw are chosen as independent variables.

Rewriting the equations (2.20)–(2.21) by summation of the two equations and intro-

duction of total flux, Qt = ρw(Pw)qw + ρg(Pg)qg, one obtain the following:

Φ
∂

∂t
(Swρw(Pw) + (1 − Sw)ρg(Pg))

− div (λ(Sw, Pg)K [∇Pg − fw(Sw, Pg)∇Pc(Sw) − ρ(Sw, Pg)g]) = Fw + Fg,
(2.39)

Qt = −λ(Sw, Pg)K (∇Pg − fw(Sw, Pg)∇Pc(Sw) − ρ(Sw, Pg)g) , (2.40)

Φ
∂

∂t
(ρw(Pw)Sw)+div(fw(Sw, Pg)Qt + bg(Sw, Pg)Kg)−div(a(Sw, Pg)K∇Sw) = Fw. (2.41)

The governing equation for the saturation (2.41) is a nonlinear convection-diffusion PDE

and the equation for pressure (2.39) is a nonlinear PDE strongly coupled to the saturation

equation through the gradient of capillary pressure and the time derivative term. The

boundary and initial conditions for this system can be again defined with (2.30)-(2.32).

Remark 2.3. Phase fluxes can be expressed through the total flux as:

ρw(pw)qw = fw(Sw, Pg)Qt − a(Sw, Pg)K∇Sw + bg(Sw, Pg)Kg, (2.42)

ρg(Pg)qg = fg(Sw, Pg)Qt + a(Sw, Pg)K∇Sw − bg(Sw, Pg)Kg. (2.43)

Remark 2.4. Starting with the (Sg, Pw) formulation the coefficients (2.33)-(2.38) may

be rewritten as a functions of the variables (Sg, Pw) by changing the variable as follows:

Sg = 1−Sw and Pw = Pg −Pc(Sg). This way one obtain the following system of equations:
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Φ
∂

∂t
((1 − Sg)ρw(Pw) + Sgρg(Pg))

− div (λ(Sg, Pw)K [∇Pw + fg(Sw, Pw)∇Pc(Sg) − ρ(Sg, Pw)g]) = Fw + Fg,
(2.44)

Qt = −λ(Sg, Pw)K (∇Pw + fg(Sg, Pw)∇Pc(Sg) − ρ(Sg, Pw)g) , (2.45)

Φ
∂

∂t
(ρg(Pg)Sg) + div(fg(Sw, Pw)Qt − bg(Sg, Pw)Kg) − div(a(Sg, Pw)K∇Sg) = Fg. (2.46)

Incompressible Case

In the case where the two fluids in the porous medium are incompressible, the mass balance

law for each phase can be divided by the phase density. By introducing the total velocity

qt = qw + qg

and the coefficients

λinc(Sw) = λw(Sw) + λg(Sw)

f inc
w (Sw) = λw(Sw)/λinc(Sw) fg(Sw) = λg(Sw)/λinc(Sw)

ρinc(Sw) = (λw(Sw)ρw + λg(Sw)ρg)/λ
inc(Sw)

αinc(Sw) = λw(Sw)λg(Sw)/λinc(Sw)

bg(Sw) = (ρw − ρg)α
inc(Sw)

a(Sw) = −αinc(Sw)P ′

c(Sw).

one obtains the following equations:

div(qt) = Fw/ρw + Fg/ρg (2.47)

Φ
∂Sw

∂t
+ div(f inc

w (Sw)qt + Kgbinc
g (Sw)) − div(ainc(Sw)K∇Sw) = Fw/ρw. (2.48)

where

qt = −λinc(Sw)K
[

∇Pg − f inc
w (Sw)P ′

c(Sw)∇Sw − ρinc(Sw)g
]

(2.49)
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and the following expressions for the velocities:

qw = f inc
w (Sw)qt − Kainc(Sw)∇Sw + Kgbinc

g (Sw)

qg = f inc
g (Sw)qt + Kainc(Sw)∇Sw − Kgbinc

g (Sw).

One can see that in the incompressible case the coupling between the two equations is

less strong since the time derivative term does not appear in equation (2.47). It is shown

[15,25](see also section 3.1 ) that by introducing a new variable called global pressure this

coupling can be weaken even more, giving the system well defined mathematical structure.

2.4 Discontinuous Porous Media. Interface Condi-

tions

Porous media are usually heterogeneous, which introduces additional difficulties in mathe-

matical modelling, since the heterogeneity must be treated properly, and some additional

conditions at the interfaces must be introduced. Assume that the porous medium Ω is

composed of different rock types. Without loss of generality and for the sake of simplicity,

the case of two different rock types will be considered (Ω = Ωm1 ∪ Ωm2), as presented in

the figure (2.4). In heterogeneous media, each rock type can have different permeability,

porosity, relative permeability and capillary pressure functions. The main difficulty that

arises from heterogeneity is that, in general, primary unknowns can have discontinuities

across the interface. The case when Pc(1) = 0 is firstly considered. At the interface the

following conditions must be satisfied:

1. There is no loss or production of the mass, resulting in the condition that

ρw(Pw)qn · n, ρg(Pg)qg · n are continuous across the interface.

n is taken here to be the vector normal to the interface pointing in the direction Ωm2.
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2. If the two-phase system is present at each side of the interface, and both phases

are mobile (which means λw(Sw), λg(Sg) > 0), it is assumed that the intensive state

variables are continuous at the interface, which means that the phase and capillary

pressures satisfy:

Pm1
c (xinterface, t) = Pm2

c (xinterface, t)

Pm1
g (xinterface, t) = Pm2

g (xinterface, t)

Pm1
w (xinterface, t) = Pm2

w (xinterface, t)

The second condition is derived from the boundedness of the phase fluxes, in the case when

both phases are mobile at the interface.

The consequence of the continuity of the capillary pressure is that the saturation vari-

able is generally discontinuous at the interface, and has two limiting values Sm1
w and Sm2

w

in the interface point.

However, a common situation is having the entry pressure involved in the model de-

scribing capillary pressure (like in Brooks and Corey capillary pressure) which means

Pc(1) = Pd.

In such a case capillary pressure does not need to be continuous. One can observe situations

like the one presented in the figure 2.5, where the entry pressures for different rock types

are not the same. In these situations one phase pressure is also discontinuous, since the

phase and capillary pressures are connected by the equation (2.21).

Remark 2.5. As described in [37] when the porous media is initially saturated by the

wetting phase, and the nonwetting phase is injected, the meaning of the ”entry pressure”,

can be described as follows: the nonwetting phase will cross the interface only when the

capillary pressure Pm1
c is greater then the entry pressure Pm2

d . When this happens, the

capillary pressure becomes continuous at the interface. If the capillary pressure Pm1
c is

smaller than Pm2
d , the nonwetting phase will not cross the interface, and the capillary

pressure will be discontinuous. Since, in this example, the wetting phase is mobile, the

wetting phase pressure will be continuous at the interface, which is not the situation for

the nonwetting phase pressure.
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Figure 2.5: Capillary pressure with the entry pressure

One can describe the behavior of the saturation in such a case by this simple condition,

as described in [17], [37], [59] called ”extended capillary pressure condition”:

Sm2
w =







1 for Sm1
w > S∗

w

(Pm2
c )−1(Pm1

c (Sm1
w )) for Sm1

w ≤ S∗

w

(2.50)

Here the threshold saturation S∗

w is introduced by the formula

S∗

w = (Pm1
c )−1(Pm2

d ).

For van Genuchten model, the capillary pressure is always continuous, so one may safely

assume the threshold saturation S∗

w to be equal to 1.

Remark 2.6. In the case of multiple rock types, in higher dimensions, the interface con-

ditions are the same, assuming that these conditions for each pair of the materials are

observed.

2.5 Conclusion

In this chapter the basic properties of the porous media are described and the basic notation

is laid out. The equations (2.39)-(2.41) have been presented with the wetting saturation

and the nonwetting pressure as the main unknowns. The derived equations are strongly
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coupled and in order to make this coupling less strong, in the next chapter a new model

of compressible two phase flow based on the concept of the global pressure is derived.
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Chapter 3

A New Global Pressure Formulation

for Immiscible Compressible Flow in

Porous Media

The concept of global pressure was first introduced by [15,25] and investigated by the other

authors afterwards (e.g. [28], [30]). Motivation for introducing the global pressure is due to

the strong coupling of the equations describing two-phase immiscible flow. By setting the

global pressure as a primary unknown, the coupling of the derived equations becomes less

strong. Also, equations with well defined mathematical structure are obtained. The global

pressure has been used in a wide range of numerical simulations, especially in hydrology

and petroleum reservoir engineering, see for instance [30]. In the incompressible case, the

fractional flow formulation has been proven far more computationally efficient, if compared

to the two-pressure approach [30].

In the case of immiscible compressible two-phase flow, the concept of global pressure has

not been applied until recently. An exception is its application in certain approximative

models, see [25, 43] and references therein. Since comparisons with other formulations

[30] have shown the computational effectiveness of the global pressure, it is worthwile to

investigate its effectiveness in the compressible flow case.

A fully equivalent global pressure formulation to the original equations (2.20)-(2.21)

for water-gas flow was derived in [7]. For the three-phase compressible flows case a global

pressure formulation fully equivalent to the original equations was derived in [24], and

afterwards considered in [31–33].

In this chapter a fully equivalent fractional flow formulation is introduced with the



3.1. GLOBAL PRESSURE IN INCOMPRESSIBLE CASE 26

global pressure as a primary variable [8]. The general case of two immiscible compress-

ible fluids is considered. This formulation leads to a system which consists of a nonlinear

parabolic global pressure equation and a nonlinear diffusion-convection saturation equa-

tion.

In section 3.3 a simplified fractional flow formulation described in [25] is recalled and its

deficiency for certain pressure ranges is shown. Subsequently, a modification that makes

the model more applicable is proposed. A comparison of the fully equivalent fractional flow

model with the simplified one is given in section 3.4. The two models differ solely in cal-

culation of coefficients. Thus the coefficients are compared in order to recognize situations

where the simplified formulation can be safely used. The comparison also elaborates the

differences between the simplified and fully equivalent formulation where the differences are

significant. This will be also commented in the chapter on numerical simulations. Finally,

for the purpose of numerical simulations, treatment of heterogeneity in global pressure

models is discussed.

3.1 Global Pressure in Incompressible Case

In order to make coupling of equations (2.47)-(2.48) less strong, a new variable called global

pressure was introduced [15, 25]. This new pressure-like variable is intended to give the

total velocity (2.49) the form of Darcy’s law, and eliminate the saturation gradient in total

velocity formulation [17,25]. The idea is to have:

∇Pg − f inc
w (Sw)P ′

c(Sw)∇Sw = ∇P (3.1)

and this equation is going to be satisfied if

P = Pg − Pc(1) +

∫ 1

Sw

f inc
w (s)P ′

c(s) ds, (3.2)

(3.3)

which gives

Pw ≤P ≤ Pg. (3.4)
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After rewriting equations (2.47)-(2.48) the following equations including P as primary

unknown are obtained:

qt = −λinc(Sw)K(∇P − ρinc(Sw)g), (3.5)

div(qt) = Fw/ρw + Fg/ρg (3.6)

Φ
∂Sw

∂t
+ div(f inc

w (Sw)qt + Kgbinc
g (Sw)) − div(ainc(Sw)K∇Sw) = Fw/ρw. (3.7)

The equation (3.7) is a nonlinear convection-diffusion equation. The diffusion term is

degenerate, which means that ainc = 0 when the wetting saturation is Sw = 0, 1. The

equation for the pressure is a family of elliptic equations (one for each t ∈ ]0, T [). These

two equations are connected through the total velocity and the coefficients which depend

on Sw. By introducing the global pressure in the equation, the system is less strongly

coupled and derived equations are well mathematically structured. In the next section the

case of two compressible fluids is considered.

3.2 A Fully Equivalent Fractional Flow Formulation

In the case of two compressible fluids the same idea as in the case of the incompressible

fluids is followed. The capillary pressure gradient term can be eliminated from (2.39) by

expressing the total flux Qt as the Darcy flux of some mean pressure P , which leads to

∇Pg − fw(Sw, Pg)P
′

c(Sw)∇Sw = ω(Sw, P )∇P, (3.8)

where the function ω(Sw, P ) is to be determined. To that aim assume that nonwetting

pressure is an unknown function Pg such that

Pg = Pg(Sw, P ), (3.9)

and this function relates to new variable P (the global pressure) and a nonwetting pressure

Pg. The global pressure is expected to be an intermediate pressure between Pw and Pg.

From (3.8) and (3.9) one have

∇Pg = ω(Sw, P )∇P + fw(Sw, Pg(Sw, P ))P ′

c(Sw)∇Sw,
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or

∂Pg

∂Sw

(Sw, P )∇Sw +
∂Pg

∂P
(Sw, P )∇P = ω(Sw, P )∇P + fw(Sw, Pg(Sw, P ))P ′

c(Sw)∇Sw.

Since P and Sw are independent variables one must have

∂Pg

∂Sw

(Sw, P ) = fw(Sw, Pg(Sw, P ))P ′

c(Sw) (3.10)

∂Pg

∂P
(Sw, P ) = ω(Sw, P ). (3.11)

The equation (3.10) will be integrated to obtain Pg(Sw, P ), and use (3.11) as a definition

of ω. By setting Pg(1, P ) = P + Pc(1), it follows

Pg(Sw, P ) = P + Pc(1) +

∫ Sw

1

fw(s, Pg(s, P ))P ′

c(s) ds, (3.12)

which gives

P ≤ Pg(Sw, P ) ≤ P + Pc(Sw),

and therefore Pw ≤ P ≤ Pg. The formula for the wetting phase pressure can be obtained

easily

Pw(Sw, P ) = P −
∫ Sw

1

fg(s, Pg(s, P ))P ′

c(s) ds. (3.13)

The integral equation (3.12) can be rewritten in a form of the Cauchy problem for an

ordinary differential equation as follows:











dPg(S, P )

dS
=

ρw(Pg(S, P ) − Pc(S))λw(S)P ′

c(S)

ρw(Pg(S, P ) − Pc(S))λw(S) + ρg(Pg(S, P ))λg(S)
, S < 1

Pg(1, P ) = P + Pc(1).

(3.14)

The problem (3.14) can be given in a form that is easier to solve by introducing the capillary

pressure as an independent variable. Since the capillary pressure is invertible, u = Pc(Sw)

can be written as Sw = Sw(u); any function of the wetting saturation f(Sw) can be replaced

by the corresponding function of capillary pressure f̂(u) = f(Sw(u)).

Remark 3.1. A common situation is also to have Pc(Sw = 1) = P0, where P0 > 0 is an
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entry pressure. In that case wetting and nonwetting relative permeabilities, for capillary

pressures in the interval (0, P0), are naturally defined as one and zero respectively.

The function P̂g(u, P ) as a solution of the Cauchy problem (P is a parameter) is intro-

duced,











dP̂g(u, P )

du
=

ρw(P̂g(u, P ) − u)λ̂w(u)

ρw(P̂g(u, P ) − u)λ̂w(u) + ρg(π̂(u, P ))λ̂g(u)
, u > 0.

π̂(0, P ) = P + Pc(1).

(3.15)

For problem (3.15) it is easy to see that it has a global solution P̂g(u, P ), and then a

solution of (3.14) is given by

Pg(Sw, P ) = P̂g(Pc(Sw), P ).

Having found the function Pg one obtains a formula for ω based on the equation (3.11).

In the first place, a new notation for the coefficients which now depend on the global

pressure P instead of the phase pressures Pg and Pw is introduced. All these functions are

denominated by a superscript ′′n′′ as new:

ρn
w(Sw, P ) = ρw(Pg(Sw, P ) − Pc(Sw)), ρn

g (Sw, P ) = ρg(Pg(Sw, P )), (3.16)

λn(Sw, P ) = ρn
w(Sw, P )λw(Sw) + ρn

g (Sw, P )λg(Sw), (3.17)

fn
w(Sw, P ) =

ρn
w(Sw, P )λw(Sw)

λn(Sw, P )
, fn

g (Sw, P ) =
ρn

g (Sw, P )λg(Sw)

λn(Sw, P )
(3.18)

ρn(Sw, P ) = ρ(Sw, Pg(Sw, P )), an(Sw, P ) = a(Sw, Pg(Sw, P )), (3.19)

bng (Sw, P ) = bg(Sw, Pg(Sw, P )). (3.20)

Note that the coefficients (3.16)–(3.20) are obtained from (2.33)–(2.38) by replacing Pg

by Pg(Sw, P ) and Pw by Pg(Sw, P ) − Pc(Sw). Fluid compressibilities are defined as:

νn
w(S, p) =

ρ′w(Pg(S, P ) − Pc(S))

ρw(Pg(S, P ) − Pc(S))
, νn

g (S, P ) =
ρ′g(Pg(S, P ))

ρg(Pg(S, P ))
. (3.21)

From (3.10) and (3.11) it follows that ω(Sw, P ) satisfies a linear ordinary differential

equation
∂ω

∂Sw

(Sw, P ) = ∂Pg
fw(Sw, Pg(Sw, P ))P ′

c(Sw)ω(Sw, P ),
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(P being a parameter) which has a solution

ω(Sw, P ) = exp

(
∫ 1

Sw

(νn
g (s, P ) − νn

w(s, P ))
ρn

w(s, P )ρn
g (s, P )λw(s)λg(s)P

′

c(s)

(ρn
w(s, P )λw(s) + ρn

g (s, P )λg(s))2
ds

)

, (3.22)

where ω(1, P ) = 1, as a consequence of Pg(1, P ) = P +Pc(1). From (3.22) it is evident that

ω is strictly positive function and it is less than one if the nonwetting phase compressibility

is greater that the wetting phase compressibility.

Finally by replacing Pg with Pg(Sw, P ) in equations (2.39)–(2.41), and using (3.8), one

obtains the following system of equations:

Φ
∂

∂t
(Swρ

n
w(Sw, P ) + ρn

g (Sw, P )(1 − Sw)) (3.23)

− div
(

λn(Sw, P )K(ω(Sw, P )∇P − ρn(Sw, P )g)
)

= Fw + Fg,

Qt = −λn(Sw, P )K(ω(Sw, P )∇P − ρn(Sw, P )g), (3.24)

Φ
∂

∂t
(Swρ

n
w(Sw, P )) + div(fn

w(Sw, P )Qt + bng (Sw, P )Kg) = div(an(Sw, P )K∇Sw) + Fw.

(3.25)

The system (3.23)–(3.25) is expressed in the variables Sw and P . The phase pressures

Pg and Pw are given as smooth functions of Sw and P through Pg = Pg(Sw, P ) and

Pw = Pg(Sw, P ) − Pc(Sw). Since the derivative ∂Pg(Sw, P )/∂P = ω(Sw, P ) is strictly

positive, one can find the global pressure P in the form P = ηg(Sw, Pg), with certain

smooth function ηg, allowing the conclusion that the flow equations (3.23)–(3.25) are fully

equivalent to equations (2.39)–(2.41), and therefore to (2.20), (2.21).

Using the global pressure the total flow Qt can be rewritten in the form of the Darcy-

Muskat law. The global pressure can be then interpreted as a mixture pressure where the

two phases are considered as mixture constituents (see [65]). Note that the sum of “phase

energies” can be decomposed as

ρw(Pw)λw(Sw)K∇Pw · ∇Pw + ρg(Pg)λg(Sw)K∇Pg · ∇Pg

= λn(Sw, P )ω(Sw, P )2
K∇P · ∇P + αn(Sw, P )K∇Pc(Sw) · ∇Pc(Sw).

(3.26)

The equation (3.26) shows again physical relevance of the global pressure. The way how

the formula (3.26) is obtained is going to be shown in the chapter 5.

Remark 3.2. If the nonwetting saturation Sg is chosen as a main variable, one obtains
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the following formula for the nonwetting and the wetting pressure.

Pg(Sg, P ) = P + Pc(0) +

∫ Sg

0

fw(s, Pg(s, P ))P ′

c(s) ds (3.27)

where is taken that fractional flow function depends on nonwetting saturation and nonwet-

ting phase pressure and it is obtain from (2.35) by setting Sw = 1−Sg. The wetting phase

pressure is given by

Pw(Sg, P ) = Pg(Sg, P ) − Pc(Sg). (3.28)

ω(Sg, P ) =
∂Pw(Sg, P )

∂P
=
∂Pg(Sg, P )

∂P
,

and a calculation shows that it can be expressed by the formula:

ω(Sg, P ) = exp

(

−
∫ Sg

0

(νn
g (s, P ) − νn

w(s, P ))
ρn

w(s, P )ρn
g (s, P )λw(s)λg(s)P

′

c(s)

(ρn
w(s, P )λw(s) + ρn

g (s, P )λg(s))2
ds

)

,

(3.29)

In such a case, as explained in remark 2.4, the coefficients (3.16)-(3.20) depend on the

nonwetting saturation and the global pressure P just by a simple change of variable Sg =

1 − Sw. The formulae are the same, only the dependence is changed. For the diffusivity

coefficient one obtains

a(Sg, P ) =
ρn

w(Sg, P )ρn
g (Sg, P )λw(Sw)λg(Sg)P

′

c(Sg)

λn(Sg, P )
.

This formulation with the nonwetting saturation is going to be used in the chapter 5, in

proving an existence theorem. For the sake of problem formulation and notational simplic-

ity, the main variable will be chosen to make the capillary pressure an increasing function.

In numerical simulations based on the system (3.23)–(3.25), one has to compute the

coefficients (3.16)–(3.22) by integrating the equation (3.15) for different initial values of

the global pressure P . From a practical point of view, one can solve (3.15) approximately

for certain values of initial data and then use an interpolation procedure to extend these

values to the whole range of interest. The necessary calculations can be done in a prepro-

cessing phase, without penalizing the flow simulation. This approach is employed in the

implementation of the practical part of this thesis.
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3.3 A Simplified Fractional Flow Formulation

In the existing literature the concept of global pressure in two and three phase compressible

flow models is always introduced by means of an approximation. More precisely, it is

assumed that one can ignore the error caused by calculating the phase density ρα at the

global pressure P instead of the phase pressure Pα. This assumption is introduced in [25]

and used in petroleum engineering applications (see, e.g., [29,30]), but it cannot be satisfied

for all the existing immiscible compressible two-phase flow. The simplified global pressure

formulation will be described for the case of two phase flow. It will also be compared to

the new formulation introduced in the previous section.

Assuming that one can replace the wetting pressure in the fractional flow phase function

with the global pressure P, the equation (3.8) is transformed to

∇Pg − fw(Sw, P )P ′

c(Sw)∇Sw = ω(Sw, P )∇P,

which can be satisfied by

Pg = P + Pc(1) − γ(Sw, P ), γ(Sw, P ) = −
∫ Pc(Sw)

0

f̂w(u, P ) du, (3.30)

where, as before, f̂w(u, P ) = fw(Sw, P ) for u = Pc(Sw), and relative permeabilities are for

Pc(1) 6= 0 defined as in remark 3.1. From (3.30) it follows

∇P = ∇Pg +
∂

∂P
γ(Sw, P )∇P − fw(Sw, P )P ′

c(Sw)∇Sw,

which means that

ω(Sw, P ) = 1 − ∂

∂P
γ(Sw, P ). (3.31)

The total flux now obtains a form of Darcy’s law:

Qt = −λ(Sw, P )K(ω(Sw, P )∇P − ρ(Sw, P )g). (3.32)
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The system (2.39)–(2.41), written in the unknowns P and Sw, now takes the form:

Φ
∂

∂t
(Swρw(P ) + (1 − Sw)ρg(P )) (3.33)

− div (λ(Sw, P )K[ω(Sw, P )∇P − ρ(Sw, P )g]) = Fw + Fg,

Qt = −λ(Sw, P )K(ω(Sw, P )∇P − ρ(Sw, P )g), (3.34)

Φ
∂

∂t
(Swρw(P )) + div(fw(Sw, P )Qt + Kgbg(Sw, P )) = div(Ka(Sw, P )∇Sw) + Fw, (3.35)

where, according to the initial assumption, one systematically approximates ρg(Pg) with

ρg(P ) and ρw(Pw) with ρw(P ). The coefficients in (3.33)–(3.35) are, therefore, given by

λ(Sw, P ) = ρw(P )λw(Sw) + ρg(P )λg(Sw). (3.36)

fα(Sw, P ) = ρα(P )λα(Sw)/λ(Sw, P ), α = w, g, (3.37)

ρ(Sw, P ) = (λw(Sw)ρw(P )2 + λg(Sw)ρg(P )2)/λ(Sw, P ), (3.38)

α(Sw, P ) = ρw(P )ρg(P )λw(Sw)λg(Sw)/λ(Sw, P ), (3.39)

bg(Sw, P ) = (ρw(P ) − ρg(P ))α(Sw, P ), (3.40)

a(Sw, P ) = −α(Sw, P )P ′

c(Sw), (3.41)

and (3.31). It is clear that the systems (3.33)–(3.35) and (3.23)–(3.25) differ only in the

way their coefficients are calculated.

