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Chapter 1

Introduction

The subject of this thesis is mathematical modelling of immiscible compressible two-

phase flow in heterogenous porous media with the main applications of water-gas migration

through engineered and geological barriers of a deep repository for radioactive waste and

air-water flow in hydraulic structures. In particular, we investigate three typical problems

for a new model of such flow problems, which has been lately derived by the concept of

the global pressure in [8] and [11] and which is fully equivalent to the original equations.

Namely, this work contributes to the area of the mathematical analysis of multiphase flow

in porous media by a new existence result of weak solutions of the system modelling the

immiscible flow of one incompressible and one compressible phases (such as water and

gas), given in Chapter 4, as well as by new homogenization results for the immiscible

compressible two-phase flow which are presented in Chapter 5 for the case of an ordinary

heterogenous porous media, and in Chapter 6 for the naturally fractured reservoir.

Multiphase flow in porous media

Many petroleum and environmental engineering problems notably rely on the mod-

elling and prediction of fluid flow and transport through heterogeneous porous media. For

instance, some of the techniques in production of hydrocarbons from petroleum reservoirs

enforced during the secondary and tertiary oil recovery are water or gas injection with

intent to increase reservoir’s pressure. The processes occurring therein are mathematically

modeled as multiphase and multicomponent flow in porous media. CO2 sequestration is a

relatively new technique aimed to prevent the release of large quantities of carbon dioxide

into the atmosphere from fossil fuel use in power plants and other industries. The idea of

this method is the sequestration of CO2 into underground geologic formations (for instance,

depleted oil or gas fields), wherein a flow of water and gas comes about. The long-term

management of the hazardous radioactive waste produced by nuclear industry has been an

1



2 Chapter 1. Introduction

issue of an increasing concern [20, 88]. One of the methods investigated and implemented

since the 1950s is the disposal of the radioactive waste in engineered facilities located deep

underground in stable geologic formations which act as the natural geologic barriers and are

selected according to their capability to isolate radioactive waste from the biosphere.The

corrosion of metallic components used in the repository design, such as steel lines, waste

containers, and water radiolysis by radiation issued from nuclear waste produce gas, mainly

hydrogen; certain amounts of methane and carbon dioxide are usually generated by the

microbial activity which is also likely to transform some hydrogen into methane. Therefore,

one faces a problem of possible two-phase flow of (ground)water and gas, which may result

in a pollution of the groundwaters. Also, the creation and transport of a gas phase is an

issue of concern with regard to capability of the engineered and natural barriers to evacuate

the gas and avoid overpressure, thus preventing mechanical damages. The underground

water flow is an object of study in hydrology and soil science for numerous applications to

civil and agricultural engineering. In many countries the supply of drinking water for more

than half of the population comes from the groundwater [28,73]. It is accordingly of great

importance to maintain the acceptable groundwater quality, which can be threatened by

incidental spills of harmful substances generated by industry, by the disposal dumps or

by leaking of the storage tanks. The environmental remediation technologies which deal

with the removal of the pollution or contaminants from the environmental media such as

soil, groundwater, sediment, or surface water are based on the properties of underground

fluid flow. In general, mathematical models and numerical simulations of multiphase flows

help to gain a better understanding of the process, to predict the flow behavior and ulti-

mately to develop and optimize the remediation or harmful materials storage techniques

with respect to cost and efficiency.

This thesis is concerned with the immiscible compressible isothermal two-phase fluid

flow in a porous medium, concerning capillary effects, gravity and heterogeneity. A stan-

dard way of modelling that problem is to use the mass conservation equations and the

Darcy-Muskat law for each of the fluids, which gives the system of two highly coupled

nonlinear evolutionary partial differential equations. The disadvantage of this formulation

is the degeneracy of the relative permeability functions which does not allow to derive the

uniform estimates for the phase pressure gradients. Also, the phase pressures are math-

ematically not well defined over time globally in the domain since their evolution terms

disappear in the regions without the corresponding fluid. With a view to achieve a more

tractable form of the governing system, these starting equations are algebraically converted

into distinct alternate forms and the primary variables of the system can be selected in

several ways. This choice strongly affects the mathematical analysis and numerical meth-
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ods used in the problem solving and simulations. It has been known for some time that

the fractional flow approach, where the flow of the two phases is observed as a total flow of

one fictional mixed fluid and the single phases act as fractions of the total flow, is partic-

ularly convenient. Additional decoupling of the equations is accomplished by introducing

a new variable called the global pressure which is taken as an independent variable in this

formulation, along with one of the phase saturations.