Remark 3.3. Note that (3.30) defines Pg as a function of Sw and P in a form Pg =

Pg(Sw, P ) = P + Pc(1)− γ(Sw, P ), but for fixed Pg and Sw, (3.30) is a nonlinear equation

in P and its solvability is to be demonstrated if one wants to have an invertible change of

variables. From (3.30) it also follows that the new global pressure P is between the two

phase pressures:

Pw ≤ P ≤ Pg.

With regards to the question of well-posedness of the simplified global formulation, the

system (3.33)–(3.35) is physically relevant only if the function ω, introduced by (3.31), is

strictly positive since ω is a certain correction factor of the total mobility that takes into

account that the nonwetting pressure is now a nonlinear function of the global pressure.
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This function can be written as

ω(Sw, P ) = 1 +

∫ Pc(Sw)

0

∂

∂P
f̂w(u, P ) du

= 1 −
∫ Pc(Sw)

0

λ̂w(u)λ̂g(u)

(λ̂w(u) +M(P )λ̂g(u))2
duM ′(P ), (3.42)

where

M(P ) =
ρg(P )

ρw(P )
, M ′(P ) = M(P )

(

ρ′g(P )

ρg(P )
− ρ′w(P )

ρw(P )

)

. (3.43)

The condition ω > 0 is critical only in the case where the nonwetting phase compressibility

is greater than the wetting phase compressibility, which is usually the case. In that case

∫

∞

0

λ̂w(u)λ̂g(u)

(λ̂w(u) +M(P )λ̂g(u))2
duM ′(P ) < 1, (3.44)

for all pressures P in the range of interest. Under the condition (3.44) the change of

variables (Sw, P ) 7→ (Sw, Pg) is invertible.

Lemma 3.1. For given Pg > 0 and 0 < Sw ≤ 1, assume that the condition (3.44) is

satisfied for P ∈ (Pw, Pg), with Pw = Pg − Pc(Sw). Then, the global pressure P is well

defined by the equation (3.30).

Proof. For Sw = 1 is obviously P = Pw ≤ Pg. For Sw ∈ (0, 1) one defines a function

ΦSw
(P ) = P + Pc(1) − Pg +

∫ Pc(Sw)

0

ρw(P )λ̂w(u)

ρw(P )λ̂w(u) + ρg(P )λ̂g(u)
du.

The global pressure P is defined by ΦSw
(P ) = 0. Note that Φ′

Sw
(P ) = ω(Sw, P ), and by

(3.44) one has Φ′

Sw
(P ) > 0 for all P ∈ (Pw, Pg). It easily follows that ΦSw

(Pg) > 0, and

ΦSw
(Pw) < 0, so that ΦSw

must have a unique zero in interval (Pw, Pg).

Note that the condition (3.44) is not always satisfied in the whole range of the global

pressure P . Taking, for example, incompressible wetting phase and the ideal gas law

ρg(P ) = cgP for a nonwetting phase, (3.44) reduces to

∫

∞

0

cgρwλ̂w(u)λ̂g(u)

(ρwλ̂w(u) + cgPλ̂g(u))2
du < 1.
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In the terms of wetting saturation variable this integral can be rewritten as

∫ 1

0

cgρw(−λw(s)λg(s)P
′

c(s))

(ρwλw(s) + cgPλ̂g(s))2
ds < 1,

and since in the case of the van Gencuhten and Brooks and Corey functions the function

|λw(Sw)λg(Sw)P ′

c(Sw)| is always bounded for Sw ∈]0, 1[ with finite limits for Sw → 0 and

Sw → 1, and for P > 0 the denominator in the above formula is always strictly positive,

the above integral exists, and it’s value can be controled by P . So, the above integral will

be generally lower than 1 only for P sufficiently large. Therefore, the simplified fractional

flow model is not well defined if the field pressure in the porous domain is not sufficiently

large.

In order to correct this deficiency of the simplified fractional flow model the function

ω will be redefined. The formula (3.42) was obtained as a consequence of calculation of

mass densities ρw and ρg in the global pressure instead of the appropriate phase pressure.

One can make this kind of approximation directly in the formula (3.22) for ω in a fully

equivalent fractional flow model, leading to

ω(Sw, P ) = exp

(
∫ 1

Sw

(νg(P ) − νw(P ))
ρw(P )ρg(P )λw(s)λg(s)P

′

c(s)

(ρw(P )λw(s) + ρg(P )λg(s))2
ds

)

,

= exp

(

−
∫ Pc(Sw)

0

M ′(P )
λ̂w(u)λ̂g(u)

(λ̂w(u) +M(P )λ̂g(u))2
du

)

. (3.45)

A benefit of the formula (3.45), in contrast to (3.42), is its strict positivity. It is clear that

the formula (3.42) gives only the first two terms in Taylor’s expansion for the exponential

function in (3.45) and these remarks allow us to conclude that (3.45) is a more consistent

approximation than (3.42). Consequently, in numerical simulations with the simplified

fractional flow model, ω given by (3.45) will be used.

Remark 3.4. There is an another way of introducing a global pressure in compressible

two-phase flow based on approximate calculation of mass densities. Namely, for the case

Pc(1) = 0, one can use the global pressure definition from incompressible case [25]:

P = Pg −
∫ 1

Sw

λw(s)

λw(s) + λg(s)
P ′

c(s) ds. (3.46)

This change of variables permits to eliminate the saturation gradient from the total velocity,

qt = qw + qg. However, it will not eliminate it from the pressure equation (2.39), except
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in the case ρw(P ) = ρg(P ). In that particular case, the global pressure (3.46) is the same

as the global pressure in the simplified fractional flow formulation presented in this section.

Further formulation based on (3.46) will not be considered in the scope of this thesis. Note

that the existence of its weak solution was recently proved in [43,44]

3.4 Comparison of Fully Equivalent and Simplified

Formulation

Note that the simplified assumption introduced in Section 3.3 leads to a fractional flow

model in which the coefficients are calculated from the mass densities, the relative perme-

abilities and the capillary pressure, without solving a large number of the Cauchy prob-

lems for ordinary differential equation as in (3.23)–(3.25). This makes the simplified model

(3.33)–(3.35) interesting and raises a question of error introduced by replacing systemati-

cally the phase pressures with the global pressure in the calculations of the mass densities.

This question will be addressed by comparison of the coefficients of the two models. Also

these two models are going to be compared by performing the simulation in Chapter 4.

From now on, the model based on equations (3.23)–(3.25), and coefficients defined by (3.14)

and (3.16)–(3.22), will be referred to as the new model. The model based on the equations

(3.33)–(3.35), and coefficients defined by (3.36)–(3.41) and (3.45), will be referred to as the

simplified model. It is assumed that Pc(1) = 0.

3.4.1 Comparison of the Coefficients

The difference in the coefficients of the two models is introduced by replacing the fluid

phase pressures Pg = P̂g(u, P ) and Pw = P̂g(u, P ) − u with the global pressure P . The

differences Pg − P and P − Pw will be estimated based on Pw ≤ P ≤ Pg and the mass

density being a non decreasing function for the corresponding phase pressure.

ρg(Pg)

ρw(Pw)
≥ ρg(P )

ρw(P )
= M(P ), (3.47)

where M(P ) is introduced in (3.43). From (3.12) it follows

0 ≤ Pg(Sw, P ) − P =

∫ Pc(Sw)

0

λ̂w(u)

λ̂w(u) + (ρg(Pg)/ρw(Pw))λ̂g(u)
du,
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Figure 3.1: Phase pressures Pg = P̂g(u, P ) and Pw = P̂g(u, P ) − u, for two fixed global
pressures P = 0.5 and P = 5 MPa, as functions of capillary pressure u.

and using (3.47)

0 ≤ Pg(Sw, P ) − P ≤
∫ Pc(Sw)

0

λ̂w(u)

λ̂w(u) +M(P )λ̂g(u)
du. (3.48)

Note also that in general, the relative permeability functions depend on a dimensionless

variable of the form v = u/P 0
c , where u is the capillary pressure and P 0

c is some character-

istic capillary pressure value. In that case a simple change of variables yields,

0 ≤ Pg(Sw, P ) − P ≤ P 0
c

∫ +∞

0

λ̂w(v)

λ̂w(v) +M(P )λ̂g(v)
dv, (3.49)

where the integral on the right hand side is independent of the strength of the capillary

pressure.

For the difference between the wetting fluid pressure and the global pressure one obtains,

P − Pw =

∫ Pc(Sw)

0

λ̂g(u)

(ρw(Pw)/ρg(Pg))λ̂w(u) + λ̂g(u)
du, (3.50)

and therefore
∫ Pc(Sw)

0

M(P )λ̂g(u)

λ̂w(u) +M(P )λ̂g(u)
du ≤ P − Pw ≤ Pc(Sw). (3.51)

From these estimates a several conclusions can be drawn. To simplify discussion, only

the most common case will be considered. This is the case where the nonwetting phase is
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more compressible than the wetting phase, i.e. the case in which P 7→M(P ) is increasing.

1. The global pressure will be uniformly close to the gas pressure if the characteris-

tic capillary pressure P 0
c is small. Following (3.49) one obtains that the difference

between the global and the gas pressure is smaller for higher global pressures.

2. Considering (3.48) and (3.51) and for Sw close to one, the global pressure is closer to

the wetting phase pressure than to the nonwetting one. However, for small Sw, the

difference P − Pw can be arbitrary large.

3. From the preceding conclusions it is visible that approximation errors are larger when

the two fluids are equally compressible, and capillary pressure is large. There is also

an influence of the pressure P that affects differently Pg − P and P − Pw: when P

increases difference Pg − P decreases and P − Pw increases.

For comparison of the coefficients, assume a set of data with incompressible wetting

phase (water) and the ideal gas law ρg(P ) = cgP for the nonwetting phase (hydrogen) and

a set of van Genuchten’s saturation-functions defined by (2.12 )-(2.13).

The choice of incompressible wetting phase makes the approximation of coefficients

independent of difference P −Pw. The error introduced by replacing Pg with P in density

calculation depends now only on the characteristic capillary pressure P 0
c and the global

pressure P .

The fluid characteristics are given in Table 3.1, where n and Pr are van Genuchten’s

parameters.

µw µg ρw cg n Pr
Pa s Pa s kg/m3 kg/(m3MPa) - MPa

0.86 · 10−3 9 · 10−6 996.5 0.808 2 2

Table 3.1: Fluid properties

Water and gas residual saturation are assumed equal to zero.

In figure 3.1 Pg = P̂g(u, P ) and Pw = P̂g(u, P ) − u for a two fixed global pressures,

P = 0.5 and 5 MPa. These figures show the global pressure is closer to the nonwetting

phase pressure Pw for small to intermediate capillary pressure values. The difference P−Pw

grows unboundedly when capillary pressure augments. The difference Pg − P tends to a

constant when the capillary pressure grows.
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Figure 3.2: Comparison of the coefficients in the new and the simplified global pressure
models at the global pressure of 0.1 MPa. The coefficients are presented as functions of
the wetting phase saturation with fixed global pressure.

In figures 3.2 and 3.3 the coefficients in new and simplified models are compared: bg

and bng (= b g in the figure), a and an, λ and λn (= tot mob in the figure), fw and fn
w

(= f w on the figure), and functions ω (= omega in the figure) given by formulae (3.22)

and (3.45). The comparisons are given at the global pressure of P = 0.1 MPa in figure 3.2

and at P = 5 MPa in Figure 3.3. All functions are presented as functions of wetting fluid

saturation, while the global pressure is a parameter.

These figures confirm that the difference in the coefficients diminishes when the global

pressure augments, which is a consequence of the fact that ρw is constant and the approx-

imation error depends only on Pg − P . Analogously, it could be demonstrated that the

difference in the coefficients diminishes when the capillary pressure diminishes.

3.5 Treatment of Multiple Rock Types in the Global

Pressure Formulation

In this section the conditions at the interface, in the case of fully equivalent global pressure

model will be formulated. For the wetting phase variable in the situations where Pm1
d ≤
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Figure 3.3: Comparison of the coefficients in the new and the simplified models at the
global pressure of 5 MPa. The coefficients are presented as functions of the wetting phase
saturation with fixed global pressure.

Pm2
d one observes the following:

Sm2
w =







1 for Sm1
w > S∗

w

(Pm2
c )−1(Pm1

c (Sm1
w )) for Sm1

w ≤ S∗

w.

For the global pressure, the interface condition is derived from the transmission condition

of one phase pressure. Given that porous media is denoted by Ω = Ωm1 ∪ Ωm2. Similar

to [17], where incompressible case was considered, one can have two different cases:

(C.1) Sm1
w > S∗

w, Sm2
w = 1; in this situation, the nonwetting pressure is not defined in the

domain Ωm2 and Pw is continuous at the interface. Thus, one may use the derived

representation for the wetting phase pressure (3.13). From Pm1
w (1, P ) = P and from

the continuity of the wetting phase pressure the following condition is obtained

Pm1
w (Sm1

w , Pm1) = Pm2 −
∫ Sm2

w

1

fm2
g (s, Pm2

g (s, Pm2))
dPm2

c (s)

ds
ds, (3.52)

In this case transmission condition between two limiting values of the global pressure
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is described by the nonlinear equation (3.52). In fact, the following applies:

Pm2 = Pm1
w (Sm1

w , Pm1). (3.53)

From given Pm1 and Sm1
w the Pm2 can be calculated by (3.52)). In reverse, for given

Pm2 and Sm1
w one may calculate Pm1 by solving the nonlinear equation (3.53), for

which the solution is defined since the derivative of the wetting phase pressure over

global pressure is strictly positive.

(C.2) Sm1
w ≤ S∗

w, Pm1
c (Sm1

w ) = Pm2
c (Sm2

w ); here the phase pressures are continuous across

the interface, and in the same way like described in [17] one can use the continuity

of the nonwetting phase pressure to obtain

Pm1
g (Sm1

w , Pm1) = Pm2
g (Sm2

w , Pm2). (3.54)

In this case, when Sm1
w and Sm2

w are given, one obtains Pm2 from any given Pm1 by

solving the nonlinear equation

Pm1
g = Pm2

g (Sm2
w , Pm2), (3.55)

whose solution is well defined since the partial derivative of the nonwetting pressure

over global pressure is strictly positive. Also, for any given Pm2 one may calculate

Pm1 from the nonlinear equation

Pm1
g (Sm1

w , Pm1) = Pm2
g .

Remark 3.5. Note that in the case of the van Genuchten functions the case (C.2) always

applies.

Remark 3.6. In the situation when the interface separates multiple rock types, the condi-

tions described above are assumed for each pair of materials containing the same interface

Remark 3.7. The same transmission conditions can be applied in the case of simplified

model, in the range of its validity.
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3.6 Conclusion

A new immiscible compressible two-phase flow model (3.23)–(3.25) is developed. The

model is based on the global pressure concept which is fully equivalent to the original

phase equation formulation (2.20), (2.21). This model is compared to the simplified frac-

tional flow model presented in section 3.3. A comparison of the coefficients in the two

models reveals that simplification based on replacing the phase pressures by the global

pressure in calculations of mass densities can safely be used in applications when mean

field pressure is high, capillary pressure is relatively small and if the wetting phase is not

strongly compressible. This is the case in oil-gas systems. In hydro-geological applica-

tions, where capillary pressures may be elevated with respect to mean field pressure, this

approximation can introduce unacceptably large errors, especially in predicting total mass

of the nonwetting phase. These conclusions are confirmed by numerical simulation in the

following chapter.
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Chapter 4

Numerical Simulations

This chapter is devoted to the numerical simulations of the fully equivalent global pressure

model. At first the numerical scheme is presented. Special attention is paid to the treat-

ment of the heterogeneities and association of the numerical scheme and the transmission

conditions. Furthermore, three monodimensional test cases are presented [52].

The first test case is related to the flow of gas and water in heterogeneous porous

media with no discontinuities of the capillary pressure at the initial time. The second test

case is the benchmark BO-BG, French acronym of Engineered Barrier Geological Barrier,

which was proposed by the French research group MoMaS (http://www.gdrmomas.org/) to

advance numerical methods used in the simulations concerning the gas migration through

engineered and geological barriers for the deep repository of radioactive waste. In this test

the initial capillary pressure is taken to be discontinuous. The third test case presents the

situations that include the capillary pressure curves with nonzero entry pressure. During

this chapter, most of the time the subscript w referring to the wetting phase saturation is

omitted, and only S is used.

4.1 A Finite Volume Scheme

In this section, a vertex-centered finite volume method applied to the system of equations

(3.23)-(3.25) for the one-dimensional case is presented.
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4.1.1 Basic Notation

The equations (3.24)-(3.25) are solved on a finite time interval J = ]0, T [, and in a finite

spatial domain I = ]a, b[. In order to present the discretization, the following notation is

applied, similar to the one presented in [1, 2, 5]:

(N.1) Let
{

t0 < t1 < . . . < tNT
}

be the discretization of the time domain and by Jk =

[tk, tk+1[ denote the k-level time interval. The time step is: △tk = tk+1 − tk, k =

0, 1, . . . , NT − 1.

(N.2) Let {x0 < x1 < . . . < xNx
} be the discretization of the spatial domain where:

Ei+ 1
2

:= [xi, xi+1] , i = 0, 1, . . . , Nx − 1, as shown in the figure 4.1 and set △xi =

|Ei+ 1
2
| = xi+1 − xi, i = 0, 1, . . . , Nx − 1.

(N.4) Control volumes are defined as follows: for each i ∈ 0, 1, . . . , Nx − 1 denote the

center of the element Ei+ 1
2

by xi+ 1
2

:= xi+xi+1

2
, and set x

−
1
2

= x0 and xNx+ 1
2

= xNx
.

For i = 0, . . . , Nx, the control volume is defined as Vi = [xi− 1
2
, xi+ 1

2
]. By setting

hi = |Vi| = xi+ 1
2
− xi− 1

2
, i = 0, 1, 2 . . . , Nx, one obtains h0 = ∆x0

2
, hNx

=
∆xNx−1

2

and hi = ∆xi−1+∆xi

2
, i = 0, 1, . . . , Nx − 1.

(N.5) Let {φj, j = 0, . . . , Nx} (φj(xj) = 1) be the set of P1 base functions. The approxima-

tions

S(x, t) =
N
∑

j=0

Sj(t)φj(x), P (x, t) =
N
∑

j=0

Pj(t)φj(x)

are required. The approximations of S(xi, tk) and P (xi, tk), are denoted by Sk
i and

P k
i .

(N.6) For the porosity, Φ ∈ L∞(I) one sets: φi = 1
hi

∫

Vi
Φ(x) dx.

(N.7) The permeability is scalar function of the space and it is assumed to be constant on

the element: Ki+ 1
2

= K
∣

∣

E
i+1

2

A special care has to be taken when spatial mesh creation is performed in the situations

with multiple rock types. As explained in the previous chapters, in each rock type the

rock properties differ. Relative permeability and the capillary pressure functions may be

different for each rock type as well.
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If the spatial domain in one dimension is divided into Nm parts, and each part of the

domain is related to a certain rock type, there are Nm − 1 interfaces. Every interface point

is set to be an element of the spatial mesh {x0 < x1 < . . . < xNx
}. The other nodes of the

spatial mesh can be chosen arbitrarily.

For the sake of simplicity and without loss of generality, the numerical scheme will be

presented for the situation of the two rock types. A higher number of materials does not

influence the presentation of the treatment of heterogeneity employed in this thesis. In

the case with higher dimensions, the situation complicates further. In the following, it is

assumed that the spatial domain is divided into two parts, one related to the material m1

and the other related to the material m2, as is presented in the figure 4.1.

E

Figure 4.1: Spatial mesh in one-dimensional case

Let Im1 ∪ Im2 = I and the interface node is set to be {xδ} = Im1 ∩ Im2, for an index

δ ∈ {0, 1, . . . , Nx}
The superscript n in the definition of the coefficients (3.16)-(3.20) is omitted to further

simplify notation. Also the subscript t used previously in the notation of the total flux, is

omitted. For the same reason the following functions are introduced (either m = m1 or

m = m2):

Mm := Mm(S, P ) := ρw(Pm
w (S, P ))S + ρg(P

m
g (S, P ))(1 − S)

Nm := N(S, p) := ρw(Pm
w (S, p))S.

χm(S, P ) := λm(S, P )ωm(S, P )

γ(S, P ) := −α(S, P ), so that a(S, P ) = γ(S, P )P ′

c(S).
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The equations (3.23)-(3.25) (with neglected gravity term) rewritten in one-dimensional

case are:

Φ
∂

∂t
(Mm(S, P ))) − ∂

∂x

(

χm(S, P )K
∂P

∂x

)

= Fw + Fg (4.1)

Qm = −χm(S, P )K
∂P

∂x
(4.2)

Φ
∂

∂t
(Nm(S, P )) +

∂

∂x
(Qmfm

w (S, p)) − ∂

∂x

(

γm(S, P )K
∂Pm

c (S)

∂x

)

= Fw (4.3)

At initial time, either the global pressure, the saturation or the phase pressures are

given. A set of boundary conditions of diverse types can be given.

As already mentioned, in the chapter 3, the saturation and the global pressure are

generally discontinuous at the interface point. Therefore, it is worthwhile to explain the

meaning and use of the global unknowns Sk
δ and P k

δ , at the interface node xδ.

4.1.2 Interface Conditions

The values Sk
δ and P k

δ are solutions of the nonlinear problem for each time step. These are

considered to be the representative values of the true limit values defined by the elements.

The index k is omitted below to simplify the notation.

There are several ways of defining these global unknowns. At first consider the sat-

uration variable and recall that at the interface point the following equality has to be

satisfied:

Pm1
c (Sm1

δ ) = Pm2
c (Sm2

δ ), (4.4)

if one assumes that Pm1
c (1) = Pm2

c (1) = 0, otherwise extended capillary pressure condition

needs to be satisfied. Here Pm1
c (Pm2

c ) is the capillary pressure defined for the material m1

( material m2), and Sm1
δ (Sm2

δ ) are respective limiting saturations. When the wetting phase

saturation is the primary unknown of the system, in the computation by the elements

the true limit values of the saturation need to be used. This also guarantees that during

calculation one actually always works with the correct capillary pressure at the interface

node xδ.

The unknown value Sδ at the interface node xδ can be chosen in several ways. For

instance, it can be taken as Sδ = f(Sm1
δ , Sm2

δ ), where f an invertible function in every
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variable. The simplest approach, however, is to choose Sδ = Sm1
δ or Sδ = Sm2

δ .

The situation with the global pressure is similar. The global pressure will generally be

discontinuous at the interface point. The choice of Pδ can be done in several ways, and the

simplest approach is to choose Pδ = Pm1
δ or Pδ = Pm2

δ , and then use the continuity of the

nonwetting phase pressure:

Pm1
g (Sm1

δ , Pm1
δ ) = Pm2

g (Sm2
δ , Pm2

δ ) (4.5)

at the interface, in order to obtain the other limiting value, depending on which part of

the domain the calculation is done.

This is applicable if the nonwetting phase is mobile at the interface, otherwise one needs

to use the continuity of the wetting phase pressure.

Remark 4.1. In the simulations where the entry pressure is present (e.g. Brooks and

Corey capillary pressure), the choice of the unknown Sδ is more restrictive. It has to be

taken equal to the limiting saturation of the material which is related to the smaller “entry

pressure” [17,56]. If this is the region Im1, the extended capillary pressure condition (2.50)

to calculate the saturation Sm2
δ is used.

4.1.3 Numerical Scheme Presentation

For any function f(S, P ) we define:

fm,k

i+ 1
2

= fm(Sk
i+ 1

2
, P k

i+ 1
2
).