The notion of the global pressure originates from [21, 48] and since then many au-

thors investigated this idea from the mathematical analysis point of view as well as for

the numerical simulations in hydrology and petroleum reservoir engineering (see for exam-

ple [28, 51–53]). The fractional flow / global pressure formulation is more suitable for the

mathematical treatment due to the clear type of the equations and the coupling between

the equations of the system being relieved. It also enables one to establish uniform bound

on the global pressure gradient. Moreover, this form of the multiphase immiscible flow has

been verified as advantageous over the other formulations with regards to the computa-

tional efficiency [28, 53]. In [48] the global pressure was introduced for the incompressible

two-phase flow. As far as two compressible phases, in [48] formulation with the global

pressure was obtained assuming that the capillary pressure is low and that the phase mass

densities and the other pressure dependant coefficients can be evaluated at the global pres-

sure instead of the corresponding phase pressures, with a neglectable error. Although this

approximate model is widely used in applications, the results and the numerical simula-

tions of [11] show that for some types of immiscible compressible two-phase flows, such as

water-air system in hydrogeological applications, this assumption is not satisfied and in

that setting approximation of this kind can result in unacceptably large errors, especially

in the loss of the mass balance for the nonwetting phase. Only recently the fractional flow

formulation which is fully equivalent to the original system has been established in [8] for

the immiscible flow of water and gas, and in [11] for the general case of two immiscible

compressible fluids; that model is a topic of our thesis. The said procedure leads to a

degenerate coupled system consisting of a nonlinear parabolic equation for the global pres-

sure and a nonlinear convection-diffusion equation for the saturation. In [13] the numerical

simulations were performed for this model in the case of porous media with several rock

types. A fully equivalent formulation for a three-phase flow is derived in [47].

Two-phase flow in porous media has been extensively mathematically analyzed for a

long time, followed by the numerous literature and many developed methods. In the case of

two incompressible phases, the questions of the existence and regularity of weak solutions

have been studied in [4,21,23,36,48,49,61,65,78,79,101,102]. The existence results for the

multi-component model have been lately established in [46, 64, 80, 84, 96, 97], and the mis-
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cible compressible flow in porous media and the corresponding existence issues have been

treated by [17–19, 55, 67]. Still, the first results on the existence for immiscible compress-

ible two-phase flow have been derived just recently. Namely, the authors of [45, 48, 68–71]

considered the immiscible two-phase flow with one or more compressible fluids in certain

approximate models based on the aforementioned assumption on the mass densities, with

the global pressure being introduced in the way it was done in [21, 48] for incompressible

immiscible flows. In [68] some terms related to compressibility were disregarded, while

in [68–72] more regularity was assumed for the porosity, absolute permeability and the

capillary pressure functions which excludes the case of discontinuous medium coefficients

and unbounded capillary pressure as it appears in some applications, such as gas migration

through engineered and geological barriers for a deep radioactive waste repository. A more

general immiscible compressible two-phase flow model was studied by [72,75–77]. In these

works the models in phase formulations were studied while the feature of the global pressure

inducted as in [48] for the incompressible flow is employed in order to establish the a priori

estimates. These results are established under the assumption that the capillary pressure

is bounded and no discontinuity of the porosity and the permeability is permitted. Exis-

tence results of weak solutions for the fully equivalent global pressure formulation for the

two-phase compressible flows are obtained in [12] under some realistic assumptions on the

data which cover the cases of unbounded capillary pressure function, and the discontinuous

porosity and absolute permeability tensors.

Homogenization

The fluid flow and transport in the subsurface is considerably affected by the inho-

mogeneity of the porous medium. Namely, the porous medium is characterized by several

distinct spacial scales and its permeability and the porosity vary on many different length

scales. Mathematically, this feature is expressed by the rapidly oscillating coefficients of

the equations which describe multiphase flow in heterogenous media. In order to provide

realistic analysis and predictions of the flow and transport behavior, one needs the models

which accurately account for the strong heterogeneity effects of the medium. However,

these variations make direct analytical and numerical methods for solving boundary value

problems for the equations of this type at the field-scale extremely difficult and often practi-

cally infeasible. It is therefore desirable to use methods that represent the effects of subgrid

scale variations on larger scale flow results in a way which allows the use of a coarse com-

putational grid. A standard approach is to average or upscale physical parameters such as

porosity and absolute permeability to obtain the macroscopic laws capturing their integral
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effects on multiphase flow. The homogenization theory has been developed with a view to

rigorously mathematically describe the various physical processes in highly inhomogeneous

materials, in particular, in the porous media, such as in oil reservoir simulation or hydroge-

ology. The objective of homogenization is to replace the governing equations by a simpler

set of equations (homogenized or effective equations) for which the solution can be resolved

on a reasonable coarse-scale mesh and which provide a good approximation of the average

behavior of the solution of the governing equations. In its simplest form, the coefficients

of the equations describing the original processes are replaced by effective or macroscopic

coefficients. As a result, the characteristics of the original, highly heterogeneous material

are well-approximated by those of the effective locally homogeneous material.

The mathematical theory of homogenization or upscaling has been comprehensively

developed since the early 1960s and the methods as well as literature in this area have

been numerous. We may refer to to the classical books [31], [59] and [93] for an advanced

general presentation of mathematical homogenization, and in [74] one can find an extensive

collection of applications of homogenization to porous media. For recent reviews on other

upscaling methods, see for instance [62,66] and the bibliography therein.

The homogenization of one phase flow in the framework of the geological radioactive

waste disposal was considered in [33,34,40,41,44]. Many authors have studied the homog-

enization and upscaling of incompressible immiscible two-phase flow in porous media, for

instance [30,35,37,38,42,43,73,74,83,89,90,94,99]. Homogenization results for compressible

miscible two-phase flow in porous media were obtained in [17,56]. On the other hand, for

immiscible compressible two-phase flow, the first homogenization result was only recently

established in [6]. In that work the model of water-gas flow in original phase form is used

with the simplified global pressure formulation used for obtaining the a priori estimates

and compactness results. Moreover, the bounded capillary pressure function is assumed

which is too restrictive for some realistic problems.

A distinct kind of porous medium is noticed in a naturally fractured reservoir which is

often met in hydrology and petroleum applications, in particular the sedimentary rocks that

compose a hydrocarbon reservoir. This type of porous medium consist of a discontinuous

system of periodically repeating matrix blocks of ordinary porous media surrounded by a

connected system of thin fissures. It has been first observed in the engineering literature in

1960s that flow in such fractured reservoirs is quite unlike that in an ordinary, unfractured

porous media. Instead, the flow behaves as if the reservoir possessed two porous structures,

one associated to the fractures, and the other to the porous rock, with disparate features:

the permeability of the fractures is much higher than those of the matrix and hence the

majority of fluid flow takes place through the fracture system while the matrix occupies
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most of the volume of the reservoir and most of the fluid is situated there. A double

porosity model was proposed on physical grounds by [27, 85, 91, 100] to describe the flow

of one or more fluids in a naturally fractured reservoir. Since then it has been widely

used for engineering applications in geohydrology, petroleum reservoir engineering, civil

engineering and soil science to model the effect of natural fractures on subsurface fluid flow

and subsequent reservoir performance. Namely, in this model the fractured reservoir is

replaced by an equivalent imaginary coarse grained porous medium for which the fractures

act as pores, while the matrix blocks could be seen as fictive grains.

Regarding the mathematical homogenization of flow in a naturally fractured porous

medium, the first result was the description of a general form of the double porosity model

for a single phase flow in [22]. Then in [25] this general model was rigorously justified from

the point of view of homogenization theory and also the dilation operator was introduced.