The following notation is used:

Sk
i+ 1

2
=
Sk

i + Sk
i+1

2
, P k

i+ 1
2

=
P k

i + P k
i+1

2
.
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At first, the system (4.1)-(4.3) is integrated over the set Vi × Jk to obtain:

∫

Vi

Φ
(

Mm(Sk+1, P k+1) −Mm(Sk, P k))
)

dx−
∫

Jk

∑

j=±
1
2

(2j)χm
i+jKi+j

(

∂P

∂x

)

i+j

dt

= |Vi|(Fw,i + Fg,i)
∫

Vi

Φ
(

Nm(Sk+1, P k+1) −Nm(Sk, P k))
)

dx+

∫

Jk

∑

j=±
1
2

(2j)Qm
i+jf

m,up
w,i+j dt

=

∫

Jk

∑

j=±
1
2

(2j)γm
i+jKi+j

(

∂Pm
c (S)

∂x

)

i+j

dt

+ |Vi|Fw,i

Now, various approximations can be used:

(

∂P

∂x

)

i+ 1
2

=
Pi+1 − Pi

∆xi

,

(

∂Pm
c (S)

∂x

)

i+ 1
2

=
Pm

c (Si+1) − Pm
c (Si)

∆xi

.

On the left side of the equations the mass lumping is applied. The following equations

are obtained:

Φihi
Mm,k+1

i −Mm,k
i

∆tk
= Rk+1

p,i (4.6)

Φihi
Nm,k+1

i −Nm,k
i

∆tk
= Rk+1

S,i . (4.7)

The following notation is introduced:

Ti+1/2 :=
Ki+1/2

△xi

, i = 0, 1, 2 . . . , Nx − 1.

For i = 1, 2, . . . , Nx − 1, the right hand side of the (4.6) is

Rk+1
p,i =

∑

j=±
1
2

χm,k+1
i+j Ti+j(P

k+1
i+2j − P i

i ) + |Vi|(Fg,i + Fw,i). (4.8)

The total velocity for j = ±1
2

is

Qm,k+1
i+j = −χm,k+1

i+j Ti+j(P
k+1
i+2j − P k+1

i )
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where m = m1 or m = m2.

For i = 1, 2, . . . Nx − 1

Rk+1
S,i =

∑

j=±
1
2

γm,k+1
i+j Ti+j(P

m
c (Sk+1

i+2j) − Pm
c (Sk+1

i )) (4.9)

−
∑

j=±
1
2

(2j)Qm,k+1
i+j (fm

w )m,up,k+1
i+j + |Vi|(Fw,i), (4.10)

where, if the type of problem requires, the following upwind procedure is applied:

fm,up,k+1

w,i+ 1
2

=







fm
w (Sk+1

i , P k+1
i ) for Qk+1

i+ 1
2

≥ 0

fm
w (Sk+1

i+1 , P
k+1
i+1 ) for Qk+1

i+ 1
2

< 0
.

Otherwise, the standard expression for Rk+1
S,i is used:

Rk+1
S,i =

∑

j=±
1
2

γm,k+1
i+j Ti+j(P

m
c (Sk+1

i+2j) − Pm
c (Sk+1

i )) (4.11)

−
∑

j=±
1
2

Qm,k+1
i+j (fm

w )m,k+1
i+j + |Vi|(Fw,i). (4.12)

The terms Rk+1
S,0 , R

k+1
p,0 , R

k+1
p,Nx

, Rk+1
S,Nx

depend on the imposed boundary conditions.

Notes on the Discretization of Boundary Conditions

For simplicity it is assumed Fw = 0 Fg = 0. If setting the total flux Q = Qin, and flux of

wetting phase Qw = Qw,in on the left boundary, one obtains:

Rk+1
p,0 = χm1,k+1

1
2

T 1
2
(P k+1

1 − P k+1
0 ) +Qin

Rk+1
S,0 = γm,k+1

1
2

T 1
2
(Pm

c (Sk+1
1 ) − Pm

c (Sk+1
0 )) −Qm,k+1

1
2

(fw)m,up,k+1
1
2

+Qw,in.

If setting the total flux Q = Qout, and Qw = Qw,out on the right boundary, one obtains:

Rk+1
p,Nx

= −χm2,k+1

Nx−
1
2

TNx−
1
2
(P k+1

Nx
− P k+1

Nx−1) −Qout
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Rk+1
S,Nx

= −γm,k+1

Nx−
1
2

TNx−
1
2
(Pm

c (Sk+1
Nx

) − Pm
c (Sk+1

Nx−1)) +Qm,k+1

Nx−
1
2

(fw)m,up,k+1

Nx−
1
2

−Qw,out

Remark 4.2. If fluxes are set to be zero at the boundary (Q = 0, Qw = 0) the expressions

(4.8) and (4.10) can also be used for i = 0 and for i = Nx if:

P k
−1 = P k

0 Qk
−

1
2

:= Qk
Nx+ 1

2
= 0

Pm1
c (Sk

−1) = Pm1
c (Sk

0 ) Pm2
c (Sk

Nx+1) = Pm2
c (Sk

Nx
).

For Dirichlet boundary conditions S = Sin and P = Pin on the left part of the boundary

one obtains:

Rk+1
p,0 = P − Pin, Mm,k+1

0 −Mm,k
0 ≡ 0.

Rk+1
S,0 = Sk+1

0 − Sin, Nm,k+1
0 −Nm,k

0 ≡ 0.

Similar expressions, are obtained for setting Dirichlet boundary conditions on the right

part of the boundary.

Commonly, Neumann boundary condition for the saturation is used. A case when at

the right boundary it is taken ∂S
∂x

∣

∣

x=xNx

= 0 is discussed in the following.

Note that for xNx
one obtains

ΦNx
hNx

Mm2,k+1
Nx

−Mm2,k
Nx

∆t
= −Qm2,k+1

out − χk+1

i−Nx
2

TNx−
1
2
(P k+1

Nx
− P k+1

Nx−1),

which provides a way to calculate Qn+1
out :

Qm2,n+1
out = −ΦNx

hNx

Mm2,k+1
Nx

−Mm2,k
Nx

∆t
− χm2,k+1

i−Nx
2

Ti− 1
2
(P k+1

Nx
− P k+1

Nx−1)

One can set an upwind value at the node xNx
as follows:

fup,n+1
w,out =







f((
Sk+1

Nx−1+Sn+1
Nx

)

2
,

(P k+1
Nx−1+Pout)

2
) for Qk+1

out ≥ 0

f(Sn+1
Nx

, Pout) for Qn+1
out < 0

and in that case equation (4.10) for Rk+1
S,Nx

can be used.
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Nonlinear Equations

Notice that at each time step a nonlinear problem is obtained. This type of problem

may be solved by the Picard iterations or by the Newton method. In order to use the

Newton method, one needs to know how to form a residual and a Jacobian at the previous

iteration. While those calculations are done, special attention needs to be paid to the

interface node. Considering that all the calculations are performed locally at the element

E, it is worthwhile to have an insight into the local calculations. A brief explanation is

given in the following subsection.

4.1.4 Local Calculations

All the functions used in the discretization belong to the material where the current element

is positioned. Therefore, material index will be omitted in this section. Considering that

the time index is constant in the scope of this discussion, it is omitted as well. The local

calculations are presented for the situation when phase fluxes are set to be zero at the

boundary. For the simplicity, it is assumed that Pc(1) = 0.

Local Residuals

Denote the local element by E = [x0, x1]. The global unknowns are: P0, P1, S0, S1. In

general, assume that local values S+
0 , S

−

1 depend on the values S0 and S1 respectively.

Assume, as well, that P+
0 depends on S0 and P0, and P−

1 depends on P1 and S1.

In the local calculation, the local values S+
0 , P

+
0 , S

−

1 , P
−

1 will be used. As discussed in

the previous section, if calculations are performed at the interface node, one needs to know

the limit values of saturation and global pressure. These are obtained from the global

unknown value from the previous iteration. Consider the simplest example:

• If the global unknown at the node xδ is set to be equal to the left limiting saturation,

then S−

1 = S1 is always valid. However, at the point x0 the calculations have to be

performed more carefully. the following is set:

S+
0 =







S0 if x0 6= xδ

(Pm2
c )−1(Pm1

c (S0)) for x0 = xδ

.

• If the global unknown at the node xδ is set to be equal to the left limiting pressure,

then P−

1 = P1 and at x0 calculation have to be performed more carefully. Assuming
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S+
0 is already calculated, the following is set:

P+
0 =







P0 if x0 6= xδ

solution of Pm1
g (S0, P0) = Pm2

g (S+
0 , P

+
0 ) if x0 = xδ

.

The permeability K is constant on the element. One sets:

P 1
2

=
P+

0 + P−

1

2
, S 1

2
=
S+

0 + S−

1

2
, dx = x1 − x0, T =

K

dx
,

and now follows:

Rp,0 = χ(S 1
2
, P 1

2
)T (P−

1 − P+
0 )

Rp,1 = −χ(S 1
2
, P 1

2
)T (P−

1 − P+
0 ).

Also, the following equalities are obtained:

RS,0 = γ(S 1
2
, P 1

2
)T (Pc(S

−

1 ) − Pc(S
+
0 )) −Q 1

2
fup

w

RS,1 = −γ(S 1
2
, p 1

2
)T (Pc(S

−

1 ) − Pc(S
+
0 )) +Q 1

2
fup

w

where

Q 1
2

= −χ(S 1
2
, P 1

2
)T (P−

1 − P+
0 ), fup

w =







fw(S+
0 , P

+
0 ) for Q 1

2
≥ 0

fw(S−

1 , P
−

1 ) for Q 1
2
< 0

.

Local Jacobian

To form the Jacobian, one needs to know the derivatives

dS+
0

dS0

(S0),
dS−

1

dS1

(S1),
∂P+

0

∂S0

(S0, P0),
∂P+

0

∂P0

(S0, P0),
∂P−

1

∂S1

(S1, P1),
∂P−

1

∂P1

(S1, P1).

If x0 is not the interface node these values are calculated as usual. The following applies:

S+
0 = S0,

dS+
0

dS0

= 1, P+
0 = P0,

∂P+
0

∂S0

= 0,
∂P+

0

∂P0

= 1.

The same situation is when x1 is not the interface node.
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Remark 4.3. To further simplify the notation, the function arguments will be omitted. By

setting the global unknown at the interface equal to the left limiting saturation (pressure),

one obtains:

S−

1 = S1,
∂S−

1

∂S1

= 1, P−

1 = P1,
∂P−

1

∂S1

= 0,
∂P−

1

∂P1

= 1.

From the transmission conditions (4.4) and (4.5) one obtains the following:

∂S+
0

∂S0

=







1 if x0 6= xδ
(

dP m1
c (S0)
dS

)

/
(

dP m2
c (S+

0 )

dS

)

for x0 = xδ

∂P+
0

∂S0

=











0 if x0 6= xδ

∂Pm1
g (S0,P0)

∂S0
−

∂Pm2
g (S+

0 ,P
+
0 )

∂S

∂S
+
0

∂S

ωm2(S+
0 ,P+

0 )
for x0 = xδ

∂P+
0

∂P0

=







1 if x0 6= xδ

ωm1(S0,P0)

ωm2(S+
0 ,P+

0 )
for x0 = xδ

.

Note that when the unknowns at the interface node are selected differently, the above deriva-

tives have to be calculated accordingly.

It follows:

DPRP =

[

∂P0RP,0 ∂P1RP,0

∂P0Rp,1 ∂P1RP,1

]

= T

[

α1 β1

−α1 −β1

]

where

α1 =
1

2
∂Pχ(S 1

2
, P 1

2
)
∂P+

0

∂P0

(P−

1 − P+
0 ) − χ(S 1

2
, P 1

2
)
∂P+

0

∂P0

β1 =
1

2
∂Pχ(S 1

2
, P 1

2
)
∂P−

1

∂P1

(P−

1 − P+
0 ) + χ(S 1

2
, P 1

2
)
∂P−

1

∂P1

.

One obtains

DSRp =

[

∂S0RP,0 ∂S1RP,0

∂S0RP,1 ∂S1RP,1

]

= T

[

α2 β2

−α2 −β2

]
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where

α2 =
1

2

(

∂Sχ(S 1
2
, P 1

2
)
∂S+

0

∂S0

+ ∂Pχ(S 1
2
, p 1

2
)
∂P+

0

∂S0

)

(P−

1 − P+
0 ) − χ(S 1

2
, P 1

2
)
∂P+

0

∂S0

β2 =
1

2

(

∂Sχ(S 1
2
, P 1

2
)
∂S−

1

∂S1

+ ∂Pχ(S 1
2
, P 1

2
)
∂P−

1

∂S1

)

(P−

1 − P+
0 ) + χ(S 1

2
, P 1

2
)
∂P−

1

∂S1

.

Total velocity derivatives are

∂Q 1
2

∂S0

= −Tα2

∂Q 1
2

∂S1

= −Tβ2

∂Q 1
2

∂P0

= −Tα1

∂Q 1
2

∂P1

= −Tβ1.

Upwind flux derivatives are

∂S0f
up
w =







∂Sfw(S+
0 , P

+
0 )

∂S+
0

∂S0
+ ∂Pfw(S+

0 , P
+
0 )

∂P+
0

∂S0
for Q 1

2
≥ 0

0 for Q 1
2
< 0

∂P0f
up
w =







∂Pfw(S+
0 , P

+
0 )

∂P+
0

∂P0
for Q 1

2
≥ 0

0 for Q 1
2
< 0

∂S1f
up
w =







0 for Q 1
2
≥ 0

∂Sfw(S−

1 , P
−

1 )
∂S−

1

∂S1
+ ∂Pf(S−

1 , P
−

1 )
∂P−

1

∂S1
for Q 1

2
< 0

∂P1f
up
w =







0 for Q 1
2
≥ 0

∂pf(S−

1 , P
−

1 )
∂P−

1

∂P1
for Q 1

2
< 0

.

Convective flux derivatives are

∂

∂S0

(Q 1
2
fup

w ) =
∂Q 1

2

∂S0

fup
w +Q 1

2

∂fup
w

∂S0

= −Tα2f
up
w + max(Q 1

2
, 0)∂S0f

up
w

∂

∂S1

(Q 1
2
fup

w ) =
∂Q 1

2

∂S1

fup
w +Q 1

2

∂fup
w

∂S1

= −Tβ2f
up
w + min(Q 1

2
, 0)∂S1f

up
w

∂

∂P0

(Q 1
2
fup

w ) =
∂Q 1

2

∂P0

fup
w +Q 1

2

∂fup
w

∂P0

= −Tα1f
up
w + max(Q 1

2
, 0)∂P0f

up
w

∂

∂P1

(Q 1
2
fup

w ) =
∂Q 1

2

∂P1

fup
w +Q 1

2

∂fup
w

∂p1

= −Tβ1f
up
w + min(Q 1

2
, 0)∂P1f

up
w .
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The residual is decomposed as follows:

RS,0 = Rdif
S,0 +Rcon

S,0 , RS,1 = Rdif
S,1 +Rcon

S,1

where

Rdif
S,0 = γ(S 1

2
, P 1

2
)T (Pc(S

−

1 ) − Pc(S
+
0 )), Rcon

S,0 = −Q 1
2
fup

w

Rdif
S,1 = −γ(S 1

2
, P 1

2
)T (Pc(S

−

1 ) − Pc(S
+
0 )), Rcon

S,1 = Q 1
2
fup

w ,

so it follows

DSRS =

[

∂S0RS,0 ∂S1RS,0

∂S0RS,1 ∂S1RS,1

]

= DSR
dif
S +DSR

con
S

DpRS =

[

∂P0RS,0 ∂P1RS,0

∂P0RS,1 ∂P1RS,1

]

= DPR
dif
S +DPR

con
S .

Using the notation γ 1
2

= γ(S 1
2
, P 1

2
) and ∂Pγ 1

2
= ∂Pγ(S 1

2
, P 1

2
) one obtains:

DSR
dif
S =

[

∂S0R
dif
S,0 ∂S1R

dif
S,0

∂S0R
dif
S,1 ∂S1R

dif
S,1

]

= T

[

α3 β3

−α3 −β3

]

,

where

α3 =

(

1

2
∂Sγ 1

2

∂S+
0

∂S0

+
1

2
∂Pγ 1

2

∂P+
0

∂S0

)

(Pc(S
−

1 ) − Pc(S
+
0 )) − γ 1

2
P ′

c(S
+
0 )
∂S+

0

∂S0

β3 =

(

1

2
∂Sγ 1

2

∂S−

1

∂S1

+
1

2
∂Pγ 1

2

∂P−

1

∂S1

)

(Pc(S
−

1 ) − Pc(S
+
0 )) + γ 1

2
P ′

c(S
−

1 )
∂S−

1

∂S1

.

It follows:

DPR
dif
S =

[

∂P0R
dif
S,0 ∂P1R

dif
S,0

∂P0R
dif
S,1 ∂P1R

dif
S,1

]

= T

[

α4 β4

−α4 −β4

]
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where

α4 =
1

2
∂Pγ 1

2

∂P+
0

∂P0

(Pc(S
−

1 ) − Pc(S
+
0 ))

β4 =
1

2
∂Pγ 1

2

∂P−

1

∂P1

(Pc(S
−

1 ) − Pc(S
+
0 )).

For the convective part of the Jacobian is valid:

DSR
con
S =

[

−∂S0(Q 1
2
fup

w ) −∂S1(Q 1
2
fup

w )

∂S0(Q 1
2
fup

w ) ∂S1(Q 1
2
fup

w )

]

, DPR
con
S =

[

−∂P0(Q 1
2
fup

w ) −∂P1(Q 1
2
fup

w )

∂P0(Q 1
2
fup

w ) ∂P1(Q 1
2
fup

w )

]

.

Mass Residual and Jacobian

In calculations by elements one has to calculate

M0 = ρw(S+
0 , P

+
0 )S+

0 + ρg(S
+
0 , P

+
0 )(1 − S+

0 )

N0 = ρw(S+
0 , P

+
0 )S+

0 ,

M1 = ρw(S−

1 , P
−

1 )S−

1 + ρg(S
−

1 , P
−

1 )(1 − S−

1 )

N1 = ρw(S−

1 , P
−

1 )S−

1 .

To form the Jacobian, one requires derivatives of the functions M and N :

∂M(S+
0 , P

+
0 )

∂P0

= ∂pM(S+
0 , P

+
0 )
∂P+

0

∂P0

∂M(S−

1 , P
−

1 )

∂P1

= ∂pM(S−

1 , P
−

1 )
∂P−

1

∂P1

∂M(S+
0 , P

+
0 )

∂S0

= ∂SM(S+
0 , P

+
0 )
∂S+

0

∂S0

+ ∂pM(S+
0 , P

+
0 )
∂P+

0

∂S0

∂M(S−

1 , P
−

1 )

∂S1

= ∂SM(S−

1 , P
−

1 )
∂S−

1

∂S1

+ ∂pM(S−

1 , P
−

1 )
∂P−

1

∂S1

.

For the function N , the calculation is analogous.
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4.2 Numerical Simulations

In the following subsections three test cases are presented. These test cases [52] are de-

veloped within MoMaS, a federation of French research groups. Test case 3 is slightly

modified in order to present the effect of the entry pressure. In all test cases the flow of

incompressible water and compressible gas is observed.

4.2.1 Test Case 1

In the first test case, the results obtained for the fully equivalent and the simplified frac-

tional flow formulation are presented and discussed. The porous domain I = ]0, 200[ ⊂ R

is taken to be 200 m long. The domain is assumed to be composed of two materials such

that I = Im1 ∪ Im2 where is Im1 = ]0, 20] and Im2 = ]20, 200[, so that the point x = 20 is

an interface between the two materials. In this test, the source terms are equal to zero,

which means that Fα = 0, α = w, g. The duration of the simulation is T = 106 years.

The boundary conditions are set to be Dirichlet at the right boundary point:

Pw,out = 1.0 MPa Pg,out = 1.5 MPa.

Phase fluxes conditions are set on the left boundary:

Qw = 0 and Qg = 5.57 · 10−6 kg/m2/years.

The initial conditions are equal to Dirichlet conditions on the right part of the boundary.

Therefore, the following is set:

Pw,t=0 = 1.0 MPa Pg,t=0 = 1.5 MPa.

In this test case the van Genuchten capillary pressure and the van Genuchten Mualem

relative permeabilities (2.12)-(2.13) are used. It is assumed that K = cte in each subset

of the domain. The same is valid for the porosity. The parameters for the relative perme-

abilities and capillary pressures are different on each subdomain. Temperature is taken to

be fixed, T = 303 K. The parameters for each subdomain are presented in the table 4.1.

The following fluid properties are considered: µw = 1 cP, µg = 0.009 cP, ρw = 1000 kg/m3,

cg = 0.794 kg/m3MPa. The gas density is modeled by the ideal gas law.

In this simulation, an equidistant grid of the space domain with ∆x = 200 cm is used.
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n Pe Swr Sgr φ K
- MPa - - - m2

Im1 1.54 2 0.01 0.0 0.3 10−18

Im2 1.49 15 0.4 0.0 0.15 5 · 10−20

Table 4.1: Test 1. Function parameters and rock properties
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Figure 4.2: Test 1. Water saturation at different times
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Figure 4.3: Test 1. Capillary pressure at different times

For the time domain, a non-equidistant mesh is used, starting with ∆t = 10 years at

the beginning to ∆t = 250 years at the end of the simulation. The obtained results are

presented in the figures 4.2-4.7 for the fully equivalent fractional flow formulation, for which

the term “new” is used, and for simplified fractional flow formulation for which the term

“simpl” is used.
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Figure 4.4: Test 1. Global pressure at different times
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Figure 4.5: Test 1. Gas pressure at different times

One can observe that first 1000 years, due to the small amount of gas (hydrogen)

injected, the changes in the saturation are very small. Also, the changes in the water

pressure presented in the figure 4.6 are not significant at the first 1000 years. The water

pressure is increasing at the beginning and as one may observe in the figure 4.7, around

the time of 5 · 104 years it starts to decrease. At the end of the simulation, it tends to

its initial value 1.0 MPa. During the whole simulation the gas pressure (presented in the

figure 4.5) is increasing attaining the values in the range of 1.5 MPa to 2.3 MPa for the

new model, and the values of 1.5 MPa to 2.65 MPa for the simplified model. The global

pressure is presented in the figure 4.4, and its behavior is similar to the water pressure,

since as commented in chapter 3, the difference between the water and global pressure is
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Figure 4.6: Test 1. Water pressure at different times
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Figure 4.7: Test 1. Phase pressures and saturation on the left end

very small for relatively small capillary pressures, and because of the high value of the

wetting phase density compared to the gas density. From the formula (3.50) one can also

observe that if ρw ≥ ρg the global pressure would be in general closer to the wetting phase

pressure. The continuity condition for the gas pressure is used in this example, and also

for the capillary pressure. They are assumed to be continuous at the interface point. This

produces a discontinuity of the saturation and the global pressure at the interface.

One can see that the difference in the gas pressure in the simplified model and the new

model in this test case, is more visible at the end of the simulation. The reason for this

is, that at the beginning of the simulation the effective saturation is nearly equal to 1, and

the capillary pressure is low, compared to the one at the end of the simulation. The global
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pressure does not have significant variations, it stays during the whole simulation in the

range of 1.0 MPa to 1.40 MPa in the case of the new model, and in the simplified model

it attains values between 1.0 MPa and 1.55 MPa. The difference in the global pressure

in the simplified and the new model is significant in the period from 104 years to 6 · 105

years. The water pressure behaves similarly. From these observations, one can see that the

difference in the phase pressures obtained by the simplified and by the new model may be

significant.

4.2.2 Test Case 2

The second test case is a BO-BG test case [52]. This test was numerically solved by other

authors [5, 14]. The porous domain I = ]−0.5, 0.5[ ⊂ R is taken to be 1 m long. The

porous domain is assumed to be composed of two materials such that I = Im1 ∪ Im2 where

is Im1 = ]−0.5, 0] and Im2 = ]0, 0.5[, so that the point x = 0 is interface between the two

materials. In this test the source terms are equal to zero, which means Fα = 0, α = w, g.

Phase fluxes are set to be zero at the boundary points, both on the left and the right

end for each phase, which means that a total flux is also set to be zero.

Qw = Qg = 0 kg/m2/s.

Initially, the capillary pressure is discontinuous, and the following initial condition for the

water saturation is given

Sw(x, 0) =







0.77 for x ≤ 0.0

1 for x > 0.0
, x ∈ I.

Regarding to the initial conditions for the gas pressure two cases are considered:

Test case 2.1

Pg(x, 0) = 0.1 MPa, x ∈ I.

From these initial conditions one obtains initial condition for the global pressure

P = −88.8449 MPa in Im1, and P = 0.0 MPa in Im2.
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Test case 2.2

Pg(x, 0) =







0.1 MPa for x ≤ 0.0

0.0 MPa for x > 0.0
, x ∈ I.

From these initial conditions one obtains initial condition for the global pressure

P = −88.8449 MPa in Im1, and P = 0.1 MPa in Im2.