The global behavior of single phase flow in fractured media is studied as well in [15, 16],

where the variable ratio of the block permeability to the fractures permeability as well

as the fractures to the blocks dimensions are considered. The first contribution on the

derivation of the double porosity model for two-phase flow in a fractured medium is [26],

where the effective equations of the double porosity model are established formally by

asymptotic expansion for completely miscible incompressible flow, and immiscible incom-

pressible two-phase flow. In [39] the double porosity model for immiscible incompressible

two-phase flow in a reduced pressure formulation is rigorously justified by periodic homog-

enization; the same problem was considered by [103] who studied the cases of the ratio of

the permeabilities in the matrix blocks and in the fractures being of order ε2, smaller than

ε2 and greater than ε2, respectively, where ε is a small parameter depicting the size of a

matrix block with respect to the domain size. This study revealed that in the first case,

the limit model is of a dual porosity type, the second one leads to a single-porosity model

for the fracture flow, while the last one yields another type of single-porosity model for the

fractures, with an additional source term arising from matrix blocks. For the displacement

of one compressible miscible fluid by another in a naturally fractured reservoir, the double

porosity model was rigorously derived in [54] and for compositional three-phase flow it was

established by the formal asymptotic expansion in [24,50]. Furthermore, [101] investigates

the existence of weak solutions for the model of the immiscible two-phase flow in fractured

porous media. Finally, the first result on the immiscible compressible two-phase flow in

this context is [14] where only lately the double porosity model has been established for

the water-gas flow in a global pressure formulation, whose existence is given in [75].
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Overview of the thesis

In Chapter 2 we firstly exhibit the standard notions and equations for the two-phase

immiscible flow in porous media, as in [28]. Afterwards we present the global pressure

formulation of the problem for the compressible flow, both the simplified and the fully

equivalent formulation, as well as the global pressure formulation of the incompressible

flow [48]. At the end of the Chapter a review of existence results concerning the two-phase

flow in porous media is provided.

In Chapter 3 we explain the concepts of homogenization and upscaling. In particular,

the notion of the two-scale convergence is defined and the standard results regarding it are

quoted. We also introduce a dilation operator and list its properties. The Chapter is

concluded by a review of homogenization results for the two-phase flow.

The existence of weak solutions for the two-phase immiscible compressible flow in

porous media in a fully equivalent global pressure - saturation formulation is established

in Chapter 4. The results of this Chapter have been published in [9]. We study the case

of an incompressible wetting phase and a compressible non-wetting phase. The model

takes into account gravity, capillary effects and heterogeneity, and an isothermal condition

is assumed. On the boundary of the domain we impose non-homogeneous Dirichlet and

Neumann conditions. We also present some physically reasonable assumptions on the

data, as in [12], as well as on the boundary data. The proof of the existence of weak

solutions under such assumptions is based on using an appropriate regularization and a

time discretization. The main difficulty is the degeneracy of the equations caused by

annulation of the diffusivity coefficient. Hence we add a small constant η > 0 to it,

and in the same time we regularize the singular capillary pressure function to overcome

the integrability problems. This brings us to a regularized problem with a parameter

η > 0. To establish the existence of weak solutions for the evolution equations in the

regularized system, we discretize in time with a small parameter h > 0, which leads to a

sequence of elliptic approximations. Schauder’s fixed point theorem is used to establish the

existence for a discretized problem. A priori estimates with respect to the space and time

variable, uniform in h and η are obtained by using convenient test functions, proposed

in [72]. In order to pass to the limit in nonlinear terms as h → 0 we also employ a

generalization of compactness lemma from [48] and from [95] (see also [11, 71, 75]) which

allows the discontinuities of the porosity, and some auxiliary results. Thus the existence

for a regularized system is shown. Analogous arguments are used to pass to the limit as

η → 0 in the regularized problem which proves the main result.

The last two Chapters contain the new homogenization results for the new, fully

equivalent global pressure formulation for the two-phase immiscible compressible flow.
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Therein we rigorously justify the homogenization process for a single and a double porosity

model by using the two-scale convergence technique.

More precisely, Chapter 5 is concerned with a flow of two compressible phases through

a highly heterogeneous porous medium consisting of a rock of a single type and possessing

a periodic microstructure. This Chapter comprises the results from [10]. Our purpose

is to describe the effective problem for this model and to prove the convergence of the

weak solutions of the microscopic system to the weak solutions of this effective problem,

under certain physically justified assumptions on the data. At the beginning we expose the

equations describing the problem at the microscopic level depending on a small parameter

ε, whose at least one weak solution has been proved to exist in [12]. The appropriate test

functions are employed to establish the a priori estimates independent of ε for these weak

solutions. To obtain the compactness for the weak solutions of the microscopic problem

we use a new compactness result of [6]. This enables to pass to the limit as ε → 0 in the

microscopic equations by employing the two-scale convergence arguments. Thereby the

homogenized equations are obtained.

Finally, in Chapter 6 we consider an immiscible flow of an incompressible wetting

phase and a compressible non-wetting phase in a fractured porous medium. Namely, the

objective is to write up the corresponding homogenized problem and to show the conver-

gence of the weak solutions of the microscopic problem to weak solutions of the homogenized

problem. We firstly present the microscopic problem which depends on ε and recall the

corresponding existence result from Chapter 4 which is valid under some realistic assump-

tions on the data. Similarly as in the two previous Chapters, the a priori estimates uniform

with respect to ε are established. By using the classical compactness results of [95] and [5]

we then establish the compactness for the weak solutions of the microscopic problem. The

two-scale convergence is employed to obtain the effective equations for the fracture flow.

However, the nonlinearities and the coupling of the system give rise to a non-identified

term which represents an upscaled matrix-to-fractures flow source term. Moreover, the de-

duced two-scale convergence results for the matrix solutions are insufficient to establish the

homogenized matrix system. These inconveniences are resolved by transforming the weak

solutions with help of the dilation operator. More precisely, first we obtain the equations

for the dilated solutions for ε as well as their limit functions as ε→ 0, which correspond to

the two-scale limits of the non-transformed matrix solutions. We establish also a certain

compactness result which enables to pass to the limit in the equations satisfied by the

dilated functions as well as in the corresponding boundary conditions. Eventually it allows

us to finish the proof of the main result.



Chapter 2

Modelling immiscible two-phase flow

in porous media by the concept of

global pressure

2.1 Introduction

This Chapter contains the presentation of the model describing immiscible compress-

ible two-phase fluid flow in porous media in the global pressure formulation. We begin

by introducing in Section 2.2 the basic notions and presenting the standard system of

macroscopic equations for the two-phase immiscible compressible flow; herein we follow

the references [28, 29, 48, 53, 73]. In Section 2.3 we briefly explain the transformation of

the standard system to the fractional flow form, or the global pressure saturation form,

in the case of two incompressible phases, as in [48]. The idea behind the fractional flow

reformulation is to consider the two-phase flow as a total fluid flow of a single mixed fluid,

in which the individual phases can be seen as fractions of the total flow. Introducing a

new variable (global pressure P ) leads to a system where the coupling between the two

equations is weakened and the new formulation is more suitable for mathematical and nu-

merical analysis of the problem. An overview of the existence results for the immiscible

incompressible two-phase flow is included. Next, following [11, 104], [48], the concept of

the global pressure applied to two-phase immiscible compressible fluid flow is presented

in Section 2.4. Firstly in Subsection 2.4.1 we derive a fractional flow formulation of the

original equations by considering the total flow. By this procedure, the coupling between

the two coupled equations is weakened, and the problem gains a well defined mathematical

structure. In order to further decouple the system, a new variable called the global pressure

was introduced in [21, 48] and a formulation with the global pressure and one saturation

9
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as primary variables was developed for the incompressible flow. Until recently, a global

pressure formulation for two and three phase compressible flow models had been used only

in a certain approximate form proposed by [48]. More precisely, it is assumed that one

can disregard the error created by evaluating the phase densities at the global pressure

instead of the corresponding phase pressures. It was shown [11] that for some types of im-

miscible compressible two-phase flows this assumption is not satisfied. In Subsection 2.4.2

we present the fully equivalent fractional flow formulation which was recently established

without any simplifying assumptions in [8] for the immiscible flow of water and gas, and

in [11] for the general case of two immiscible compressible fluids. Next, in Subsection 2.4.3

we consider a simplified fractional flow formulation based on approximate calculation of

mass densities. Lastly in Section 2.5 we overview the references concerning the existence

for the immiscible compressible two-phase flow, and some related results.

2.2 Two-phase immiscible flow in porous media

2.2.1 Definitions

The porous medium Ω ⊆ Rn is any body that consists of a solid part called solid

matrix and the connected void space (or pore space) that can be filled with one or more

fluids. For example, soil, sand, wood, cork, ceramics, sponge, bread, lungs, kidneys, bones

can be considered as porous media.