In this test case the van Genuchten capillary pressure is used. Relative permeabilities

are given by the following formulae:

krg(S) = (1 − S)2(1 − S
5
3 ) krw(S) = (1 + A(S−B − 1)C)−D

Sw(Pc) =

(

1 +

(

PC

Pr

)
1

1−m

)−m

.

It is assumed that K = cte in each subset of the domain. The same is valid for the

porosity. The parameters for the relative permeabilities and capillary pressures are different

on each subdomain. The parameters for each subdomain are presented in the table 4.2.

Temperature is taken to be fixed, T = 300 K.

Figure 4.8: Test 2. Capillary pressures in the different domains

The following fluid properties are taken ρw = 1000 kg/m3 µw = 1 cP, µg = 0.009 cP,

ρw = 1000 kg/m3, Mg = 0.02896 kgmol−1. In numerical results presented here in the test

case 2.1, the density of gas is scaled so it is actually taken that cg = 1.0 kg/m3MPa. In the

spatial domain, an equidistant mesh is taken with the step size ∆x = 0.01 m. The obtained

results are presented in the figures 4.9-4.13.

As shown at the figures the results for the test case 2.1 and 2.2 differ visibly only in
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Figure 4.9: Test 2. Water saturation at different times for the test case 2.1 (left) and test
case 2.2 (right)

Pr m A B C D φ K
MPa - - - - - - m2

Im1 1.5 0.06 0.25 16.67 1.88 0.5 0.3 10−20

Im2 10 0.412 1.0 2.429 1.176 1.0 0.05 10−19

Table 4.2: Test 2. Function parameters and rock properties

the gas pressures obtained at first 105 s. The right part of the domain is initially fully

saturated by the water. At first, the changes of saturation are very small, the water starts

to flow from the domain Im2 to the domain Im1. After a certain time a change in the

saturation in the region Im2 becomes more visible, when the gas starts to flow to the right

part of the domain. The gas pressure is increasing near the interface, since the gas is

expected to enter the domain fully saturated by the water. At the time of 105 s in the test

case 2.1 the gas pressure becomes zero on the subdomain Im2, while in the test case 2.2 it

obtains the values close to the initial value. After the time of 105s in both cases the gas

pressure starts to decrease from its maximum value near interface in the region Im1, an

behaves similarly in both of the cases. In both cases, at the later times the water pressure

attains value of around −20.0 MPa and the difference between the global pressure and the

water pressure is small compared to its difference from the gas pressure. This observation

is valid during the whole simulation. This follows from the fact that when one calculates

the difference by the formula (3.50), the small value compared to the range of pressures is

obtained. From the continuity condition of the capillary pressure one obtains discontinuous

saturation. The initial discontinuity of the capillary pressure is treated as follows: the left
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Figure 4.10: Test 2. Global pressure at different times for the test case 2.1 (left) and test
case 2.2 (right)
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Figure 4.11: Test 2. Gas pressure at different times for the test case 2.1 (left) and test case
2.2 (right)

limiting saturation is taken to be global unknown in the simulation, so when calculation is

performed on the interface element in domain Im2, the left limiting value of the capillary

pressure is used. In the both cases, the wetting saturation attains the values Sw = 0.844

on the left part of the domain, and Sw = 0.548 on the right part of the domain by the end

of the simulation. In both cases after the time of 108 s, the changes in saturation are not

significant, while the gas pressure tends to the value of 0.1 MPa which is the initial value

that was set in the case 2.1. The time steps used during the simulation are from 10−5 s at

the beginning to the 2 · 106 s at the end of the simulation.
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Figure 4.12: Test 2. Water pressure at different times for the test case 2.1 (left) and test
case 2.2 (right)
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Figure 4.13: Test 2. Capillary pressure at different times for the test case 2.1 (left) and
test case 2.2 (right)

4.2.3 Test Case 3

The third test case is considered in order to simulate the effect of the entry pressure. The

porous domain I = ]0, 200[ ⊂ R is taken to be 200 m long. The domain is assumed

to be composed of the two materials such that I = Im1 ∪ Im2 where Im1 = ]0, 100] and

Im2 = ]100, 200[, so that the point x = 100 is the interface between the two materials. In

this test, the source terms are equal to zero, which means that Fα = 0, α = w, g.

The boundary conditions are set to be Dirichlet on the right boundary point, and it is

set

Sw,out = 1.0 Pw,out = 1.0 MPa.
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On the left boundary, phase fluxes conditions (total flux) are set:

Qw = 0 and Qg = 500 mg/m2/years.

The initial conditions are equal to Dirichlet conditions on the right part of the boundary.

Therefore,

Sw,t=0 = 1.0 Pw,t=0 = 1.0 MPa.

It is assumed that the porous medium is fully saturated by the water, and that the gas is

injected. In this numerical test, Brooks and Corey capillary pressure and Brooks and Corey

Burdine relative permeabilities (2.14)-(2.15) are used. It is assumed that all parameters

are the same for each part of the domain: only the entry pressures differ. Temperature is

assumed to be fixed, T = 303 K.

λ Pd Swr Sgr φ K
- MPa - - - m2

Im1 0.5 1.9 0.0 0.0 0.3 10−16

Im2 0.5 2.1 0.0 0.0 0.3 10−16

Table 4.3: Test 3. Function parameters and rock properties

The following fluid properties are considered: µw = 1 cP, µg = 0.009 cP, ρw =

1000 kg/m3, cg = 0.794 kg/m3MPa. The density of gas is modeled by the ideal gas

law ρg(Pg) = cgPg. In this example extended capillary pressure condition (2.50) is applied.

This means that the capillary pressure is discontinuous until the threshold saturation

S∗ = 0.95119 at the interface is reached.

In this simulation, an equidistant mesh of the space domain with ∆x = 200 cm is used.

For the time domain, a non-equidistant, mesh is used, starting with ∆t = 10−2 s at the

beginning to ∆t = 1 year at the end of the simulation. Also, since only the water is mobile

across the interface and consequently continuous, the continuity condition is applied to

the water pressure (and extended capillary pressure condition is used). Therefore, until

the threshold saturation is reached, the capillary pressure and the gas pressure would be

discontinuous at the interface point. The gas will not enter right part of the domain until

the threshold saturation is reached.

The obtained results are presented in the figures 4.14-4.18.

In the figure 4.14 the water saturation is presented. As the extended capillary pressure

condition is used, the saturation is equal to 1 in the subdomain Im2, until the threshold

saturation is reached, which is about 7685 years. One can observe the visible changes in
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Figure 4.14: Test 3. Water saturation at different times
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Figure 4.15: Test 3. Global pressure at different times
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Figure 4.16: Test 3. Gas pressure at different times
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Figure 4.17: Test 3. Water pressure at different times
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Figure 4.18: Test 3. Capillary pressure at different times
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the saturation on the right part of the domain around 9000 years. During all the time

water and global pressure do not change significantly, since the water saturation is very

high. The global pressure has a visible discontinuity at the interface, during the time of

the simulation. The capillary pressure, and the gas pressure are discontinuous until the

threshold saturation is reached at the interface. The capillary pressure is increasing, which

also has an effect on the behavior on the gas pressure, since the changes of water pressure

are relatively small.

4.3 Conclusion

By comparing the simplified and fully equivalent formulation it has been shown by means

of the numerical simulation, that the difference between the solutions obtained in the new

and simplified model may be significant, especially in the area of higher capillary pressures.

The results obtained for the test case 2, are similar to those obtained in [5, 14], and show

model applicability in the simulations with highly heterogeneous porous media. The third

example shows that the model is applicable in the simulations with initially fully saturated

porous media by the wetting phase, and demonstrates the significance of the entry pressure.
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Chapter 5

Existence Theory for the Two-phase

Immiscible, Compressible Flow

Model in Global Pressure

Formulation

The aim of this chapter is to establish existence of weak solutions for a new formulation for

immiscible, compressible, two-phase flows under realistic assumptions. The main difficul-

ties related to the mathematical analysis of such equations are the coupling, the degeneracy

of the diffusion term in the saturation equation and the degeneracy of the temporal term

in the global pressure equation. In the following section a short description of the math-

ematical and physical model used in this study is given. Afterwards the assumptions on

data are formulated. The existence is shown with the help of a regularized system, a time

discretization, a priori estimates and compactness arguments. This chapter contains re-

sults from [9] In section 5.2 the regularized problem is defined with a parameter η > 0,

some auxiliary results are established and the existence of weak solutions of the problem

in the non-degenerate case which will be proved in section 5.3 is formulated. The proof

will be done in three main steps. In subsection 5.3.1, a small parameter h > 0 is used

and approximate solutions are constructed with a time discretization. The existence of the

weak solutions for the corresponding system and a maximum principle for the saturation

is proved. In subsection 5.3.2, suitable test functions introduced in [44] are used to get

uniform estimates with respect to h. These estimates permit passing to the limit when

h tends to zero and obtaining the existence of weak solutions for the regularized problem
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which is carried out in subsection 5.3.3. Section 5.5 is devoted to the presentation of the

result for the degenerate case.

5.1 Main Results

Recall that the mass balance equations and the Darcy law for each phase α ∈ {w, g} can

be written as

Φ
∂

∂t
(ρα(Pα)Sα) + div(ρα(Pα)qα) = Fα, qα = −λα(Sα)K(∇Pα − ρα(Pα)g), (5.1)

where Φ and K are the porosity and the absolute permeability of the porous medium, and

g is the gravitational, downward-pointing, constant vector. The source terms Fα will be

precised in the sequel.

Here, the governing equations are rewritten firstly by choosing the nonwetting satura-

tion Sg and the global pressure P as primary unknowns. All the coefficients are considered

to be functions of Sg and P , as written in remark 3.2. The superscript n used in the

same remark 3.2 is omitted for the simplicity of the notation from now on. The following

functions are introduced:

Λα(Sg, P ) = λα(Sα)ρα(Sg, P )ω(Sg, P ), α = w, g.

From the definitions of nonwetting, and wetting pressure (3.27) and (3.28), it follows that

the mass fluxes can be rewritten as

ρw(Pw)qw = −Λw(Sg, P )K∇P + a(Sg, P )K∇Sg + λw(Sg)ρw(Sg, P )2
Kg,

ρg(Pg)qg = −Λg(Sg, P )K∇P − a(Sg, P )K∇Sg + λg(Sg)ρg(Sg, P )2
Kg,

and consequently the differential equations of the two-phase, compressible, immiscible flow

(5.1) can now be written as (cf. [7, 8]):

Φ
∂

∂t
(ρw(Sg, P )Sw) − div(Λw(Sg, P )K∇P ) + div(a(Sg, P )K∇Sg)

+ div(λw(Sg)ρw(Sg, P )2
Kg) + ρw(Sg, P )fw(Sg, P )FP = ρw(Sg, P )S∗

wFI ,
(5.2)
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Φ
∂

∂t
(ρg(Sg, P )Sg) − div(Λg(Sg, P )K∇P ) − div(a(Sg, P )K∇Sg)

+ div(λg(Sg)ρg(Sg, P )2
Kg) + ρg(Sg, P )fg(Sg, P )FP = ρg(Sg, P )S∗

gFI ,
(5.3)

where Sw = 1 − Sg, FI , FP ≥ 0 are given injection and production rates and S∗

α is known

saturation determining the composition of the injected fluid. Note that the choice of S = Sg

as primary saturation variable is motivated by the fact that Sg 7→ Pc(Sg) is an increasing

function. A priori estimates that will be used in the sequel are based on the integrability

of the quadratic terms λα(Sg)K∇Pα · ∇Pα. In presence of unbounded capillary pressure

function Pc, the non-wetting phase saturation Sg will be replaced by a new variable θ (as

in [6]),

θ = β(S) =

∫ S

0

√

λg(s)λw(s)P ′

c(s) ds, (5.4)

which is well defined since β is strictly increasing. Finally, introducing the function

A(Sg, P ) = ρw(Sg, P )ρg(Sg, P )

√

λw(Sw)λg(Sg)

λ(Sg, P )
(5.5)

the system (5.2), (5.3) can be rewritten as

Φ
∂

∂t
(ρw(Sg, P )Sw) − div(Λw(Sg, P )K∇P ) + div(A(Sg, P )K∇θ)

+ div(λw(Sg)ρw(Sg, P )2
Kg) + ρw(Sg, P )fw(Sg, P )FP = ρw(Sg, P )S∗

wFI ,
(5.6)

Φ
∂

∂t
(ρg(Sg, P )Sg) − div(Λg(Sg, P )K∇P ) − div(A(Sg, P )K∇θ)

+ div(λg(Sg)ρg(Sg, P )2
Kg) + ρg(Sg, P )fg(Sg, P )FP = ρg(Sg, P )S∗

gFI ,
(5.7)

where Sg = S(θ) and Sw = 1 − Sg and the phase mass fluxes are:

Qw = ρw(Pw)qw = −Λw(Sg, P )K∇P + A(Sg, P )K∇θ + λw(Sg)ρw(Sg, P )2
Kg,

Qg = ρg(Pg)qg = −Λg(Sg, P )K∇P − A(Sg, P )K∇θ + λg(Sg)ρg(Sg, P )2
Kg.

Boundary conditions: let Ω ⊂ R
d, d = 2, 3, be a bounded, Lipschitz domain with

its boundary divided in two parts, ∂Ω = Γinj ∪ Γimp, where Γinj denotes the injection

boundary, and Γimp denotes the impervious one. Let ]0, T [ be the time interval of interest
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and QT = Ω×]0, T [. Setting

θ = 0, P = 0 on Γinj×]0, T [ (5.8)

qw · n = qg · n = 0 on Γimp×]0, T [, (5.9)

where n is the outward pointing unit normal on ∂Ω and qα being the volumetric velocity

of the α-phase, α = w, g.

Initial conditions are given by

θ(x, 0) = θ0(x), P (x, 0) = p0(x) in Ω. (5.10)

The assumptions needed to prove an existence result for the coupled system (5.6), (5.7)

with boundary and initial conditions (5.8), (5.9) and (5.10) are:

(A.1) The porosity Φ belongs to L∞(Ω), and there exist constants, φM ≥ φm > 0, such

that 0 < φm ≤ Φ(x) ≤ φM a.e. in Ω.

(A.2) The permeability tensor K belongs to (L∞(Ω))d×d, and there exist constants kM ≥
km > 0, such that for almost all x ∈ Ω and all ξ ∈ R

d it holds:

km|ξ|2 ≤ K(x)ξ · ξ ≤ kM |ξ|2.

(A.3) Relative mobilities satisfy λw, λg ∈ C([0, 1]; R+), λw(Sw = 0) = 0 and λg(Sg = 0) = 0;

λj is a non decreasing function of Sj. Moreover, there exist constants λM ≥ λm > 0

such that for all Sg ∈ [0, 1]

0 < λm ≤ λw(Sg) + λg(Sg) ≤ λM .

(A.4) There exist constants pc,min > 0 and M > 0 such that the capillary pressure function

Sg 7→ Pc(Sg), Pc ∈ C([0, 1[; R+) ∩ C1(]0, 1[; R+), for all Sg ∈]0, 1[ satisfy

P ′

c(Sg) ≥ pc,min > 0, (5.11)

Pc(Sg)(1 − Sg) +

∫ 1

0

Pc(s) ds+
√

λg(Sg)λw(Sg)P
′

c(Sg) ≤M. (5.12)
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(A.5) There exist S# ∈]0, 1[, 0 < γ and M > 0 such that for all S ∈]0, S#]

S−γλg(S)(Pc(S) − Pc(0)) + S2−γP ′

c(S) ≤M, (5.13)

and for all S ∈ [S#, 1[

(1 − S)2−γP ′

c(S) ≤M. (5.14)

(A.6) ρw and ρg are C1(R) non decreasing functions, and there exist ρm, ρM > 0 such that

for all p ∈ R it holds

ρm ≤ ρw(p), ρg(p) ≤ ρM , 0 < ρ′w(p), ρ′g(p) ≤ ρM .

(A.7) FI , FP ∈ L2(QT ), FI , FP ≥ 0, and 0 ≤ S∗

w ≤ 1 a.e. in QT .

(A.8) There exist 0 < τ < 1 and C > 0 such that for all S1, S2 ∈ [0, 1]

C

∣

∣

∣

∣

∫ S2

S1

√

λg(s)λw(s) ds

∣

∣

∣

∣

τ

≥ |S1 − S2|.

(A.9) S∗

g = 1.

The assumptions (A.1)–(A.3) and (A.7)–(A.8) are classical for two-phase flow in porous

media. The assumptions (A.4) and (A.5) control the strength of singularities in the capillary

pressure and its derivative at the end points S = 0, 1, and it will be commented further

on. The assumption (A.6) is satisfied by mass densities given by a physical law, such as

the ideal gas law, by correcting the density function for extremely small and large pressure

values. Such correction does not influence the system behavior in physically admissible

range of pressures, and therefore (A6) does not limit the applicability of our result.

Remark 5.1. Under assumptions (A.3), (A.4) and (A.6), it is easy to see that (3.27) has

a unique solution Pg ∈ C([0, 1] × R) ∩ C1(]0, 1] × R) and consequently Pw ∈ C1([0, 1[×R).

Using the boundedness of Pc(Sg)(1 − Sg) in (A.4), it is easy to see that there exists a

constant M such that for all Sg ∈ [0, 1],

P ≤ Pg(Sg, P ) ≤ P +M, P (1 − Sg) −M ≤ Pw(Sg, P )(1 − Sg) ≤ P (1 − Sg).
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The wetting phase pressure Pw, in contrast to Pg, is unbounded when Sg → 1. From (A.3)

and (A.6) it also follows that ω is smooth, strictly positive and bounded function. There

exist constants ωm, ωM , such that for all Sg ∈ [0, 1] and P ∈ R,

0 < ωm ≤ ω(Sg, P ) ≤ ωM < +∞,

and also

0 < ρmλmωm ≤ Λ(Sg, P ) = Λw(Sg, P ) + Λg(Sg, P ) ≤ ρMλMωM .

Remark 5.2. From (A.5) it follows that there exists a constant C > 0 such that for all

S1, S2 ∈]0, S#]

|Pc(S1) − Pc(S2)|min(S1, S2) ≤ C|S1 − S2|γ, (5.15)

and for all S1, S2 ∈ [S#, 1[

|Pc(S1) − Pc(S2)|(1 − max(S1, S2)) ≤ C|S1 − S2|γ. (5.16)

For example, for S1 < S2 < S#

|Pc(S1) − Pc(S2)|min(S1, S2) = S1(Pc(S2) − Pc(S1)) ≤
∫ S2

S1

sP ′

c(s) ds

=

∫ S2

S1

s2−γP ′

c(s)s
γ−1 ds ≤ C

∫ S2

S1

sγ−1 ds ≤ C

γ
|S1 − S2|γ,

and analogously for S1 > S2. The estimate (5.16) can be proved in a similar way. For

S# < S1 < S2

|Pc(S1) − Pc(S2)|(1 − max(S1, S2)) = (1 − S2)(Pc(S2) − Pc(S1)) ≤
∫ S2

S1

(1 − s)P ′

c(s) ds

=

∫ S2

S1

(1 − s)2−γP ′

c(s)(1 − s)γ−1 ds ≤ C

∫ S2

S1

(1 − s)γ−1

=
C

γ
((1 − S1)

γ − (1 − S2)
γ) ≤ C

γ
|S1 − S2|γ

where the last inequality follows from the fact that the function (1−S)γ is Hölder continuous

with exponent γ, when 0 < γ ≤ 1. The case S1 > S2 can be shown analogously.
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Remark 5.3. Note that (A.8) is satisfied if the function α(S) =
√

λg(S)λw(S) has the

following asymptotic behavior at S = 0, 1:

α(S) ≥ C0







Sγ1 for S ≤ S0

(1 − S)γ2 for S ≥ S0

Then (A.8) is fulfilled for τ = min(1/(1 + γ1), 1/(1 + γ2)). Furthermore, (A.4) and (A.8)

imply that S 7→ β(S) is a monotone increasing function satisfying β(1) < +∞ and thus

there exists an inverse function S = β−1 : [0, β(1)] → [0, 1]. From (A.8) it follows

|β(S2) − β(S1)|τ ≥
pτ

c,min

C
|S2 − S1|, (5.17)

and S is Hölder continuous with exponent τ .

Remark 5.4. Conditions (A.4) and (A.5) are satisfied for many relative permeability-

capillary pressure models in suitable range of theirs parameters. A calculation can show,

that Brooks and Corey model satisfy (A.4) and (A.5) for parameter λ > 1 and any γ ≤ 1− 1
λ
.

For van Genuchten’s functions these conditions are satisfied for n > 2 and any γ ≤ n−2
n−1

.

In order to take into account the Dirichlet boundary condition the following space is in-

troduced:

V = {ϕ ∈ H1(Ω) : ϕ|Γinj
= 0}.

Throughout the rest of the chapter the notation S = Sg is used. Now the existence result

of weak solutions of the system (5.6), (5.7), (5.8), (5.9) and (5.10) in variables P and θ is

presented.

Theorem 5.1. Let (A.1)-(A.8) hold and assume (θ0, p0) ∈ L2(Ω) × L2(Ω), 0 ≤ θ0 ≤ β(1)

a.e. in Ω. Then there exists (P, θ) satisfying

P ∈ L2(0, T ;V ), θ ∈ L2(0, T ;V ), 0 ≤ θ ≤ β(1) a.e. in QT , S = S(θ),

Φ∂t(ρw(S, P )(1 − S)) ∈ L2(0, T ;V ′), Φ∂t(ρg(S, P )S) ∈ L2(0, T ;V ′),



5.1. MAIN RESULTS 77

for all ϕ, ψ ∈ L2(0, T ;V )

∫ T

0

〈Φ∂t(ρw(S, P )(1 − S)), ϕ〉dt+

∫

QT

[Λw(S, P )K∇P · ∇ϕ− A(S, P )K∇θ · ∇ϕ]dxdt

−
∫

QT

[λw(S)ρw(S, P )2
Kg · ∇ϕ− ρw(S, P )fw(S, P )FPϕ]dxdt = 0, (5.18)

∫ T

0

〈Φ∂t(ρg(S, P )S), ψ〉dt+

∫

QT

[Λg(S, P )K∇P · ∇ψ + A(S, P )K∇θ · ∇ψ]dxdt

−
∫

QT

[λg(S)ρg(S, P )2
Kg · ∇ψ − ρg(S, P )fg(S, P )FPψ]dxdt (5.19)

=

∫

QT

ρg(S, P )FIψdxdt.

Furthermore, for all ψ ∈ V the functions

t 7→
∫

Ω

Φρw(Pw(S, P ))(1 − S)ψdx, t 7→
∫

Ω

Φρg(Pg(S, P ))Sψdx

are continuous in [0, T ] and the initial condition is satisfied in the following sense:

(
∫

Ω

Φρw(Pw(S, P ))(1 − S)ψdx

)

(0) =

∫

Ω

Φρw(Pw(s0, p0))(1 − s0)ψdx,

(
∫

Ω

Φρg(Pg(S, P ))Sψdx

)

(0) =

∫

Ω

Φρg(Pg(s0, p0))s0ψdx,

where s0 = S(θ0).

Compared to [44, 48], this existence result permits to consider unbounded capillary

pressure functions and can be applied to physically relevant situations. In contrast to

[42–44] and [48], no additional regularity of porosity and permeability fields apart from

boundedness and positivity are demanded. This is achieved by a modification of a standard

compactness result in [60]. By considering this new model for immiscible compressible two-

phase flow in porous media by the concept of global pressure, the proof of the existence of

weak solutions greatly simplifies compared to the one presented in [42–44,48].
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5.2 Regularised Problem and Auxiliary Results

In the proof of Theorem 5.1 a crucial role is played by the fact that the change of variables

(u, v) = G(S, P ) given by

u = ρw(Pw(S, P ))(1 − S), v = ρg(Pg(S, P ))S (5.20)

(S = Sg) is a diffeomorphism. This is proved in the next two lemmas.

Lemma 5.1. Assume (A.4) and (A.6) hold. Then the map (u, v) = G(S, P ), G : [0, 1] ×
R → [0, ρM ] × [0, ρM ] defined by (5.20) is injective.

Proof. Assume that there exist (S1, P1) 6= (S2, P2) such that

ρw(Pw(S1, P1))(1 − S1) = ρw(Pw(S2, P2))(1 − S2),

ρg(Pg(S1, p1))S1 = ρg(Pg(S2, P2))S2.

First the case S1 = S2 is considered. If S1 = S2(= S) > 0 then the strict monotonicity of

ρg gives Pg(S, P1) = Pg(S, P2). The nonwetting pressure Pg is strictly monotone function of

the global pressure, leading to P1 = P2. The argument is also valid in the case S = 1 since

Pg(1, P ) is finite. If S1 = S2 = 0 then ρw(Pw(0, P1)) = ρw(Pw(0, P2)) or ρw(P1) = ρw(P2)

which leads again to P1 = P2.