The porous medium can be observed at several different space scales. At themolecular

scale (about 10−9 m) the individual fluid molecules can be detected. These are replaced

by a hypothetical continuum on the microscopic scale (about 10−3 m) which is determined

by a characteristic size of a pore. Here the individual solid grains and pore channels are

visible. Finally, the scale of order of 10 m is referred to as the macroscopic scale. The

porous medium is at this scale modeled as a continuum in which one does not distinguish

the solid phase from the fluid phases present in the pore space. At this length size the

different types of rock with different average grain sizes can be identified.

The flow of one or more fluids in the pore space of a porous medium is described at the

microscopic level by the Navier-Stokes equations with appropriate boundary conditions.

This model is unapplicable in practice due to the unknown geometry of the pore space

and the discrepancy between the dimensions of pores (of order of micrometer) and the

space dimensions of the domain (field) (up to few kilometers) which disables the numerical

simulations on the microscopic level. Indeed, one is typically not interested in the flow

variations at the pore space scale, although multiphase flow problems at the microscale
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have been studied and different approaches have been used for solving them numerically,

see e.g. [92] and the references therein. Therefore, the model is commonly considered at the

larger, macroscopic level where the exact description of the microscopic configuration is not

needed. Namely, the porous medium is taken as a continuum where each point represents

elementary volume of the porous medium that is taken large enough to ensure that both

solid phase and the fluid in the pore space are contained in it. For more information on the

identification of the size of such representative elementary volume [29], [73] or [28] can be

consulted. Then each point of the macroscopic continuum is assigned average values over

elementary volumes of quantities given at the microscopic level, such as the fluid pressure

and velocity.

The basic macroscopic properties of a porous medium are porosity and absolute per-

meability. The porosity Φ of a porous medium is defined as the ratio of a pore volume to

the total volume of the porous medium. We assume that the rock is not deformable, so

that the porosity does not depend on the pressure of the fluid. The absolute permeability

tensor K [m2] (a symmetric tensor) is a measure of the ability of a porous material to

permit the fluids flow through it. We consider the heterogeneous porous medium whose

macroscopic properties vary in space through the domain, but not in time.

We will consider the flow of two fluids in porous media assuming that at the micro-

scopic level there exists a surface tension at the boundary of the two fluids. As a result,

the fluids can not mix and a sharp interface between the fluids is formed. The two flu-

ids separated by the well defined surface are called immiscible and are referred to as the

phases. This type of flow is indicated as an immiscible flow. In multiphase immiscible

flow, a wetting and a non-wetting phase are discerned: if a contact angle between the solid

surface and the fluid-fluid interface for one of the fluids is less than 900 then it is called the

wetting phase fluid, the other fluid is then the non-wetting phase fluid. In other words, one

phase wets the porous medium more than the other. Generally, water is the wetting fluid

relative to oil and gas, while oil is the wetting fluid relative to gas. Throughout this work

we will use indices j ∈ {w, g} or j ∈ {w, n} to denote the wetting and the non-wetting

phase, respectively.

The individual fluid phases are characterized by the following macroscopic properties:

their densities ρj [kg/m3] which are assumed to depend only on the phase pressure Pj

[Pa] = [N/m2] (the temperature represents just a parameter, i.e., the isothermal flow is

considered); the compressibility νj of the fluid phase which is defined as

νj =
1

ρj(Pj)

∂ρj(Pj)

∂Pj

[Pa−1]
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and the dynamic viscosity µj [Pa s] that is assumed to be constant in this work. The

volumetric phase velocity (macroscopic apparent velocity, Darcy velocity) of the phase j ∈
{w, n} is denoted by qj [m/s].

For the multiphase flow, phase saturations Sj, j ∈ {w, n} are the macroscopic vari-

ables measuring the quantities of the volume of individual phases at the point in the

macroscopic model. Obviously it is Sj(x, t) ≥ 0, j ∈ {w, n}, and
∑

j Sj(x, t) = 1.