Consider the case S1 > S2. Then

S2

S1

< 1 and
1 − S1

1 − S2

< 1.

From

ρw(Pw(S1, P1))
1 − S1

1 − S2

= ρw(Pw(S2, P2)), ρg(Pg(S1, P1)) = ρg(Pg(S2, P2))
S2

S1

.

it follows that

ρw(Pw(S1, P1)) > ρw(Pw(S2, P2)), ρg(Pg(S1, P1)) < ρg(Pg(S2, P2)).

The density functions are strictly increasing and therefore

Pw(S1, P1) > Pw(S2, P2), Pg(S1, P1) < Pg(S2, P2).
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By subtraction one obtains

Pc(S1) = Pg(S1, P1) − Pw(S1, P1) < Pc(S2) = Pg(S2, P2) − Pw(S2, P2)

which leads to S1 < S2 since S = Sg → Pc(S) is strictly increasing function. This is in

contradiction with starting assumption, S1 > S2. In the same way, one may prove that the

case S1 < S2 is not possible and the conclusion follows.

In order to study the map G, given by (5.20), it is decomposed as G = G2 ◦G1,

(S, P ) 7→ (S, Pg(S, P )) 7→ (ρw(Pg − Pc(S))(1 − S), ρg(Pg)S).

Mapping G1(S, P ) = (S, Pg(S, P )) is a homeomorphism from [0, 1]×R to [0, 1]×R, and a

diffeomorphism in ]0, 1[×R.

Next, consider the mapping G2(S, Pg) = (ρw(Pg − Pc(S))(1 − S), ρg(Pg)S). A simple

analysis shows that G2 maps [0, 1]×R into lower triangle of [0, ρw,max]× [0, ρg,max]. Indeed,

if one sets

u = ρw(Pg − Pc(S))(1 − S), v = ρg(Pg)S,

then, for a fixed v ∈ [0, ρg,max], S is allowed to vary in the interval

v

ρg,max

≤ S ≤ min(1,
v

ρg,min

).

u is expressed as a function of S (and v which is fixed) as

u = ρw(ρ−1
g (

v

S
) − Pc(S))(1 − S).

This function is strictly decreasing since

du

dS
= −ρw(ρ−1

g (
v

S
) − Pc(S)) + ρ′w(ρ−1

g (
v

S
) − Pc(S))(1 − S)(Dρ−1

g (
v

S
)(− v

S2
) − P ′

c(S)) < 0.

One easily see that (u, v) covers all of shadowed region on Figure 5.2, which will be denoted

by R. Note that R contains open segments BC and DA, but it does not contain closed

segments AB and CD which correspond, respectively, to Pg = +∞ and Pg = −∞.

Lemma 5.2. The mappings G and G2 are homeomorphisms from [0, 1] × R to R and

diffeomorphisms from ]0, 1[×R to Int(R).
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Figure 5.1: Range of the mapping G2.

Proof. Injectivity of the map G is proved in Lemma 5.2 and thus G2 is also injective.

Surjectivity of the map G2 from [0, 1]× R to R and surjectivity of G1 on [0, 1]× R proves

that G is a surjection form [0, 1]×R to R. Thus, H2 = G−1
2 exists. Calculating the jacobian

of G2 gives

∣

∣

∣

∣

∣

∂u
∂Pg

∂u
∂S

∂v
∂Pg

∂v
∂S

∣

∣

∣

∣

∣

=[ρ′w(Pw)(1 − S)]ρg(Pg) + ρ′g(Pg)S[ρ′w(Pw)(1 − S)P ′

c(S) + ρw(Pw)] > 0,

where Pw = Pg − Pc(S). Therefore, G2 is a diffeomorphism from ]0, 1[×R onto Int(R). To

show the continuity of G−1
2 on BC and DA, consider a sequence

(uk, vk) → (u, 0) as k → ∞, for ρw,min < u < ρw,max.

Then, obviously, Sk → 0, and ρw(P k
g − Pc(S

k)) → u. From the continuity of ρw and

Pc and since u 6= ρw,min, ρw,max, P
k
g → ρ−1

w (u) + Pc(0). The continuity on BC is shown

analogously.

Unboundedness of the capillary pressure function is the reason why the gas saturation

S cannot be taken as the primary variable. To avoid integrability problems, capillary

pressure curve will be corrected in order to make it bounded. Also, a small constant is

added to the diffusivity coefficient in order to achieve uniform ellipticity of discretized

system. therefore, a small parameter η > 0 is introduced into the coefficients. The limit

when η → 0 is analysed.
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The capillary pressure derivative may be unbounded at S = 0 and S = 1. The derivative

will be limited by applying an operator Rη, 0 < η < 1, to the capillary pressure derivative

in the following way:

Rη(P
′

c(S)) =



















2(1 − S
η
)Pc(η)−Pc(0)

η
+ (2S

η
− 1)P ′

c(η) for S ≤ η

P ′

c(S) for η ≤ S ≤ 1 − η

P ′

c(1 − η) for 1 − η ≤ S ≤ 1,

(5.21)

and let

P η
c (S) = Pc(0) +

∫ S

0

Rη(P
′

c(s)) ds. (5.22)

Obviously, if the derivative P ′

c(S) is bounded at S = 0 or S = 1, then the correction at

that end in Rη(P
′

c(S)) is not needed. It is easy to see that, for any η > 0, P η
c (S) is a

bounded, monotone, C1([0, 1]) function, and that P η
c (S) = Pc(S) for S ∈ [η, 1 − η]. From

(A.4) it follows that for sufficiently small η it holds

d

dS
P η

c (S) ≥ pc,min/2 > 0. (5.23)

Also, the operator Rη satisfies

|Rη(P
′

c(S))| ≤ pη
c,max < +∞,

for some constant pη
c,max such that, generally, pη

c,max → ∞ when η → 0. Note also that one

can assume that Rη(P
′

c(S)) satisfies

Rη(P
′

c(S)) ≤ P ′

c(S), for S ≥ η, (5.24)

since if it does not one can modify the definition of Rη(P
′

c(S)) for S > 1−η by replacing the

constant value P ′

c(1 − η) by suitable continuous curve, staying below P ′

c(S) for S > 1 − η.

Define:

P η
g (S, P ) = P + Pc(0) +

∫ S

0

fw(s, P )Rη(P
′

c(s)) ds, (5.25)

P η
w(S, P ) = P −

∫ S

0

fg(s, P )Rη(P
′

c(s)) ds. (5.26)
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Obviously,

P η
g (S, P ) − P η

w(S, P ) = P η
c (S). (5.27)

The derivatives of regularized phase pressures are given as

∂P η
g

∂P
=
∂P η

w

∂P
= ωη(S, P ),

where, from Remark 5.1

ωη(S, P ) =

exp

(

−
∫ S

0

(νg(s, P ) − νw(s, P ))
ρw(s, P )ρg(s, P )λw(s)λg(s)Rη(P

′

c(s))

(ρw(s, P )λw(s) + ρg(s, P )λg(s))2
ds

)

.

Now it follows that

∇P η
g = ωη(S, P )∇P + fw(S, P )Rη(P

′

c(S))∇S, (5.28)

∇P η
w = ωη(S, P )∇P − fg(S, P )Rη(P

′

c(S))∇S, (5.29)

and for given P, S ∈ L2(0, T ;H1(Ω)) it follows that P η
g , P

η
w ∈ L2(0, T ;H1(Ω)).

In the regularized version of the system (5.6), (5.7) the functions P η
α instead of Pα are

used in calculations of the mass densities. That means, ρα(S, P ) is replaced with

ρη
α(S, P ) = ρα(P η

α(S, P )). (5.30)

The function A(S, P ) is replaced with Aη(S, P ), for η > 0, defined as

Aη(S, P ) =
ρw(S, P )ρg(S, P )

λ(S, P )
λw(S)λg(S)Rη(P

′

c(S)) + η. (5.31)

Obviously, Aη(S, P ) ≥ η > 0. The regularized system now takes the form

Φ
∂

∂t
(ρη

w(S, P )(1 − S)) − div(Λη
w(S, P )K∇P ) + div(Aη(S, P )K∇S)

+ div(λw(S)ρη
w(S, P )2

Kg) + ρη
w(S, P )fw(S, P )FP = ρη

w(S, P )S∗

wFI ,
(5.32)
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Φ
∂

∂t
(ρη

g(S, P )S) − div(Λη
g(S, P )K∇P ) − div(Aη(S, P )K∇S)

+ div(λg(S)ρη
g(S, P )2

Kg) + ρη
g(S, P )fg(Sw, P )FP = ρη

g(S, P )S∗

gFI ,
(5.33)

where S = Sg and for α ∈ {w, g}

Λη
α(S, P ) = λα(S)ρα(S, P )ωη(S, P ). (5.34)

The regularized total mobility is introduced:

Λη(S, P ) = Λη
w(S, P ) + Λη

g(S, P ), (5.35)

and the regularized β function:

βη(S) =

∫ S

0

√

λw(s)λg(s)Rη(P
′

c(s)) ds. (5.36)

Remark 5.5. The regularized wetting phase flux (without gravity term) can be written as:

Λη
w(S, P )K∇P − Aη(S, P )K∇S = λw(S)ρw(S, P )K∇P η

w − ηK∇S, (5.37)

and similarly for the regularized non wetting flux:

Λη
g(S, P )K∇P + Aη(S, P )K∇S = λg(S)ρg(S, P )K∇P η

g + ηK∇S. (5.38)

Remark 5.6. A priori estimates that will be used in the proof of Theorem 5.1 are based

on the following equality,

ρg(S, P )λg(S)K∇P η
g · ∇P η

g + ρw(S, P )λw(S)K∇P η
w · ∇P η

w

= Λη(S, p)ωη(S, p)K∇P · ∇P +
ρg(S, P )ρw(S, P )

λ(S, P )
K∇βη(S) · ∇βη(S).

(5.39)

From (3.27) and similarly from (3.28) one obtains

∇P η
g · ∇P η

g = ωη(S, P )2∇P · ∇P + 2ωη(S, P )fw(SP )Rη(P
′

c(S))∇S · ∇P
+ fw(S, P )2Rη(P

′

c(S))2∇S · ∇S.
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Then by setting U = ρg(S, P )λg(S)K∇P η
g ·∇P η

g + ρw(S, P )λw(S)K∇P η
w ·∇P η

w, one obtains

U = ωη(S, P )2(ρg(S, P )λg(S) + ρw(S, P )λw(S))K∇P · ∇P
+ (ρg(S, P )λg(S)fw(S, P )2Rη(P

′

c(s))
2

+ ρw(S, P )λw(S)fg(S, P )2Rη(P
′

c(s))
2)K∇S · ∇S

+ 2
ρg(S, P )λg(S)ρw(S, P )λw(S)

λ(S, P )
ωη(S, P )Rη(P

′

c(S))K∇S · ∇P

− 2
ρw(S, P )λw(S)ρg(S, P )λg(S)

λ(S, P )
ωη(S, P )Rη(P

′

c(S))K∇S · ∇P

which gives

U = ωη(S, P )Λη(S, P )K∇P · ∇P + (ρg(S, P )λg(S)fw(S, P )2Rη(P
′

c(s))
2

+ ρw(S, P )λw(S)fg(S, P )2Rη(P
′

c(s))
2)K∇S · ∇S.

Using the following equality (ρg = ρg(S, P ), ρw = ρw(S, P ))

ρgλg(S)ρ2
wλw(S)2 + ρwλw(S)ρg)

2λg(S)2

λ(S, P )2
=
ρgλg(S)ρwλw(S)

λ(S, P )
,

it can be obtained

U = ωη(S, P )Λη(S, P )K∇P · ∇P

+
ρg(S, P )ρw(S, P )

λ(S, P )

(

√

λg(S)λw(S)Rη(P
′

c(S))

)2

K∇S · ∇S,

which gives

U = ωη(S, P )Λη(S, P )K∇P · ∇P +
ρg(S, P )ρw(S, P )

λ(S, P )
K∇βη(S) · ∇βη(S).

From the equality (5.39) the estimate follows

ρg(S, P )λg(S)K∇P η
g · ∇P η

g + ρw(S, P )λw(S)K∇P η
w · ∇P η

w

≥ λmρmω
2
mkm|∇P |2 +

ρ2
m

λMρM

km|∇βη(S)|2.
(5.40)

Remark 5.7. From (5.23), as in Remark 5.3, that βη has Hölder continuous inverse
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Sη = (βη)−1, with the same exponent τ . Indeed,

|βη(S1) − βη(S2)|τ = |
∫ S2

S1

√

λw(s)λg(s)Rη(P
′

c(s)) ds|τ ≥ Pc,min|
∫ S2

S1

√

λw(s)λg(s) ds|τ

≥ C|S1 − S2|.

Remark 5.8. Lemma 5.2 is equally applicable to the mapping (u, v) = Gη(S, P ), Gη : [0, 1]×
R → R defined by

u = ρw(P η
w(S, P ))(1 − S), v = ρg(P

η
g (S, P ))S, (5.41)

which is therefore homeomorphism from [0, 1] × R onto R.

Now the convergence properties of the regularized coefficients will be investigated when

η → 0.

Lemma 5.3. Assume that (A.4)-(A.6) are fulfilled. Then there exist constants M > 0, ωm

and ωM such that

P ≤P η
g (S, P ) ≤ P +M, (5.42)

(1 − S)P −M ≤(1 − S)P η
w(S, P ) ≤ (1 − S)P, (5.43)

λw(S)P −M ≤λw(S)P η
w(S, P ) ≤ λw(S)P, (5.44)

0 < ωm ≤ωη(S, P ) ≤ ωM , (5.45)

and the following uniform convergences in [0, 1] × R hold:

P η
g (S, P ) → Pg(S, P ) as η → 0, (5.46)

(1 − S)P η
w(S, P ) → (1 − S)Pw(S, P ) as η → 0, (5.47)

λw(S)P η
w(S, P ) → λw(S)Pw(S, P ) as η → 0, (5.48)

ωη(S, P ) → ω(S, P ) as η → 0, (5.49)

βη(S) → β(S) as η → 0 uniformly in [0, 1]. (5.50)

Proof. The estimates (5.42) and (5.43) follow easily as in Remark 5.1, by using (A.4) which

gives the boundedness of λw(S)P ′

c(S) in [S#, 1[ and the boundedness of (1 − S)Pc(S) in

[0, 1]. Similarly (5.44), and (5.45) are obtained as in Remark 5.1. For the convergence
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(5.46), using (A.4) which implies that λw(S)P ′

c(S) is bounded in vicinity of S = 1, the

estimate is:

|P η
g (S, P ) − Pg(S, P )| ≤

∫ S

0

fw(s, p)|Rη(P
′

c(s)) − P ′

c(s)| ds

≤ ρM

λmρm

(

λM

∫ η

0

(Rη(P
′

c(s)) + P ′

c(s)) ds+

∫ 1

1−η

λw(s)(P ′

c(1 − η) + P ′

c(s)) ds

)

≤ ρM

λmρm

(

λM

∫ η

0

(Rη(P
′

c(s)) ds+ λM

∫ η

0

P ′

c(s) ds+

∫ 1

1−η

λw(1 − η)P ′

c(1 − η) ds+

+

∫ 1

1−η

λw(s)P ′

c(s) ds

)

≤ ρM

λmρm

(2λM(Pc(η) − Pc(0)) + Cη).

This gives (5.46), and (5.50) is obtained in a similar way.

|βη(S) − β(S)| ≤
∫ S

0

√

λw(s)λg(s)|Rη(P
′

c(s)) − p′c(s)| ds

≤
∫ η

0

√

λw(S)λg(S)Rη(P
′

c(s)) ds+

∫ 1

1−η

√

λw(s)λg(s)P
′

c(s) ds

≤ λM

∫ η

0

Rη(P
′

c(s)) ds+ Cη

= λm(Pc(η) − Pc(0)) + Cη.

For (5.47), for sufficiently small η it follows:

|(P η
w(S, P ) − Pw(S, P ))(1 − S)| ≤ ρM

λmρm

|1 − S|
∫ S

0

λg(s)|Rη(P
′

c(s)) − P ′

c(s)| ds

≤ ρMλM

λmρm

(

∫ η

0

(Rη(P
′

c(s)) + P ′

c(s)) ds+ |1 − S|
∫ max(1−η,S)

1−η

P ′

c(s) ds)

≤ ρMλM

λmρm

(2(Pc(η) − Pc(0)) + (1 − S) [Pc(max(1 − η, S)) − Pc(1 − η)]).

Applying (5.16) in Remark 5.2 one gets

|(P η
w(S, P ) − Pw(S, P ))(1 − S)| ≤ C(Pc(η) − Pc(0) + ηγ)

which gives (5.47).

The convergence (5.48) is obtained in a similar way as in (5.46) and (5.47) by using the

monotonicity of λw(S) and the fact that, due to (A.4), λw(S)P ′

c(S) is bounded in [S#, 1[.
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Therefore,

|(P η
w(S, P ) − Pw(S, P ))λw(S)| ≤ ρM

λmρm

λw(S)

∫ S

0

λg(s)|Rη(P
′

c(s)) − P ′

c(s)| ds

≤ ρM

λmρm

(

∫ η

0

λw(s)λg(s) (Rη(P
′

c(s)) + P ′

c(s)) ds+

∫ 1

1−η

2λw(s)λg(s)P
′

c(s) ds)

≤ ρMλ
2
M

λmρm

(2(Pc(η) − Pc(0)) + Cη).

The convergence (5.49) is obtained similarly, using the fact that the exponential function

is continuously differentiable.

Corollary 5.1. Assume that Sη, P η, S, P ∈ L2(ΩT ) are such that 0 ≤ Sη, S ≤ 1 and

P η → P, Sη → S a.e. in QT when η → 0.

Then

P η
g (Sη, P η) → Pg(S, P ) ωη(Sη, P η) → ω(S, P ), a.e. in QT when η → 0, (5.51)

(1 − Sη)ρw(P η
w(Sη, P η)) → (1 − S)ρw(Pw(S, P )), a.e. in QT when η → 0, (5.52)

λw(Sη)ρw(P η
w(Sη, P η)) → λw(S)ρw(Pw(S, P )), a.e. in QT when η → 0. (5.53)

Proof. This is a consequence of the uniform convergence in Lemma 5.3 and the continuity

of functions Pα, ω and ρα.

The weak formulation of the regularized problem is defined in the following theorem.

Theorem 5.2. (Regularized problem) Let (A.1)-(A.7) hold and assume that (s0, p0) ∈
V × V , 0 ≤ s0 ≤ 1 a.e. in Ω. For all η > 0 sufficiently small there exists (P η, Sη)

satisfying

P η, Sη ∈ L2(0, T ;V ), 0 ≤ Sη ≤ 1 a.e. in QT ,

Φ∂t(ρ
η
w(Sη, P η)(1 − Sη)),Φ∂t(ρ

η
g(S

η, P η)Sη) ∈ L2(0, T ;V ′),

ρη
w(Sη, P η)(1 − Sη), ρη

g(S
η, P η)Sη ∈ L2(0, T ;V ) ∩ C([0, T ];L2(Ω)),
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and for all ϕ, ψ ∈ L2(0, T ;V )

∫ T

0

〈Φ∂t(ρ
η
w(Sη, P η)(1 − Sη)), ϕ〉dt

+

∫

QT

[Λη
w(Sη, P η)K∇P η · ∇ϕ− Aη(Sη, P η)K∇Sη · ∇ϕ]dxdt

−
∫

QT

[λw(Sη)ρη
w(Sη, P η)2

Kg · ∇ϕ− ρη
w(Sη, P η)fw(Sη, P η)FPϕ]dxdt (5.54)

=

∫

QT

ρη
w(Sη, P η)(1 − S∗)FIϕdxdt,

∫ T

0

〈Φ∂t(ρ
η
g(S

η, P η)Sη), ψ〉dt

+

∫

QT

[Λη
g(S

η, P η)K∇P η · ∇ψ + Aη(Sη, P η)K∇Sη · ∇ψ]dxdt

−
∫

QT

[λg(S
η)ρη

g(S
η, P η)2

Kg · ∇ψ − ρη
g(S

η, P η)fg(S
η, P η)FPψ]dxdt (5.55)

=

∫

QT

ρη
g(S

η, P η)S∗FIψdxdt.

Furthermore, ρη
w(Sη, P η)(1 − Sη) = ρη

w(s0, p0)(1 − s0) and ρη
g(S

η, P η)Sη = ρη
g(s0, p0)s0 a.e.

in Ω, for t = 0.

The regularization of the capillary pressure (5.21) is not needed for problem (5.54),

(5.55). The fact that the regularized function Aη is strictly positive (see (5.31)) and (A.4)

are sufficient to obtain a regularized problem, i.e. a non-degenerate one. The need for

regularization comes from the choice of the test function used in Section 5.3.2. Namely,

Pw(S, P ) is not a good test function with P, S ∈ L2(0, T ;V ) since ∇Pw(S, P ) is not in

L2(QT ) due to the singularity of ∂Pw(S, P )/∂S at S = 1. This singularity is removed by

correcting the capillary pressure curve.

5.3 Proof of Theorem 5.2

5.3.1 Step 1. Time Discretization

In this section a discretization of the time derivative for the regularized system (5.54)–

(5.55) is introduced. In order to simplify the notation, the dependence of the saturation



5.3. PROOF OF THEOREM 5.2 89

and the global pressure on the small parameter η will be omitted until the passage to the

limit η → 0.

The time derivatives in the variational formulation given in Theorem 5.2 are discretized

in the following way: For each positive integer N interval [0, T ] is divided into N subin-

tervals of equal length h = T/N . One sets tn = nh and Jn =]tn−1, tn] for 1 ≤ n ≤ N , and

denote the time difference operator by

∂hv(t) =
v(t+ h) − v(t)

h
,

for any h > 0. Also, for any Hilbert space H one denotes

lh(H) = {v ∈ L∞(0, T ;H) : v is constant in time on each subinterval Jn ⊂ [0, T ]}.

For vh ∈ lh(H) is set vn = (vh)n = vh|Jn
and, therefore, it can be written

vh =
N
∑

n=1

vnχ]tn−1,tn](t), vh(0) = v0.

To each function vh ∈ lh(H) one can assign a piecewise linear in time function

ṽh =
N
∑

n=1

(

tn − t

h
vn−1 +

t− tn−1

h
vn

)

χ]tn−1,tn](t), ṽh(0) = v0. (5.56)

Then it follows that

∂tṽ
h(t) =

N
∑

n=1

1

h
(vn − vn−1)χ]tn−1,tn[(t) = ∂−hvh(t), for t 6= nh, n = 0, 1, . . . , N.

Finally, for any function f ∈ L1(0, T ;H) is defined fh ∈ lh(H) with,

fh(t) =
1

h

∫

Jn

f(τ)dτ, t ∈ Jn.
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The discrete system is defined as follows: Find P h ∈ lh(V ) and Sh ∈ lh(V ) satisfying

∫

QT

Φ∂−h(ρη
w(Sh, P h)(1 − Sh))ϕdxdt

+

∫

QT

[Λη
w(Sh, P h)K∇P h · ∇ϕ− Aη(Sh, P h)K∇Sh · ∇ϕ]dxdt

−
∫

QT

[λw(Sh)ρη
w(Sh, P h)2

Kg · ∇ϕ− ρη
w(Sh, P h)fw(Sh, P h)F h

Pϕ]dxdt (5.57)

=

∫

QT

ρη
w(Sh, P h)(1 − S∗,h)F h

I ϕdxdt,

for all ϕ ∈ lh(V );

∫

QT

Φ∂−h(ρη
g(S

h, P h)Sh)ψdxdt

+

∫

QT

[Λη
g(S

h, P h)K∇P h · ∇ψ + Aη(Sh, P h)K∇Sh · ∇ψ]dxdt (5.58)

−
∫

QT

[λg(S
h)ρg(S

h, P h)2
Kg · ∇ψ − ρη

g(S
h, P h)fg(S

h, P h)F h
Pψ]dxdt

=

∫

QT

ρη
g(S

h, P h)S∗,hF h
I ψdxdt,

for all ψ ∈ lh(V ). For t ≤ 0 Sh = s0, P
h = p0.

Proposition 5.1. Assume (A.1)–(A.7), 0 ≤ S∗ ≤ 1, 0 ≤ s0 ≤ 1 and p0 ∈ V . Then there

exists a solution P h, Sh ∈ lh(V ) of (5.57), (5.58), such that

0 ≤ Sh ≤ 1 a.e. in QT .