At the microscopic level, the two immiscible fluids are separated by a clearly de-

fined curved interface whose form is determined by the surface tension. This phenomenon

gives rise to a discontinuity in microscopic pressure throughout the contact surface. The

magnitude of that jump of the pressure is called the capillary pressure Pc. It is equal to

Pc = Pg − Pw ≥ 0

and it is described by the Young-Laplace law. The macroscopic capillary pressure can

in general also depend on temperature and fluid composition due to changes in surface

tension but in this work it is assumed to depend on the saturation solely.

In practice, one uses some of the functional correlations between the capillary pressure

and the saturation that contain parameters which try to account for the different pore space

geometry and are used in order to fit the models to the experimental data. Most commonly

used models are the functions of Van Genuchten and Brooks-Corey (see [29,73]).

The phase relative permeability krj, j ∈ {w, n}, is the macroscopic adimensional

quantity indicating to what extent the flow of the phase is prevented by the presence of

the other phases in the pore domain. It holds krj(Sj = 0) = 0 and Sj 7→ krj(Sj) is an

increasing function, j ∈ {w, n}. The phase mobility λj is defined by λj =
krj
µj
, j ∈ {w, n}.

2.2.2 Governing equations

The standard system of equations describing the immiscible, compressible isothermal

two-phase fluid flow in a porous medium at the macroscopic level consists of the mass

conservation equations for the individual fluid phases, j ∈ {w, n} ( [29,48,73]):

Φ
∂

∂t
(ρj(Pj)Sj) + div(ρj(Pj)qj) = Fj, (2.1)

combined with the Darcy-Muskat law for each phase, j ∈ {w, n}:

qj = −λj(Sj)K(∇Pj − ρj(Pj)g). (2.2)



2.2 Two-phase immiscible flow in porous media 13

Here Φ and K are the porosity and the absolute permeability of the porous medium, and

for j ∈ {w, n}, ρj, Pj, Sj, qj and λj are the mass density, pressure, saturation, volumetric

velocity and the mobility of the phase j, respectively; Fj is the source/sink term and g is

the gravity acceleration, a downward-pointing, constant vector. The Darcy-Muskat law is

an experimentally obtained relation of the volumetric phase velocity to the corresponding

phase pressure gradient. It can also be derived by homogenization or local averaging

techniques (see, e.g., [74]) from momentum conservation of the Navier-Stokes equations at

the microscopic scale. The system is closed by adding the capillary pressure law as well as

the condition that the two phases fill the whole pore space:

Pc(Sn) = Pn − Pw, (2.3)

Sw + Sn = 1. (2.4)

In this work the porosity and the absolute permeability are assumed to depend only on

the space variable, and the capillary pressure and relative permeabilities are considered as

functions of the saturation only.

The governing system (2.1)-(2.4) with the primary unknowns Pj, Sj and qj consists

of the two nonlinear partial differential equations (2.1), (2.2) which are highly coupled

through the two algebraic relations (2.3), (2.4). These basic equations can be algebraically

manipulated and combined into different modified forms. Also, there are few possible ways

to choose primary (independent) variables in this system and concomitantly to eliminate

the remaining unknowns (dependent variables). As a result, different mathematical formu-

lations of the same model can be obtained. Mathematical analysis and especially numerical

methods used in the simulations for the given model considerably depend on the choice of

the form of the model (see e.g. [11, 48,51–53]).

The formulation of the flow equations that is derived using the individual phase mass

balance laws and choosing one phase pressure and one phase saturation as primary un-

knowns has two major deficiencies that make it not tractable for a mathematical study: the

types of the equations are not evident; the equations are degenerate due to the vanishing of

the relative permeabilities in the zones where the corresponding phases disappear. There-

fore, another approach to modelling multiphase flow in porous media has been employed

in order to obtain a different formulation of the model, with advantageous mathematical

properties. Namely, by introducing appropriate new functions, the original equations are

transformed into a formulation that we will refer to as the fractional flow formulation or

the global pressure - saturation formulation, which employs a new, ”pressure-like” variable
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called the global pressure and one saturation as the primary variables. The transformed

system is less coupled and has a well defined mathematical structure. Another advantage

of using the global pressure is that enables one to obtain uniform bound on the global

pressure gradient, while the uniform estimates for the phase pressure gradients are not

available due to the degeneracy of the relative permeabilities. The global pressure for-

mulation for immiscible two-phase flow in porous media is presented in the next Section.