Proof. The proof is based on the Schauder fixed point theorem. Fix 1 ≤ k ≤ N . It is

enough to prove that for given P k−1, Sk−1 ∈ V , with 0 ≤ Sk−1 ≤ 1, problem

1

h

∫

Ω

Φ(ρη
w(Sk, P k)(1 − Sk) − ρη

w(Sk−1, P k−1)(1 − Sk−1))ϕdx

+

∫

Ω

[Λη
w(Sk, P k)K∇P k · ∇ϕ− Aη(Sk, P k)K∇Sk · ∇ϕ]dx (5.59)

−
∫

Ω

[λw(Sk)ρη
w(Sk, P k)2

Kg · ∇ϕ− ρη
w(Sk, P k)fw(Sk, P k)F k

Pϕ]dx

=

∫

Ω

ρη
w(Sk, P k)(1 − S∗,k)F k

I ϕdx,
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for all ϕ ∈ V and

1

h

∫

Ω

Φ(ρη
g(S

k, P k)Sk − ρη
g(S

k−1, P k−1)Sk−1)ψdx

+

∫

Ω

[Λη
g(S

k, P k)K∇P k · ∇ψ + Aη(Sk, P k)K∇Sk · ∇ψ]dx (5.60)

−
∫

Ω

[λg(S
k)ρη

g(S
k, P k)2

Kg · ∇ψ − ρη
g(S

k, P k)fg(S
k, P k)F k

Pψ]dx

=

∫

Ω

ρη
g(S

k, P k)S∗,kF k
I ψdx,

for all ψ ∈ V , has a unique solution P k, Sk ∈ V . By summing (5.59) and (5.60) one gets

1

h

∫

Ω

Φ(Hη(Sk, P k) −Hη(Sk−1, P k−1))ϕdx+

∫

Ω

Λη(Sk, P k)K∇P k · ∇ϕdx

−
∫

Ω

[Hη
1 (Sk, P k)Kg · ∇ϕ−Hη

2 (Sk, P k)F k
Pϕ]dx (5.61)

=

∫

Ω

(ρη
w(Sk, P k)(1 − S∗,k) + ρη

g(S
k, P k)S∗,k)F k

I ϕdx,

for all ϕ ∈ V , where the functions have been introduced.

Hη(S, P ) = ρη
w(S, P )(1 − S) + ρη

g(S, P )S,

Hη
1 (S, P ) = λw(S)ρη

w(S, P )2 + λg(S)ρη
g(S, P )2,

Hη
2 (S, P ) = ρη

w(S, P )fw(S, P ) + ρη
g(S, P )fg(S, P ).

Note that the system (5.60), (5.61) is equivalent to the system (5.59), (5.60). Therefore,

the existence of a solution to (5.60), (5.61) will be proven.

Let T : L2(Ω) × L2(Ω) → L2(Ω) × L2(Ω) be a mapping defined by T (S, P ) = (S, P ),

where (S, P ) is a solution of the following linear system:

1

h

∫

Ω

Φ(Hη(Z(S), P ) −Hη(Sk−1, P k−1))ϕdx+

∫

Ω

Λη(Z(S), P )K∇P · ∇ϕdx

−
∫

Ω

[Hη
1 (Z(S), P )Kg · ∇ϕ−Hη

2 (Z(S), P )F k
Pϕ]dx (5.62)

=

∫

Ω

(ρη
w(Z(S), P )(1 − S∗,k) + ρη

g(Z(S), P )S∗,k)F k
I ϕdx,
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for all ϕ ∈ V ,

1

h

∫

Ω

Φ(ρη
g(Z(S), P )Z(S) − ρη

g(S
k−1, P k−1)Sk−1)ψdx

+

∫

Ω

[Λη
g(Z(S), P )K∇P · ∇ψ + Aη(Z(S), P )K∇S · ∇ψ]dx (5.63)

−
∫

Ω

[λg(Z(S))ρη
g(Z(S), P )2

Kg · ∇ψ − ρη
g(Z(S), P )fg(Z(S), P )F k

Pψ]dx

=

∫

Ω

ρη
g(Z(S), P )S∗,kF k

I ψdx,

for all ψ ∈ V . Here the following function is intorduced:

Z(S) =



















0 if S < 0

S if 0 ≤ S ≤ 1

1 if S > 1.

Note that (5.62) is a linear elliptic equation for the pressure P which has a unique solution

by the Lax-Milgram lemma. From (5.62) by setting ϕ = P it follows

∫

Ω

Λη(Z(S), P )K∇P · ∇P dx ≤
∫

Ω

(ρη
w(Z(S), P )(1 − S∗,k) + ρη

g(Z(S), P )S∗,k)F k
I |P |dx

+

∫

Ω

Hη
1 (Z(S), P )|Kg · ∇P | dx+

∫

Ω

Hη
2 (Z(S), P )F k

P |P | dx

+
1

h

∫

Ω

Φ(Hη(Z(S), P ) +Hη(Sk−1, P k−1))|P |dx

≤ ρM‖F k
I ‖L2(Ω)‖P‖L2(Ω) + λMρ

2
MC‖∇P‖L2(Ω)+

+ ρM‖F k
P‖L2(Ω)‖P‖L2(Ω) +

2ρM

h
‖Φ‖L2(Ω)‖P‖L2(Ω),

and then the estimate is obtained:

ρmλmωmkm

∫

Ω

|∇P |2 dx ≤ 2ρM(1 +
1

h
)(‖Φ‖L2(Ω) + ‖F k

I ‖L2(Ω) + ‖F k
P‖L2(Ω))‖P‖L2(Ω)

+ Cρ2
MλM‖∇P‖L2(Ω),

(5.64)

where C = C(kM , |Ω|) is a constant. Therefore, by an application of the Poincaré inequality
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it follows that

‖P‖H1(Ω) ≤ C (5.65)

where C is independent of S̄, P̄ . Now, since P is known, (5.63) is an elliptic equation for

S whose solution exists by the Lax-Milgram lemma.

From (5.63) by setting ψ = S one obtains

∫

Ω

Aη
K∇S · ∇Sdx ≤

∫

Ω

ρη
g(Z(S), P )S∗,kF k

I |S|dx+

∫

Ω

ρη
g(Z(S), P )fg(Z(S), P )F k

P |S| dx+

+
1

h

∫

Ω

Φ(ρη
g(Z(S), P )Z(S) + ρη

g(S
k−1, P k−1)Sk−1)|S| dx+

+

∫

Ω

λg(Z(S))ρη
g(Z(S), P )2|Kg · ∇S| dx+

∫

Ω

Λη
g(Z(S), P )|K∇P · ∇S| dx

≤ ρM

∫

Ω

F k
I |S| dx+ ρM

∫

Ω

F k
P |S| dx+

2ρM

h

∫

Ω

Φ|S| dx

+ λMρMkMg

∫

Ω

|∇S| dx+ ρMλMωMkM

∫

Ω

|∇P · ∇S| dx

and then using inequality Aη = Aη(Z(S), P ) ≥ η the estimate follows:

kmη

∫

Ω

|∇S|2 dx ≤ 2ρM(1 +
1

h
)(‖Φ‖L2(Ω) + ‖F k

I ‖L2(Ω) + ‖F k
P‖L2(Ω))‖S‖L2(Ω)

+ ρMλMkM(g|Ω|1/2 + ωM‖∇P‖L2(Ω))‖∇S‖L2(Ω),

(5.66)

and therefore, using the Poincaré inequality,

‖S‖H1(Ω) ≤ C (5.67)

with C is independent of S̄, P̄ .

The application T : L2(Ω)×L2(Ω) → L2(Ω)×L2(Ω) is well defined and maps L2(Ω)×
L2(Ω) to a bounded set in H1(Ω) ×H1(Ω), which is relatively compact in L2(Ω) × L2(Ω).

From the uniform estimates (5.65) and (5.67) one can find a ball in L2(Ω)×L2(Ω) which T
maps to itself. In order to apply the Schauder theorem, it remains to show the continuity

of the map T . To this end, let (Si, P i) be a sequence in L2(Ω) × L2(Ω) which converges

strongly to (S, P ). Let (Si, Pi) = T (Si, P i), then, up to a subsequence, one has when
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i→ ∞

Si ⇀ S weakly in V, strongly in L2(Ω) and a.e. in Ω, (5.68)

Pi ⇀ P weakly in V, strongly in L2(Ω) and a.e. in Ω, (5.69)

Z(Si) → Z(S) strongly in L2(Ω) and a.e. in Ω. (5.70)

One can pass to the limit in (5.62) and (5.63) using boundedness of the coefficients and

the Lebesgue theorem, giving (S, P ) = T (S, P ), which proves the continuity of the map

since the limit (S, P ) is unique. Schauder’s theorem now can be applied, which gives

the existence of a fixed point of T . The existence of a solution to (5.57), (5.58) is then

achieved if one proves that 0 ≤ S ≤ 1 a.e. in Ω. In order to show the boundedness of S,

put ψ = S− = min(S, 0) ∈ V in (5.63). Note that ψ 6= 0 only if S < 0. Therefore, all

terms containing factors Z(S), Λη
g(Z(S), P ), λg(Z(S)) and fg(Z(S), P ) (which are zero for

S ≤ 0) cancel:

∫

Ω

Aη(0, P )K∇S− · ∇S−dx =

∫

Ω

ρη
g(0, P )S∗,kF k

I S
−dx

+
1

h

∫

Ω

Φρη
g(S

k−1, P k−1)Sk−1S−dx ≤ 0.

Therefore,
∫

Ω

|∇S−|2 dx ≤ 0

and it follows that S− = 0, that is S ≥ 0.

In order to show the boundedness of S ≤ 1 put φ = (S − 1)+ = max(S − 1, 0) ∈ V in the

equation for the water phase, obtained by subtracting (5.62) and (5.63). Note that φ 6= 0

only if S > 1. Therefore, all terms containing factors 1 − Z(S), Λη
w(Z(S), P ), λw(Z(S))

and fw(Z(S), P ) (which are zero for S ≥ 1) cancel:

−
∫

Ω

Aη(1, p)K∇(S − 1)+ · ∇(S − 1)+dx =

∫

Ω

ρη
w(1, P )(1 − S∗,k)F k

I (S − 1)+dx+

+
1

h

∫

Ω

Φρη
w(Sk−1, P k−1)(1 − Sk−1)(S − 1)+dx ≥ 0.

Therefore,
∫

Ω

|∇(S − 1)+|2 dx ≤ 0

and it follows that (S−1)+ is constant and since it is zero on Γin one obtains (S−1)+ = 0,
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that is S ≤ 1.

5.3.2 Step 2. Uniform Estimates with Respect to h

Uniform estimates will be obtained using the following test functions introduced in [44]

and used in [48]:

ϕ = Gg(P
η,k
g ) =

∫ P η,k
g

Pc(0)

1

ρg(z)
dz, ψ = Gw(P η,k

w ) =

∫ P η,k
w

0

1

ρw(z)
dz, (5.71)

where P η,k
g = P η

g (Sk, P k) and P η,k
w = P η

w(Sk, P k); P η
g and P η

w are defined in (5.25) and

(5.26). A special care will be taken to make the dependence on η explicit.

Note that if P = S = 0, then P η,k
g = Pc(0), P η,k

w = 0 and therefore Gg(P
η,k
g ), Gw(P η,k

w )

are admissible test functions. After setting ϕ = Gw(P η,k
w ) in (5.59) and ψ = Gg(P

η,k
g ) in

(5.60) the two equations are summed. First the terms with discrete time derivative will be

estimated, namely

∫

Ω

Φ
[

ρw(P η,k
w )(1 − Sk) − ρw(P η,k−1

w )(1 − Sk−1)
]

Gw(P η,k
w )dx

+

∫

Ω

Φ
[

ρg(P
η,k
g )Sk − ρg(P

η,k−1
g )Sk−1

]

Gg(P
η,k
g )dx.

(5.72)

If the function under the integrals in (5.72) is denoted by ΦX one can write (the superscript

η is dropped for simplicity of notation)

X =ρw(P k
w)Gw(P k

w)(1 − Sk) + ρg(P
k
g )Gg(P

k
g )Sk

− ρw(P k−1
w )Gw(P k−1

w )(1 − Sk−1) − ρg(P
k−1
g )Gg(P

k−1
g )Sk−1

+ ρw(P k−1
w )[Gw(P k−1

w ) −Gw(P k
w)](1 − Sk−1) + ρg(P

k−1
g )[Gg(P

k−1
g ) −Gg(P

k
g )]Sk−1.

Using the fact that z 7→ ρα(z), α = w, g, are increasing functions, one obtains

Gw(P k−1
w ) −Gw(P k

w) =

∫ P k−1
w

P k
w

1

ρw(z)
dz ≥ 1

ρw(P k−1
w )

(P k−1
w − P k

w),
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and similarly for Gg(Pg). Therefore,

X ≥ρw(P k
w)Gw(P k

w)(1 − Sk) + ρg(P
k
g )Gg(P

k
g )Sk − (1 − Sk)P k

w − SkP k
g

−
[

ρw(P k−1
w )Gw(P k−1

w )(1 − Sk−1) + ρg(P
k−1
g )Gg(P

k−1
g )Sk−1 − (1 − Sk−1)P k−1

w

− Sk−1P k−1
g

]

+ (Sk − Sk−1)(P k
g − P k

w).

Again, using the monotonicity of the capillary pressure,

(Sk − Sk−1)(P k
g − P k

w) = (Sk − Sk−1)P η
c (Sk) ≥

∫ Sk

0

P η
c (z)dz −

∫ Sk−1

0

P η
c (z)dz.

it follows that

X ≥ Hη(Sk, P k) −Hη(Sk−1, P k−1) (5.73)

where

Hη(S, P ) =
[

ρw(P η
w)Gw(P η

w) − P η
w

]

(1 − S) +
[

ρg(P
η
g )Gg(P

η
g ) − P η

g

]

S +

∫ S

0

P η
c (z)dz.

From the monotonicity of the mass densities one finds

Hη(S, P ) ≥ 0. (5.74)

With the estimate (5.73) the sum of equations (5.59) and (5.60) can be written, with test

functions ϕ = Gw(P η,k
w ) and ψ = Gg(P

η,k
g ), as

1

h

∫

Ω

Φ(Hη(Sk, P k) −Hη(Sk−1, P k−1))dx

+

∫

Ω

1

ρw(P η,k
w )

[Λη
w(Sk, P k)K∇P k − Aη(Sk, P k)K∇Sk] · ∇P η,k

w dx

+

∫

Ω

1

ρg(P
η,k
g )

[Λη
g(S

k, P k)K∇P k + Aη(Sk, P k)K∇Sk] · ∇P η,k
g dx (5.75)

≤
∫

Ω

[λw(Sk)ρw(P η,k
w )Kg · ∇P η,k

w + λg(S
k)ρg(P

η,k
g )Kg · ∇P η,k

g ]dx

−
∫

Ω

[ρw(P η,k
w )fw(Sk, P k)F k

PGw(P η,k
w ) + ρg(P

η,k
g )fg(S

k, P k)F k
PGg(P

η,k
g )]dx

+

∫

Ω

(ρw(P η,k
w )(1 − S∗,k)F k

I Gw(P η,k
w ) + ρg(P

η,k
g )S∗,kF k

I Gg(P
η,k
g ))dx.
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The integrals in (5.75) are denoted by X1, X2,. . . ,X6 respectively. Using (5.37) in X2 it

follows

X2 =

∫

Ω

1

ρw(P η,k
w )

[λw(Sk)ρw(Sk, P k)K∇P η,k
w − ηK∇Sk] · ∇P η,k

w dx

=

∫

Ω

1

ρw(P η,k
w )

[

λw(Sk)ρw(Sk, P k)K∇P η,k
w · ∇P η,k

w

+ ηfg(S
k, P k)Rη(P

′

c(S
k))K∇Sk · ∇Sk

]

dx− η

∫

Ω

ωη(Sk, P k)

ρw(P η,k
w )

K∇Sk · ∇P kdx.

Using (A.2), (A.3), (A.4) and (A.6) the following estimate is obtained:

X2 ≥
1

ρM

∫

Ω

λw(Sk)ρw(Sk, P k)K∇P η,k
w · ∇P η,k

w dx+ η
kmpc,min

2ρM

∫

Ω

fg(S
k, P k)|∇Sk|2dx

− η
ωMkM

ρm

∫

Ω

|∇P k| |∇Sk| dx.

Using (5.38) the third integral X3 is treated in the same way, leading to the estimate:

X3 ≥
1

ρM

∫

Ω

λg(S
k)ρg(S

k, P k)K∇P η,k
g · ∇P η,k

g dx+ η
kmpc,min

2ρM

∫

Ω

fw(Sk, P k)|∇Sk|2dx

− η
ωMkM

ρm

∫

Ω

|∇P k| |∇Sk| dx

After summing X2 and X3 and using (5.40) one gets

X2 +X3 ≥
λm

ρM

ρmω
2
mkm

∫

Ω

|∇P k|2 dx+
ρ2

m

λMρ2
M

km

∫

Ω

|∇βη(Sk)|2 dx

+ η
kmpc,min

2ρM

∫

Ω

|∇Sk|2dx− 2η
ωMkM

ρm

∫

Ω

|∇P k| |∇Sk| dx,

and therefore one can find constant η0 and C1, C2 independent of η, such that for all

0 < η ≤ η0,

X2 +X3 ≥ C1(

∫

Ω

|∇P k|2 dx+

∫

Ω

|∇βη(Sk)|2 dx) + ηC2

∫

Ω

|∇Sk|2dx.
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To estimate X4, (5.28) and (5.29) are used to get

|X4| =
∣

∣

∫

Ω

[λw(Sk)ρw(P η,k
w )Kg · (ωη(Sk, P k)∇P k − fg(S

k, P k)Rη(P
′

c(S
k))∇Sk)

+ λg(S
k)ρg(P

η,k
g )Kg · (ωk(Sk, P k)∇P k + fw(Sk, P k)Rη(P

′

c(S
k))∇Sk)]dx

∣

∣

≤ λMρMkM |g|ωM

∫

Ω

|∇P k|dx+
ρ2

MλM

λmρm

kM |g|
∫

Ω

|∇βη(Sk)|dx.

To estimate X5 and X6, the superlinearity of the function P η
α 7→ Gα(P η

α) and Lemma 5.3

is used which give the following estimates, uniform with respect to η, for α ∈ {w, g},

|Gg(P
η
g )| ≤ C4

ρm

(|P | + 1), |Gw(P η
w)| ≤ 1

ρm

(|P | + pη
c,max)

|λw(S)P η
w(S, P )| ≤ C3(|P | + 1), |P η

g (S, P )| ≤M(|P | + 1).

(5.76)

It follows that

|X5| + |X6| ≤
ρ2

M

λmρ2
m

∫

Ω

F k
P (λw(Sk)|P η,k

w | + λm|P η,k
g − Pc(0)|)dx

+
ρM

ρm

∫

Ω

(‖1 − S∗,k‖L∞(Ω)F
k
I |P η,k

w | + F k
I |P η,k

g − Pc(0)|)dx

≤ ρ2
M

λmρ2
m

(C3 + λmC4)

∫

Ω

F k
P (|P k| + 1)dx+

ρM

ρm

C4

∫

Ω

F k
I (|P k| + 1)dx

+
ρM

ρm

‖1 − S∗,k‖L∞(Ω)

∫

Ω

F k
I (|P k| + pη

c,max)dx,

which can be written as

|X5| + |X6| ≤ (C5 + C6,η)

∫

Ω

(|F k
I | + |F k

P |)(|P k| + 1)dx,

where C6,η depends on η through pη
c,max. Using estimates of all terms X2,. . . , X6, it is

obtained

1

h

∫

Ω

Φ(Hη(Sk, P k) −Hη(Sk−1, P k−1))dx

+ C1

∫

Ω

(|∇P k|2 + |∇βη(Sk)|2) dx+ ηC2

∫

Ω

|∇Sk|2dx

≤ C7

∫

Ω

(|∇P k| + |∇βη(Sk)|) dx+ (C5 + C6,η)

∫

Ω

(|F k
I | + |F k

P |)(|P k| + 1)dx
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where the coefficients C1, C2, C5, C7 and C6,η do not depend on h. All of them, except C6,η,

are also independent of η and it follows C6,η = 0 if S∗ = 1 is taken. Using the Hölder

inequality, multiplying by h and summing from 1 to N one finally gets

∫

Ω

ΦHη(Sh, P h)(T )dx+

∫

QT

(|∇P h|2 + |∇βη(Sh)|2) dxdt+ η

∫

QT

|∇Sh|2dxdt

≤ C

∫

QT

(|FI |2 + |FP |2 + 1)dxdt+

∫

Ω

ΦHη(s0, p0)dx,

(5.77)

where again the constant C is independent of h, and independent of η if S∗ = 1. Using

the estimates (5.76) and (5.43), it is easy to see that the last term in (5.77) is uniformly

bounded with respect to η. The following result has been proved:

Proposition 5.2. Under the assumptions of Proposition 5.1 the sequences (P h)h and (Sh)h

of solutions to problem (5.57), (5.58) satisfy the following uniform bounds with respect to

h:

(P h)h is uniformly bounded in L2(0, T ;V ), (5.78)

(Sh)h is uniformly bounded in L2(0, T ;V ), (5.79)

(βη(Sh))h is uniformly bounded in L2(0, T ;V ). (5.80)

The following funtions are introduced:

rk
w = ρw(P η

w(P k, Sk))(1 − Sk), rk
g = ρg(P

η
g (P k, Sk))Sk,

and corresponding piecewise constant time dependent functions which will be denoted by

rh
w and rh

g , respectively. By r̃h
w and r̃h

g are denoted the corresponding piecewise linear time

dependent functions defined as in (5.56).

The following estimates follows:

Proposition 5.3. Under the assumptions of Proposition 5.1 the following bounds, uniform

with respect to h are valid:

(rh
α)h is uniformly bounded in L2(0, T ;H1(Ω)), α ∈ {w, g}, (5.81)

(r̃h
α)h is uniformly bounded in L2(0, T ;H1(Ω)), α ∈ {w, g}, (5.82)

(Φ∂tr̃
h
α)h is uniformly bounded in L2(0, T ;V ′), α ∈ {w, g}. (5.83)
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Proof. First note that the functions rh
α and r̃h

α are uniformly bounded in L∞(QT ).

For gradients it follows

∇rh
w =

N
∑

k=1

∇(ρw(P η
w(Sk, P k))(1 − Sk))χ(tk−1,tk](t)

=
N
∑

k=1

ρ′w(P η
w(Sk, P k))(1 − Sk)∇P η

w(Sk, P k)χ(tk−1,tk](t)

−
N
∑

k=1

ρw(P η
w(Sk, P k))∇Skχ(tk−1,tk](t)

and therefore

|∇rh
w| ≤ C

N
∑

k=1

|∇P η
w(Sk, P k)|χ(tk−1,tk](t) + C

N
∑

k=1

|∇Sk|χ(tk−1,tk](t)

Using (5.27) one gets

|∇P η
α(S, P )| ≤ C|∇P | + Cη|∇S|

which gives

|∇rh
w| ≤ Cη

N
∑

k=1

(|∇P k| + |∇Sk|)χ(tn−1,tn](t) = Cη(|∇P h| + |∇Sh|),

and the same estimate holds for |∇rh
g |. This proves (5.81). For (5.82), the proof is similar.

From (5.57), for all ϕ ∈ lh(V ) is valid

∫ T

0

〈Φ∂tr̃
h
w, ϕ〉dt = −

∫

QT

[Λη
w(Sh, P h)K∇P h · ∇ϕ− Aη(Sh, P h)K∇Sh · ∇ϕ]dxdt

+

∫

QT

[λw(Sh)ρη
w(Sh, P h)2

Kg · ∇ϕ− ρη
w(Sh, P h)fw(Sh, P h)FPϕ]dxdt

+

∫

QT

ρη
w(Sh, P h)(1 − S∗,h)FIϕdxdt.

Using Proposition 5.2, the boundedness of the coefficients and the density of lh(V ) in

L2(0, T ;V ), one gets (5.83) for α = w. For α = g, the estimate is obtained using (5.58).
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5.3.3 Step 3. Passage to the Limit as h→ 0

Proposition 5.4. Under the assumptions of Proposition 5.1 the following convergences

for a subsequence, when h goes to zero are valid:

‖rh
α − r̃h

α‖L2(QT ) → 0, α ∈ {w, g}, (5.84)

Sh ⇀ S weakly in L2(0, T ;V ) and a.e. in QT , (5.85)

βη(Sh) ⇀ βη(S) weakly in L2(0, T ;V ) and a.e. in QT , (5.86)

P h ⇀ P weakly in L2(0, T ;V ) and a.e. in QT , (5.87)

rh
α → rα strongly in L2(QT ), α ∈ {w, g}, (5.88)

Furthermore, 0 ≤ S ≤ 1 a.e. in QT , rα = ρα(P η
α(S, P ))Sα and

Φ∂tr̃
h
α ⇀ Φ∂t(ρα(P η

α(S, P ))Sα) weakly in L2(0, T ;V ′), α ∈ {w, g}. (5.89)

Proof. In order to prove (5.84), first note that by an easy calculation for any bounded

function ζ = ζ(x) id obtained

‖(rh
α − r̃h

α)ζ‖2
L2(QT ) =

h

3

N
∑

k=1

‖(rk
α − rk−1

α )ζ‖2
L2(Ω).

The following test functions will be used: ϕ = (rk
w − rk−1

w )ζ in (5.59) and ψ = rk
g − rk−1

g

in (5.60), where ζ is C1
0(Ω) function, strictly positive in Ω, used to impose the boundary

condition. From (5.59) one gets

1

h

∫

Ω

Φ(rk
w − rk−1

w )2ζdx

= −
∫

Ω

[Λη
w(Sk, P k)K∇P k − Aη(Sk, P k)K∇Sk] · ∇((rk

w − rk−1
w )ζ)dx

+

∫

Ω

[

λw(Sk)ρη
w(Sk, P k)2

Kg · ∇((rk
w − rk−1

w )ζ)

− ρη
w(Sk, P k)fw(Sk, P k)F k

P (rk
w − rk−1

w )ζ
]

dx

+

∫

Ω

ρη
w(Sk, P k)(1 − S∗,k)F k

I (rk
w − rk−1

w )ζdx.
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The boundedness of the coefficients gives the following estimate,

φm

h

∫

Ω

(rk
w − rk−1

w )2ζdx ≤ C(1 + ‖∇P k‖L2(Ω) + ‖∇Sk‖L2(Ω))‖∇((rk
w − rk−1

w )ζ)‖L2(Ω)

+ C(‖F k
P‖L2(Ω) + ‖F k

I ‖L2(Ω)) ‖(rk
w − rk−1

w )
√

ζ‖L2(Ω).

This can further be estimated as

φm

2h
‖(rk

w − rk−1
w )

√

ζ‖2
L2(Ω)

≤ C(1 + ‖∇P k‖L2(Ω) + ‖∇Sk‖L2(Ω))(‖∇rk
w‖L2(Ω) + ‖∇rk−1

w ‖L2(Ω) + ‖rk
w − rk−1

w ‖L2(Ω))

+ C(‖F k
P‖2

L2(Ω) + ‖F k
I ‖2

L2(Ω)).

Multiplying by h and summing from 1 to N to obtain

φm

2

N
∑

k=1

‖(rk
w − rk−1

w )
√

ζ‖2
L2(Ω) ≤ C

(

1 + ‖∇P h‖2
L2(QT ) + ‖∇Sh‖2

L2(QT ) + 2‖∇rh
w‖2

L2(QT )

+ ‖∇r0
w‖2

L2(Ω) + 2‖rh
w‖2

L2(QT ) + ‖r0
w‖2

L2(Ω) + ‖F h
P‖2

L2(QT ) + ‖F h
I ‖2

L2(QT )

)

.

Using Proposition 5.2 and Proposition 5.3 one finds that

N
∑

k=1

‖(rk
w − rk−1

w )
√

ζ‖2
L2(Ω) ≤ C

with C independent of h, and therefore

‖(rh
w − r̃h

w)
√

ζ‖L2(QT ) → 0 as h→ 0.

Taking a subsequence, if necessary, one gets (rh
w − r̃h

w)
√
ζ → 0 a.e. in QT as h → 0. Since

ζ is strictly positive in Ω if follows rh
w − r̃h

w → 0 a.e. in QT , and by Lebesgue’s theorem

‖rh
w − r̃h

w‖L2(QT ) → 0 as h → 0. Now the wetting phase is treated similarly with ζ = 1.

This proves (5.84). From Proposition 5.2 the weak convergence of subsequences (Sh)h and

(P h)h is obtained.

Family (r̃h
α) is bounded in L2(0, T ;H1(Ω)), while ∂t(Φr̃

h
α) being bounded in L2(0, T ;V ′).

A small modification of a classical compactness result in [60] (see Lemma 5.4 ) gives that
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(r̃h
α) is relatively compact in L2(QT ). Therefore, up to a subsequence, for α ∈ {w, g},

r̃h
α → rα strongly in L2(QT ) and a.e. in QT .

Using (5.84) it follows

rh
α → rα strongly in L2(QT ) and a.e. in QT .

By Lemma 5.2 and Remark 5.8 the mapping (u, v) = Gη(S, P ), defined by (5.41) has

a continuous inverse Hη : R → [0, 1] × R. Therefore, from a.e. convergence in QT of

rh
w = uh = ρw(P η

w(Sh, P h))(1 − Sh) and rh
g = vh = ρg(P

η
g (Sh, P h))Sh one can conclude a.e.

convergence in QT of Sh and P h if shows that the measure of the set

E = {(x, t) ∈ QT : (uh(x, t), vh(x, t)) → (u, v) ∈ AB ∪ CD = R \R},

is zero (AB and CD are segments on ∂R denoted in Figure 5.2). But this follows from

the fact that for (x, t) ∈ E one has |P h(x, t)| → +∞ and therefore

∫

QT

|P h(x, t)|2dxdt ≥
∫

E

|P h(x, t)|2dxdt→ ∞

if |E| > 0. This is in contradiction with Proposition 5.2 and, as a consequence |E| = 0. The

(5.85), (5.87) are proven, and (5.86) now follows. From pointwise convergence of Sh and P h

the limits rα can be now identified as rw = ρw(P η
w(P, S))(1 − S), and rg = ρg(P

η
g (P, S))S.

Finally, the weak limit in (5.89) exists because of the bound (5.83).

Using the convergence results in Proposition 5.4 and the boundedness of all nonlinear

coefficients, one can now pass to the limit as h → 0 in the variational equations (5.57),

(5.58) and find, for all ϕ, ψ ∈ L2(0, T ;V )

∫ T

0

〈Φ∂t(ρ
η
w(S, P )(1 − S)), ϕ〉dt+

∫

QT

[Λη
w(S, P )K∇P · ∇ϕ− Aη(S, P )K∇S · ∇ϕ]dxdt

−
∫

QT

[λw(S)ρη
w(S, P )2

Kg · ∇ϕ− ρη
w(S, P )fw(S, P )FPϕ]dxdt

=

∫

QT

ρη
w(S, P )(1 − S∗)FIϕdxdt,
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∫ T

0

〈Φ∂t(ρ
η
g(S, P )S), ψ〉dt+

∫

QT

[Λη
g(S, P )K∇P · ∇ψ + Aη(S, P )K∇S · ∇ψ]dxdt

−
∫

QT

[λg(S)ρη
g(S, P )2

Kg · ∇ψ − ρη
g(S, P )fg(S, P )FPψ]dxdt

=

∫

QT

ρη
g(S, P )S∗FIψdxdt.

From (A.1), ρg(P
η
g (S, P ))S, ρw(P η

w(S, P ))(1−S) ∈ L2(0, T ;H1(Ω)) and ∂t(Φρg(P
η
g (S, P ))S),

∂t(Φρw(P η
w(S, P ))(1 − S)) ∈ L2(0, T ;V ′), it follows in a standard way that ρg(P

η
g (S, P ))S,

ρw(P η
w(S, P ))(1 − S) ∈ C([0, T ];L2(Ω)).

Using an integration by parts in the discrete and limit problems, with a test function

of the form ψ(x)ϕ(t), ψ ∈ V , ϕ(0) = 1, ϕ(T ) = 0, w find

∫ T

0

〈Φ∂t(r̃
h
α), ψ〉ϕ(t)dt = −

∫

QT

Φr̃h
αψϕ

′(t)dxdt+

∫

Ω

Φrα(s0, p0)ψdx, (5.90)

∫ T

0

〈Φ∂trα, ψ〉ϕ(t)dt = −
∫

QT

Φrαψϕ
′(t)dxdt+

∫

Ω

Φrα(S, P )(0)ψdx. (5.91)

Passing to the limit as h→ 0 in (5.90) and subtracting from (5.91) one get for all ψ ∈ V ,

∫

Ω

Φrα(S, P )(0)ψdx =

∫

Ω

Φrα(s0, p0)ψdx.

Therefore, rα(S, P )(0) = rα(s0, p0) for α ∈ {w, g} a.e. in Ω at t = 0. This concludes the

proof of Theorem 5.2.

5.4 Compactness Lemma

In this section a modification of a compactness result from [60] that is already used in

subsection 5.3.3 and will be used in section 5.5 is going to be proved.

Lemma 5.4. Let Ω be a bounded open set and QT = Ω×]0, T [. Let (rh)h>0 be a family

of functions in L2(QT ) and let Φ ∈ L∞(Ω) be such that 0 < φm ≤ Φ(x) ≤ φM < ∞. Let

V ⊂ H1(Ω), dense in L2(Ω) and 0 < σ ≤ 1, p ≥ 2. Assume that (rh)h>0 satisfy:
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• (rh)h>0 is uniformly bounded in L2(0, T ;W σ,p(Ω));

• (∂t(Φr
h))h>0 is uniformly bounded in L2(0, T ;V ′).

Then (rh)h>0 is relatively compact in L2(QT ).

The proof is based on the following simple modification of Lemma 8 in [60].

Lemma 5.5. Let Ω be a bounded open set, Φ ∈ L∞(Ω) be such that 0 < φm ≤ Φ(x) ≤
φM <∞, V ⊂ H1(Ω), dense in L2(Ω) and 0 < σ ≤ 1, p ≥ 2. Then

∀η > 0, ∃N, ∀v ∈ W σ,p(Ω), ‖v‖L2(Ω) ≤ η‖v‖W σ,p(Ω) +N‖Φv‖V ′ .

Proof. Note that L2(Ω) is continuously embedded in V ′ and that ‖v‖L2(Ω) 6= 0 implies

‖Φv‖V ′ 6= 0. Set Vn = {v ∈ L2(Ω) : ‖v‖L2(Ω) < η + n‖Φv‖V ′} is open in L2(Ω) and

grows when n → ∞, such that L2(Ω) = ∪nVn. Due to the boundedness of Ω, the unit

ball S ⊂ W σ,p(Ω) is relatively compact in L2(Ω) and therefore there exists N such that

S ⊂ VN . This yields

‖v‖L2(Ω) ≤ η‖v‖W σ,p(Ω) +N‖Φv‖V ′ ,

for v ∈ S, and by homogeneity for all v ∈ W σ,p(Ω).

Proof. (Lemma 5.4) Note first that (Φrh)h>0 is compact in L2(0, T ;V ′) by Theorem 3

(Corollary 1) in [60] since the embedding L2(Ω) ⊂ V ′ is compact (as transpose of compact

embedding V ⊂ L2(Ω)) and (Φrh)h>0 is bounded in L2(QT ).

Then, given ε > 0 there exists a finite subset (rhi) such that for any rh there exists hi

such that ‖Φrh − Φrhi‖L2(0,T ;V ′) < ε. From Lemma 5.5 it follows

‖rh − rhi‖L2(0,T ;L2(Ω)) ≤ η‖rh − rhi‖L2(0,T ;W σ,p(Ω)) +N‖Φrh − Φrhi‖L2(0,T ;V ′)

≤ ηc+Nε,

where c is the diameter of (rh)h>0 in L2(0, T ;W σ,p(Ω)). For given ε′ > 0 take η = ε′/2c

and ε = ε′/2N , which gives ‖rh − rhi‖L2(0,T ;L2(Ω)) ≤ ε′ and proves that (rh)h>0 is relatively

compact in L2(QT ).
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5.5 Proof of Theorem 5.1

In this section the passage to the limit as η → 0 in the regularized problem (5.54), (5.55)

will be performed. The dependence of the regularized solution on the parameter η from

now on will be denoted explicitly. In order to apply Theorem 5.2, the initial conditions s0

and p0 will be regularized with the regularization parameter η and by sη
0 and pη

0 regularized

initial conditions are denoted. One may obviously assume that sη
0 → s0 and pη

0 → p0 in

L2(Ω) and a.e. in Ω when η tends to zero.

Lemma 5.6. Let the sequence (Sη, P η)η be defined by Theorem 5.2 for sufficiently small

η, is set P η
α = P η

α(Sη, P η) and it is assumed S∗ = 1. Then the following bounds uniform

with respect to η hold true:

(P η)η is uniformly bounded in L2(0, T ;V ), (5.92)

(βη(Sη))η is uniformly bounded in L2(0, T ;V ), (5.93)

(
√
η∇Sη)η is uniformly bounded in L2(QT )d, (5.94)

(Φ∂t(ρw(P η
w)(1 − Sη)))η is uniformly bounded in L2(0, T ;V ′), (5.95)

(Φ∂t(ρg(P
η
g )Sη))η is uniformly bounded in L2(0, T ;V ′). (5.96)

Proof. Note that S∗ = 1 implies that the estimate (5.77) is uniform with respect to η.

Estimates (5.92), (5.93) and (5.94) then follow from (5.77) since weak lower semicontinuity

of seminorms involved in (5.77) gives, after passage to limit as h→ 0,

∫

QT

(|∇P η|2 + |∇βη(Sη)|2) dxdt+ η

∫

QT

|∇Sη|2dxdt

≤ C

∫

QT

(|FI |2 + |FP |2 + 1)dxdt+

∫

Ω

ΦHη(sη
0, p

η
0)dx.

As is already mentioned at the end of the proof of Proposition 5.2, the last integral in this

estimate can be bounded, independently of η. For the last two estimates the equations
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(5.54), (5.55) are used. For ϕ ∈ L2(0, T ;V ) is valid

|
∫ T

0

〈Φ∂t(ρ
η
w(Sη, P η)(1 − Sη)), ϕ〉dt| ≤ |

∫

QT

[λw(Sw)ρw(Sw, p)K∇P η
w + ηK∇S] · ∇ϕdxdt|

+ |
∫

QT

[λw(Sη)ρη
w(Sη, P η)2

Kg · ∇ϕ− ρη
w(Sη, P η)fw(Sη, P η)FPϕ]dxdt|.

Since (5.92) and (5.93) imply that
√

λα(Sη)∇P η
α is uniformly bounded in L2(QT )d for

α ∈ {w, g} it follows

|
∫ T

0

〈Φ∂t(ρ
η
w(Sη, P η)(1 − Sη)), ϕ〉dt| ≤ C‖ϕ‖L2(0,T ;V ).

This proves (5.95) and (5.96) is proved in the same way.

Lemma 5.7. (Compactness result in the degenerate case) For every c > 0 and for suffi-

ciently small η0 > 0 the following set

Eη0
c = {(ρw(P η

w(S, P ))(1 − S), ρg(P
η
g (S, P ))S) : 0 < η ≤ η0,

‖P‖L2(0,T ;V ) ≤ c, ‖βη(S)‖L2(0,T ;V ) ≤ c,

‖Φ∂t(ρw(P η
w(S, P ))(1 − S))‖L2(0,T ;V ′) + ‖Φ∂t(ρg(P

η
g (S, P ))S)‖L2(0,T ;V ′) ≤ c}

is relatively compact in L2(QT ) × L2(QT ).

Proof. Recall that the inverse map of β is called S and also Sη = (βη)−1. Let us introduce

the map Gη : [0, βη(1)] × R → R
+ × R

+, (uη, vη) = Gη(θ, P ) by

uη = ρw(P η
w(S, P ))(1 − S), vη = ρg(P

η
g (S, P ))S, S = Sη(θ).

For i = 1, 2 choose θi ∈ [0, βη(1)], Pi ∈ R and set Si = Sη(θi). Assume θ2 > θ1 since the
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opposite case is treated in the same way. Now, it is valid that

|vη(θ1, P1) − vη(θ2, P2)| ≤ |ρg(P
η
g (S1, P1))S1 − ρg(P

η
g (S1, P2))S1|

+ |ρg(P
η
g (S1, P2))S1 − ρg(P

η
g (S2, P2))S1|

+ |ρg(P
η
g (S2, P2))(S1 − S2)|

≤ [max
P

ρ′g(P ) max
P

ωη(S1, P ) + 2 max
P

ρg(P )] min(|P1 − P2|, 1)

+ max
P

ρ′g(P )

∣

∣

∣

∣

∫ S2

S1

fw(s, P2)Rη(P
′

c(s)) ds

∣

∣

∣

∣

S1 + max
P

ρg(P )|S2 − S1|.

For the term X1 =

∣

∣

∣

∣

∫ S2

S1

fw(s, P2)Rη(P
′

c(s))ds

∣

∣

∣

∣

S1, in the case S1 < S2, it holds

X1 ≤
ρM

λmρm

S1

∫ S2

S1

λw(s)Rη(P
′

c(s)) ds.

Since Rη(P
′

c(S)) ≤ P ′

c(S) for S > η, for S2 > S1 > S# > η it follows that

X1 ≤
ρM

λmρm

∫ S2

S1

sλw(s)P ′

c(s) ds ≤M1|S1 − S2|,

where the last inequality follows from boundedness of λw(S)P ′

c(S) on
[

S#, 1
[

(see (A.4)).

For S1 < S2 ≤ η can be obtained

X1 ≤
ρMλM

λmρm

S1

∫ S2

S1

Rη(P
′

c(s))ds

≤ ρMλM

λmρm

2S1
Pc(η) − Pc(0)

η

∫ S2

S1

(

1 − s

η

)

ds+
λMρM

ρmλm

S1P
′

c(η)

∣

∣

∣

∣

∫ S2

S1

(

2
s

η
− 1

)

ds

∣

∣

∣

∣

= 2
λMρM

ρmλm

S1
Pc(η) − Pc(0)

η

(

S − S2

2η

)

∣

∣

∣

S2

S1

+
λMρM

ρmλm

S1P
′

c(η)

∣

∣

∣

∣

(

S2

η
− S

)

∣

∣

∣

S2

S1

∣

∣

∣

∣

=
λMρM

λmρm

(

2
Pc(η) − Pc(0)

η
S1(S2 − S1)

(

1 − S1 + S2

2η

)

+ S1(S2 − S1)P
′

c(η)

∣

∣

∣

∣

S2 + S1

η
− 1

∣

∣

∣

∣

)

≤ ρMλM

λmρm

S1(S2 − S1)[P
′

c(η) + 2
Pc(η) − Pc(0)

η
]

≤ |S2 − S1|γ [η2−γP ′

c(η) + 2(Pc(η) − Pc(0))] ≤ C|S2 − S1|γ
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where (A.5) is used. Finally, for S ∈]η, S#[, using (5.15) in Remark 5.2 one obtains

X1 ≤
ρMλM

λmρm

S1

∫ S2

S1

P ′

c(s)ds =
ρMλM

λmρm

S1(Pc(S2) − Pc(S1)) ≤ C|S2 − S1|γ.

The estimates obtained so far give for any 0 < τ < 1

|vη(θ1, P1) − vη(θ2, P2)| ≤ C(|P2 − P1|τγ + |Sη(θ2) − Sη(θ1)|γ),

where C is independent of η, and from Remark 5.7 it follows

|vη(θ1, P1) − vη(θ2, P2)| ≤ C(|P2 − P1|τ1 + |θ2 − θ1|τ1), (5.97)

where τ1 = τγ and the exponent τ is given in (A.8). For the function uη assume θ2 > θ1.

The opposite case is treated in the same way.

|uη(θ2, P2) − uη(θ1, P1)| ≤ |(ρw(P η
w(S2, P2)) − ρw(P η

w(S2, P1)))(1 − S2)|
+ |(ρw(P η

w(S2, P1)) − ρw(P η
w(S1, P1)))(1 − S2)|

+ |ρw(P η
w(S1, P1))(S2 − S1)|

This gives

|uη(θ2, P2) − uη(θ1, P1)| ≤ [max
P

ρ′w(P ) max
P

ωη(S2, P ) + 2 max
P

ρw(P )] min(|P2 − P1|, 1)

+ max
P

ρ′w(P )|
∫ S2

S1

fg(s, P1)Rη(P
′

c(s)) ds|(1 − S2)

+ max
P

ρw(P )|S2 − S1|.

In order to estimate the middle term, (5.16) is used. Since Rη(P
′

c(S)) ≤ P ′

c(S) for S ≥
S# > η, for S2 > S1 ≥ S# is obtained

|
∫ S2

S1

fg(s, P1)Rη(P
′

c(s)) ds|(1 − S2) ≤
ρMλM

λmρm

(Pc(S2) − Pc(S1))(1 − S2) ≤ C1|S2 − S1|γ ,
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by (5.16). For all S1, S2 ∈ [η, S#[ it follows that

∣

∣

∣

∣

∫ S2

S1

λg(s)Rη(P
′

c(s)) ds

∣

∣

∣

∣

≤ C|S2 − S1|,

for some constant C, since λg(S)P ′

c(S) is bounded in ]0, S#[. For S1 < S2 ≤ η, where

Rη(P
′

c(S)) and P ′

c(S) are not the same, one has to consider only the case where P ′

c(S) has

a singularity at S = 0. Then, in sufficiently small neighborhood of S = 0, P ′′

c (S) must be

negative and therefore P ′

c(η) ≤ (Pc(η) − Pc(0))/η. Then it follows that

|
∫ S2

S1

fg(s, P1)Rη(P
′

c(s)) ds| ≤
ρM

λmρm

λg(η)

∣

∣

∣

∣

∫ S2

S1

Rη(P
′

c(s))ds

∣

∣

∣

∣

≤ ρM

λmρm

λg(η)

(

2
Pc(η) − Pc(0)

η

∫ S2

S1

(

1 − s

η

)

ds+ P ′

c(η)

∣

∣

∣

∣

∫ S2

S1

(

2
s

η
− 1

)

ds

∣

∣

∣

∣

)

=
ρM

λmρm

λg(η)

(

2
Pc(η) − Pc(0)

η

(

s− s2

2η

)

∣

∣

∣

S2

S1

+
Pc(η) − Pc(0)

η

∣

∣

∣

∣

(

s2

η
− s

)

∣

∣

∣

S2

S1

∣

∣

∣

∣

)

=
ρM

ρmλm

λg(η)
Pc(η) − Pc(0)

η
(S2 − S1)

(

2

(

1 − S1 + S2

2η

)

+

∣

∣

∣

∣

S1 + S2

η
− 1

∣

∣

∣

∣

)

≤ 3ρM

λmρm

(S2 − S1)λg(η)(Pc(η) − Pc(0))/η

=
3ρM

λmρm

λg(η)(S2 − S1)
γ(S2 − S1)

1−γη−1(Pc(η) − Pc(0))

≤ Cλg(η)(S2 − S1)
γη1−γη−1(Pc(η) − Pc(0))

= C|S2 − S1|γη−γλg(η)(Pc(η) − Pc(0)) ≤ C|S2 − S1|γ.

where in the last inequality (A.5) is used.Therefore, a constant C, independent of η can be

found, such that for any 0 < τ < 1

|uη(θ1, P1) − uη(θ2, P2)| ≤ C(|P2 − P1|τ + |Sη(θ2) − Sη(θ1)|γ),

and ((A.8)) and Remark 5.7 give for τ1 = γτ

|uη(θ1, P1) − uη(θ2, P2)| ≤ C(|P2 − P1|τ1 + |θ2 − θ1|τ1). (5.98)

Now, taking 0 < r < 1 and using the Hölder continuity (5.97) and (5.98), one obtains for
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σ = rτ1 and p = 2/τ1 (see [43] for details)

‖uη‖Lp(0,T ;W σ,p(Ω)) + ‖vη‖Lp(0,T ;W σ,p(Ω))

≤ C(‖P‖τ1
L2(0,T ;H1(Ω)) + ‖θ‖τ1

L2(0,T ;H1(Ω)) + 1).

From the definition of the set Ec it follows that

‖uη‖Lp(0,T ;W σ,p(Ω)) + ‖vη‖Lp(0,T ;W σ,p(Ω)) ≤ C,

for some constant C. Applying Lemma 5.4 to (uη) and (vη) one gets that Ec is relatively

compact in L2(QT ) × L2(QT ).

Remark 5.9. The compactness result in Lemma 5.7 can also be obtained in a “smaller”

space, namely in L2(0, T ;W τ ′,p(Ω)), for τ ′ < rτ1, p = 2/τ1.

Lemma 5.8. (Strong and weak convergences) Up to subsequences the following convergence

results hold for (θη)η, θ
η = βη(Sη) and (P η)η:

P η ⇀ P weakly in L2(0, T ;V ) and a.e. in QT , (5.99)

θη ⇀ θ weakly in L2(0, T ;V ) and a.e. in QT , (5.100)

Sη → S(θ) a.e. in QT , (5.101)

Φ∂t(ρw(P η
w(Sη, P η))(1 − Sη)) ⇀ Φ∂t(ρw(Pw(S(θ), P ))(1 − S(θ))) (5.102)

weakly in L2(0, T ;V ′)

Φ∂t(ρg(P
η
g (Sη, P η))Sη) ⇀ Φ∂t(ρg(Pg(S(θ), P ))S(θ)) weakly in L2(0, T ;V ′). (5.103)

Moreover, 0 ≤ θ ≤ β(1) a.e. in QT .

Proof. The uniform estimates (5.92) and (5.93) give the weak convergence results (5.99)

and (5.100). Lemma 5.7 ensures, up to a subsequence, the following strong convergence

results,

ρw(P η
w(Sη, P η))(1 − Sη) → rw in L2(QT ) and a.e. in QT

ρg(P
η
g (Sη, P η))Sη → rg in L2(QT ) and a.e. in QT .
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The following decomposition is used:

ρw(P η
w(Sη, P η))(1 − Sη) = (ρw(P η

w(Sη, P η)) − ρw(Pw(Sη, P η)))(1 − Sη)

+ ρw(Pw(Sη, P η))(1 − Sη),

and a similar one for ρg(P
η
g (Sη, P η))Sη. From the uniform convergence in Lemma 5.3 it

follows that

ρw(Pw(Sη, P η))(1 − Sη) → rw in L2(QT ) and a.e. in QT

ρg(Pg(S
η, P η))Sη → rg in L2(QT ) and a.e. in QT .

One can now prove, as in Proposition 5.4, that P η → P and Sη → S a.e. in QT , where

P is the weak limit in (5.99). Note also that θη = βη(Sη) → β(S) a.e. in QT due to the

uniform convergence of βη → β in Lemma 5.3. Now, from the weak convergence (5.100)

this limit β(S) is the same as the limit θ in (5.100).

Now the limits rw and rg can be identified and the convergence in (5.102) and (5.103)

is a consequence of the bounds given in Lemma 5.6.

Let us take a test function ϕ ∈ C1([0, T ];V ) such that ϕ(T ) = 0 and make integration

by parts in (5.54). From (5.31), (5.5) and (5.36) if follows that

Aη(Sη, P η)∇Sη = A(Sη, P η)∇βη(Sη) + η∇Sη,

and therefore

−
∫

QT

Φρη
w(Sη, P η)(1 − Sη)∂tϕdxdt

+

∫

QT

[Λη
w(Sη, P η)K∇P η · ∇ϕ− A(Sη, P η)K∇θη · ∇ϕ]dxdt

−
∫

QT

[λw(Sη)ρη
w(Sη, P η)2

Kg · ∇ϕ− ρη
w(Sη, P η)fw(Sη, P η)FPϕ]dxdt

− η

∫

QT

K∇Sη · ∇ϕdxdt =

∫

Ω

Φρη
w(sη

0, p
η
0)(1 − sη

0)ϕ(0)dx

Pointwise convergence and boundedness of the coefficients allow to pass to the limit as

η → 0 in all nonlinear terms. The penalization term goes to zero because of (5.94) and

all other coefficients converge due to pointwise convergence in Lemma 5.8 and uniform



5.6. CONCLUSION 113

convergence in Lemma 5.3. Thus, it is valid that

−
∫

QT

Φρw(S, P )(1 − S)∂tϕdxdt+

∫

QT

[Λw(S, P )K∇P · ∇ϕ− A(S, P )K∇θ · ∇ϕ]dxdt

−
∫

QT

[λw(S)ρw(S, P )2
Kg · ∇ϕ− ρw(S, P )fw(S, P )FPϕ]dxdt

=

∫

Ω

Φρw(s0, p0)(1 − s0)ϕ(0)dx

where S = S(θ). In the same way one gets for all ψ ∈ C1([0, T ];V ) such that ψ(T ) = 0

−
∫

QT

Φρg(S, P )S∂tψdt+

∫

QT

[Λg(S, P )K∇P · ∇ψ + A(S, P )K∇θ · ∇ψ]dxdt

−
∫

QT

[λg(S)ρg(S, P )2
Kg · ∇ψ − ρg(S, P )fg(S, P )FPψ]dxdt

=

∫

QT

ρg(S, P )FIψdxdt+

∫

Ω

Φρg(s0, p0)s0ψ(0)dx

Using the fact that the functions Φρg(S, P )S and Φρw(S, P )(1−S) belong to C([0, T ];V ′)

and by an integration by parts, one easily concludes that the initial condition is satisfied

in V ′. This completes the proof of Theorem 5.1.

5.6 Conclusion

An existence result for the weak solutions of the coupled system under realistic assumptions

on the data was established. The hypotheses required for some earlier results on immiscible

compressible systems are weakened so that only physically relevant assumptions are made.

In particular, the results cover the cases of a singular capillary pressure function, and

discontinuous porosity and absolute permeability tensors.
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Chapter 6

Conclusion

With the motivation of making the coupling of the derived equations (2.39)-(2.41) less

strong, and giving the system a well defined mathematical structure, a new immiscible

compressible two-phase flow model based on the concept of global pressure is introduced

in this thesis. The system is written in a fractional flow formulation, which consists of

a nonlinear parabolic equation (the global pressure equation) and a nonlinear diffusion-

convection one (the wetting phase saturation equation). In order to make the problem

solving more tractable, another model is discussed as well: a simplified fractional flow

model. In this model, further simplifications are performed, so that the phase pressures are

replaced by the global pressure in the calculation of the mass densities, where applicable.

This model was introduced in [25], and, in this thesis, additional slight modifications are

introduced into this model in order to make it more applicable.

A comparison between the fully equivalent model and the simplified model is made.

The comparison reveals that the simplified model can be safely used in applications where

mean field pressure is high, capillary pressure is low and the wetting phase is not highly

compressible. This is the case in oil-gas systems, so the simplified model may be used for

such systems. On the other hand, the analysis reveals that the simplification may not be

appropriate for hydro-geological applications where capillary pressures are very high, like

the numerical test case 2 presented in chapter 4.

The above conclusions are verified by means of numerical simulation performed for a

simple heterogeneous one-dimensional test case where the wetting phase is an incompress-

ible fluid. The simulation reveals that the difference in the phase pressures, in particular,

in the new and the simplified model may be significant.

In order to validate the new model, it is tested on the numerical test cases [52], and the
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obtained results in the test case 2 are similar to those obtained by other authors [5,14]. This

confirms that the model is applicable in the situations with high capillary pressures, and in

highly heterogeneous porous media. Test case 3 shows its applicability in the simulations

with initially fully saturated porous media by the wetting phase.

Furthermore, the existence result for the weak solutions of the coupled system under

realistic assumptions on the data is established. While results on immiscible compressible

systems already exist, the major difference of this work to the earlier results is that the

required hypotheses are significantly weakened, so that only physically relevant assump-

tions are made. In particular, the presented results cover the cases of the singular capillary

pressure function, and the discontinuous porosity and absolute permeability.

A suggestion for further work is to extend the existence results presented here towards

porous media with several rock types. In these cases the capillary pressures and relative

permeabilities curves are different in each type of porous media, which introduces nonlinear

transmission conditions resulting from the continuity of the physical quantities at the

interfaces separating different media. Another direction of suggested future research is

extending the numerical simulation cases to higher dimensional problems.
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Appendix A

Implementation of the Coefficients in

the Two-phase Flow Model

In this appendix, the basic manipulations of the coefficient formulae in two different mod-

els are presented. Subsequently, an overview of the practical implementation of these

coefficients is explained.

A.1 Coefficients in Fractional Flow Formulations

Before explaining the fractional flow coefficients implementation, one should be aware that

they are obtained by algebraic manipulations of the following functions:

• Two-phase flow functions: capillary pressure (Pc(Sw)) and relative permeabilities

(krw(Sw), krg(Sw)).

• Fluid properties: µw, µg and ρw(Pw), ρg(Pg), where the density of the phase α depends

on its own pressure.

For the sake of simplicity, in this appendix coefficients are assumed to depend on wetting

phase saturation. The coefficients entering the equations (2.39)-(2.41) can be written in



A.2. ON THE IMPLEMENTATION OF THE COEFFICIENTS 117

the following general form:

λα(Sw) =
krα(Sw)

µα

, α = w, g (A.1)

λ(Sw, Pg, Pw) = ρw(Pw)λw(Sw) + ρg(Pg)λg(Sw) (A.2)

fα(Sw, Pg, Pw) =
ρα(Pα)λα(Sw)

λ(Sw, Pg, Pw)
, α = w, g, (A.3)

ρ(Sw, Pg, Pw) =
(λw(Sw)ρw(Pw)2 + λg(Sw)ρg(Pg)

2)

λ(Sw, Pg, Pw)
, (A.4)

α(Sw, Pg, Pw) =
ρw(Pw)ρg(Pg)λw(Sw)λg(Sw)

λ(Sw, Pg, Pw)
, (A.5)

bg(Sw, Pg, Pw) = (ρw(Pw) − ρg(Pg))α(Sw, Pg, Pw), (A.6)

a(Sw, Pg, Pw) = −α(Sw, Pg, Pw)P ′

c(Sw) (A.7)

Therefore, the coefficients in the (Sw, Pg) formulation given by the equations (2.39)-(2.41)

are obtained by setting Pw = Pg−Pc(Sw) in (A.1)-(A.7), and in that case they are assumed

as functions dependent upon the variables Sw and Pg.

When the fully equivalent fractional flow formulation, introduced in the chapter

3, is used, the coefficients are calculated from (A.1)-(A.7) by setting Pg = Pg(Sw, P )

Pw = Pw(Sw, P ) = Pg(Sw, P ) − Pc(Sw), where P is the global pressure. Naturally, here

the formula for Pg(Sw, P ) needs to be provided, which can be obtained as a solution of the

initial problem (3.14). Also, to complete the list of the coefficients entering the equations

(3.23)–(3.25) one needs to know how to calculate the function ω(Sw, P ), which is given by

the equation (3.22).

When the simplified fractional flow formulation is used, it is assumed that the

density of each phase depends on the global pressure, instead of its own phase pressure so

when the calculation of the coefficients is done in the simplified model one needs to set

Pw = Pg = P in the coefficients (A.1)-(A.7). The function ω(S, P ) is given by (3.45). After

the equations are solved numerically, the calculation of the phase pressures is required. This

can be performed by applying the numerical integration and using (3.30).

A.2 On the Implementation of the Coefficients

The coefficients are implemented as C++ classes, defined for each of the fractional flow

formulations. Figure A.1 shows the classes UML diagram.
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FractFlowFun<TPF,FP>

FractFlowFunBase

ParametersBase

Parameters<A,B>

GPExactFractFlow

 Fun<TPF,FP>
GPSimplFractFlow

Fun <TPF,FP>

GlobalExactTables

<TPF,FP>
GlobalSimplTables

<TPF,FP>

pr

pr

table

table table

table

GlobalTables

Figure A.1: UML diagram for the coefficients

The implementation is centered on the FractFlowFunBase class. This is the base class

providing an interface for the two-phase flow (TPF) and fluid properties (FP) functions.

All the coefficients implementations take two arguments:

• Wetting phase saturation (that can be switched to capillary pressure)

• Pressure.

In this class, all the coefficients are defined as pure virtual functions.

The class StaticFractFlowFun is an auxiliary class used to implement formulae for

the coefficients (A.1)-(A.7) and their partial derivatives as static functions. It is written

as a template parametrized by the classes implementing TPF and FP. It contains all the

coefficients, as the FractFlowFunBase class. For this class, note that the relevant functions

had to be implemented as static, because of the requirements of GSL library [45] used in

GlobalExactTables class.

The class FractFlowFun inherits the abstract class FractFlowFunBase. This class is

implemented as a template parametrized by the TPF and FP classes. The pure virtual
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functions from the abstract FractFlowFunBase class are implemented here as virtual func-

tions, depending on the wetting phase saturation and the nonwetting phase pressure as is

presented in the formulae (2.33)-(2.37). These functions subsequently rely on the functions

implemented in the classes TPF, FP and StaticFractFlowFun. So, the coefficient func-

tions in the FractFlowFun<TPF,FP> class are implemented by calling the functions from

StaticFractFlowFun class taking as arguments wetting phase saturation and the values

of the virtual functions Pn (S,P) and Pw (S,P), which will be defined separately for each

class inheriting the FractFlowFun<TPF,FP> class. In the class FractFlowFun<TPF, FP> is

set to be

Pn (S,P) = P (A.8)

Pw (S,P) = P − Pc(S), (A.9)

so, here the unknown P is assumed to be the gas pressure.

The class FractFlowFun<TPF,FP> also contains an object pr of the type Parameters.

This object provides the parameters for the TPF and FP classes. As an example of the

required parameters, van Genuchten’s functions require parameters: Pr, n, residual satura-

tion of wetting and nonwetting phase and the parameters for linearization of the capillary

pressure. The task of the Parameters object is to store all the required parameters.

The GPExactFractFlowFun<TPF,FP> clas inherits the FractFlowFun<TPF,FP> class.

This class implements the coefficients for the fully equivalent global pressure formulation.

The following is set:

Pn (S,P) = Pg(S,P) (A.10)

Pw (S,P) = Pg(S,P) − Pc(S). (A.11)

The nonwetting phase pressure Pg(S, P ) and the function ω(S, P ) are calculated from the

object table of the type GlobalExactTables<TPF,FP>.

The GPSimplFractFlowFun<TPF,FP> inherits the class FractFlowFun<TPF,FP> by set-

ting:

Pn (S,P) = P (A.12)

Pw (S,P) = P. (A.13)

This class implements the coefficients for the simplified global pressure fractional flow for-
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mulation. The nonwetting phase pressure Pg(S, P ) and the function ω(S, P ) are calculated

from the object table of the type GlobalSimplTables<TPF,FP>.

The class GlobalExactTables<TPF,FP> implements a look-up table for the values of

Pg(S, P ). For each value of the global pressure vector in a certain range (values ranging

from Pmin to Pmax), Pg(u, P ) is calculated as a solution of the initial problem (3.15). The

calculation is performed by using a GSL ODE solver. This class also provides a table of

values for the functionω(S, P ). The function Pg(S, P ) and ω(S, P ) are calculated from the

corresponding tables by linear interpolation.

The class GlobalSimplTables<TPF,FP> performs the equivalent task for the simplified

coefficients case - it provides the calculation of Pg(S, P ). The difference is that, in this

case, the tables are obtained by numerical integration.

The function of these two classes storing the tables is to calculate the required values

only once at the beginning of each numerical simulation. When required in the later phase,

the values are only looked up in the tables. For a large pressure range, this is obviously a

very memory-intensive task.

The TPF classes contain relative permeabilities functions, capillary pressure and their

derivatives. Currently, the implemented classes are VanGenuchtenFun, BrooksCoreyFun,

SimpleFun (krw(Sw) = S2
w, krg(Sw) = (1 − Sw)2, Pc(Sw) = Pr(1 − Sw)). The variable in

TPF class can be switched to the capillary pressure or the wetting phase saturation, so

consequently all the coefficients can depend either on the wetting phase saturation or on

the capillary pressure.

The examples of the FP classes are class FluidCompress which models densities as

exponential functions, and FluidCompInc which models flow of water and gas (the density

is given by the gas ideal law).
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[9] B. Amaziane, M. Jurak, A. Žgaljić Keko, An existence result for a coupled system

modeling a fully equivalent global pressure formulation for immiscible compressible

two-phase flow in porous media, Journal of Differential Equations 250 (2011), 1685-

1718.



[10] Y. Amirat, K. Hamdache, A. Ziani, Mathematical analysis for compressible miscible

displacement models in porous media, Math. Models Methods Appl. Sci. 6 (6) (1996)

729–747.

[11] Y. Amirat, M. Moussaoui, Analysis of a one-dimensional model for compressible mis-

cible displacement in porous media, SIAM J. Math. Anal. 26 (3) (1995) 659–674.

[12] Y. Amirat, V. Shelukhin, Global weak solutions to equations of compressible miscible

flows in porous media, SIAM J. Math. Anal. 38 (6) (2007) 1825–1846.

[13] ANDRA: Couplex-Gaz (2006). Available online at

http://www.gdrmomas.org/ex qualifications.html (2006).

[14] O. Angelini, C. Chavant, E. Chénier, R. Eymard, S. Granet, Finite volume approx-

imation of a diffusion-dissolution model and application to nuclear waste storage,

Mathematics and Computers in Simulation (2010), in press

[15] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary Value Problems in Me-

chanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, (1990).

[16] T. Arbogast, The existence of weak solutions to single-porosity and simple dual-

porosity models of two-phase incompressible flow, Nonlinear Anal. 19 (11) (1992)

1009–1031.

[17] P. Bastian, Numerical Computation of Multiphase Flows in Porous Meadia, Habilita-

tionsschrift, 1999.

[18] J. Bear, Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous

Media, Kluwer Academic Publishers, London, 1991.

[19] J. Bear, A. Verruijt, Introduction to Modeling Groundwater Flow and Pollution, D.

Reidel Publishing Company, Dordrecht, Holland,1987.

[20] A. Bourgeat, A. Hidani, A result of existence for a model of two-phase flow in a porous

medium made of different rock types, Appl. Anal. 56 (1995) 381–399.
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[36] F.Z. Däım, R. Eymard, D. Hilhorst, Existence of a solution for two phase flow in

porous media: the case that the porosity depends on the pressure, J. Math. Anal.

Appl. 326 (2007) 332–351.

[37] C.J. van Dujin, M.J. de Neef, Similarity solution for capillary redistribution of two

phases in a porous medium with a single discontinuity, Advances in Water Resources

21 (1998), 451-461.

[38] B.K. Fadimba, On existence and uniqueness for a coupled system modeling immiscible

flow through a porous medium, J. Math. Anal. Appl. 328 (2007) 1034–1056.

[39] X. Feng, Strong solutions to a nonlinear parabolic system modeling compressible mis-

cible displacement in porous media, Nonlinear Anal. 23 (12) (1994) 1515–1531.

[40] G. Gagneux, M. Madaune-Tort, Analyse Mathématique de Modèles Non Linéaires de
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Summary

In petroleum engineering and environmental engineering, many processes can be mathe-

matically modelled as multiphase fluid flow in porous media. Carbon dioxide sequestration

and long-term nuclear waste storage are examples of such processes.

This thesis studies immiscible compressible two-phase fluid flow in porous media. Such

flows can be modelled by a set of partial differential equations. Multiple formulations

and main variable selections are possible, and the choice of the formulation and the main

variables strongly influences the PDEs system mathematical analysis and its solving by

means of numerical methods.

In this thesis, a new formulation for modelling immiscible compressible two-phase flow

in heterogeneous porous media is developed and studied. For each phase, the governing

equations describing this type of flow are given by the mass balance law and Darcy-Muscat

law. This original system of nonlinear evolutionary partial differential equations is trans-

formed, using the concept of global pressure, to a system of PDEs which is more suitable

for mathematical and numerical studies. The new model is fully equivalent to the starting

one.

In order to make the problem solving more tractable, another model is discussed as well:

a simplified model. In this model, further simplifications are performed where applicable:

in the fractional flow formulations, phase pressures are replaced by the global pressure in

the calculation of the mass densities. This model was introduced in [25], and an updated

version is used in the scope of this thesis.

A numerical code based on the vertex centered finite volume method is developed. A

comparison of the new model with the simplified fractional flow formulation is performed

in two ways: by means of numerical simulations and by comparing the coefficients. The

comparisons reveal that the simplified model can be used safely in applications where

mean field pressure is high, capillary pressure is low and the wetting phase is not highly

compressible.



In the presentation of the numerical simulations, a special attention is paid to the

numerical treatment of highly heterogeneous media (multiple rock types) by the vertex

centred finite volume method. The model is validated by numerical simulations on the

benchmarks proposed by the French research group MoMaS. The benchmarks are related

to the flow of water (incompressible) and gas such as hydrogen (compressible), concerning

the gas migration through engineered and geological barriers for the deep repository of

radioactive waste.

In the thesis, the existence result for the new formulation for two-phase compressible

flow under realistic assumptions on the data is established. While earlier existence results

on the existence of immiscible compressible systems are known, as in [44, 48], the major

difference of the work presented to the earlier results is that the required hypotheses are

significantly weakened, so that only physically relevant assumptions are made. In particu-

lar, the results presented cover the cases of a singular capillary pressure function, and the

discontinuous porosity and absolute permeability tensors.
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Sažetak

U naftnom inženjerstvu i ekoinženjerstvu česti su procesi koji se mogu matematički mod-

elirati vǐsefaznim protokom fluida kroz poroznu sredinu. Primjeri mogu biti procesi kod

odlaganja nuklearnog otpada, podzemno spremanje ugljičnog dioksida i slično.

Doktorska disertacija razmatra dvofazni tok nemješivih kompresibilnih fluida u poroznoj

sredini. Ovakav se tok modelira sustavom parcijalnih diferencijalnih jednadžbi, pri čemu je

moguće vǐse formulacija i odabira glavnih nepoznanica sustava. Odabir glavnih varijabli i

formulacija sustava jednadžbi snažno utječe na matematičku analizu dobivenog problema

i odabir numeričkih metoda za njegovo rješavanje.

U disertaciji se razmatra nova formulacija modela dvofaznog toka nemješivih kompre-

sibilnih fluida u heterogenoj poroznoj sredini. Osnovne jednadžbe koje opisuju nemješivi

vǐsefazni tok proizlaze iz zakona očuvanja mase za svaku od faza te Darcy-Muscatovog za-

kona. Početni sustav nelinearnih evolucijskih jednadžbi transformira se pomoću koncepta

globalnog tlaka. Cilj transformacija je postizanje bolje matematičke strukture sustava, pri

čemu je nova formulacija potpuno ekvivalentna početnoj.

Nadalje, razmatra se pojednostavljena formulacija navedenog modela. U ovoj se formu-

laciji koristi aproksimacijska hipoteza da gustoće pojedinih fluida (faza) ovise o globalnom,

a ne o faznom tlaku. Pojednostavljeni model zasnovan na konceptu globalnog tlaka uveden

je u [25]. U ovoj disertaciji razmatra se izmijenjena inačica tog modela. Kako pojednostavl-

jeni model predstavlja aproksimaciju originalne zadaće, primjena tako izvedenog modela

je ograničena. U sklopu disertacije razmatra se primjenjivost pojednostavljenog modela.

U okviru izrade disertacije implementiran je i numerički kod baziran na metodi konačnih

volumena s centrima u vrhovima mreže, te je u referentnom testu provedena usporedba nove

i pojednostavljene formulacije. Usporedba pojednostavljene i nove formulacije provedena je

na temelju koefcijenata jednadžbe i na temelju numeričke simulacije. Rezultati usporedbe

otkrivaju kako se pojednostavljeni model može koristiti u primjenama gdje je srednji tlak

visok, kapilarni tlak malen te vlažeća faza nije jako kompresibilna.



Prilikom numeričkih simulacija, poseban je naglasak stavljen na tretiranje heterogene

porozne sredine s jakim kontrastima (porozna sredina sastavljena od vǐse materijala) prim-

jenom metode konačnih volumena s centrima u vrhovima mreže. Novi model provjeren je

na referentnim testovima koje je predložila francuska istraživačka grupa MoMas. Refer-

entni testovi razmatraju tok vode i plina, uglavnom vodika, vezano za migraciju plina kroz

umjetne i geološke barijere i usmjereno na dugoročno skladǐstenje nuklearnog otpada.

U radu je prikazana i egzistencija slabog rješenja za model dvofaznog nemješivog toka

u formulaciji globalnog tlaka, s realističnim pretpostavkama na ulazne podatke. Ranija

istraživanja vezana za egzistenciju slabog rješenja nemješivog dvofaznog kompresibilnog

toka u poroznoj sredini su razmatrana i u radovima drugih autora (npr. [44, 48]). No,

u tim radovima primijenjene su izuzetno jake pretpostavke na oblik kapilarnog tlaka, ili

je pokazana egzistencija aproksimacijskih modela. U sklopu ove disertacije, egzistencija

je prikazana uz značajno oslabljene i fizikalno opravdane ulazne pretpostavke, Prikazani

rezultati pokrivaju slučaj neograničenog kapilarnog tlaka te dopuštaju diskontinuitete u

poroznosti i permeabilnosti.
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