Since it was introduced, the global pressure formulation has been utilized in a wide range of

numerical simulations, particularly in hydrology and petroleum reservoir engineering (see

for instance [48,53] and the references therein). It has been proven that this fractional flow

approach is far more efficient than the original phase formulation from the computational

point of view [53].

2.3 Immiscible incompressible two-phase flow in porous

media by the concept of global pressure

Consider now the case of two-phase flow with incompressible fluids. Following [48],

the aim of this Section is to present the fractional flow formulation of the system (2.1)-(2.4)

and introduce the global pressure for the incompressible case, as in [21,48].

2.3.1 Fractional flow formulation for the incompressible case

In order to distinguish the coefficients of the fractional flow formulation in the in-

compressible case from the corresponding coefficients for compressible phases, considered

in the next Section, a superscript i is used.

With the choice of Sn and Pw as the main unknowns in (2.1)-(2.4), the total mobility

is defined by

λi(Sn) = λw(Sn) + λn(Sn),

and the fractional flow functions are

f i
j(Sn) =

λj(Sn)

λi(Sn)
, j ∈ {w, n}.

Next, the total velocity

qt = qw + qn
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is introduced and from (2.2) it can be expressed as

qt = −K (λw(Sn)∇Pw + λn(Sn)∇Pn) +Kg (λw(Sn)ρw + λn(Sn)ρn) .

From the initial system (2.1)-(2.4), after summing up the two mass conservation equations

one obtains the following system:

div(qt) = Fw/ρw + Fn/ρn, (2.5)

qt = −λi(Sn)K
(
∇Pw + f i

n(Sn)∇Pc(Sn)− ρi(Sn)g
)
, (2.6)

Φ
∂

∂t
Sn + div(f i

n(Sn)qt −Kgbi(Sn)) + div(Kai(Sn)∇Sn) =
Fn

ρn
, (2.7)

where the coefficients are defined by

ρi(Sn) = (ρwλw(Sn) + ρnλn(Sn))/λ
i(Sn),

αi(Sn) = λw(Sn)λn(Sn)/λ
i(Sn),

ai(Sn) = −αi(Sn)P
′
c(Sn),

bi(Sn) = αi(Sn)(ρw − ρn).

The pressure equation (2.5), (2.6) is coupled to the equation for the saturation (2.7) via

the gradient of the capillary pressure. In the following Subsection it is shown citing [21,48]

that by introducing an appropriate new variable, the coupling between the two equations

can be additionally relieved.

2.3.2 Global pressure formulation for the incompressible case

The idea introduced in [21,48] is to induct a new pressure-like variable P , called the

global pressure , in such a way that (2.6) takes the form of a Darcy law for the pressure

P , with a non-degenerate coefficient. That is, a function γ(Sn) and a quantity P that

represents some mean pressure are needed such that

λw(Sn)∇Pw + λn(Sn)∇Pn = γ(Sn)∇P. (2.8)

Using (2.3) it is easy to see that (2.8) is fulfilled is we take γ(Sn) = λi(Sn). Then we have

∇Pw + f i
n(Sn)P

′
c(Sn)∇Sn = ∇P,
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which is satisfied if

P = Pw +

∫ Sn

0

f i
n(s)P

′
c(s)ds. (2.9)

Using (2.3), the relation (2.9) implies

P = Pn − Pc(0)−
∫ Sn

0

f i
w(s)P

′
c(s)ds. (2.10)

We note that by choosing the non-wetting saturation as a primary unknown, the capillary

pressure S 7→ Pc(S) is increasing function. Therefore, (2.9) and (2.10) yield

Pw ≤ P ≤ Pn.

Finally, taking into account (2.10), the system (2.5)-(2.7), and therefore the original

governing equations (2.1)-(2.2), is transformed into the following system with primary

variables P and Sn:

div(qt) = Fw/ρw + Fn/ρn, (2.11)

qt = −λi(Sn)K
(
∇P − ρi(Sn)g

)
, (2.12)

Φ
∂Sn

∂t
+ div(f i

n(Sn)qt −Kgbi(Sn)) + div(Kai(Sn)∇Sn) =
Fn

ρn
, (2.13)

The new system (2.11)-(2.13) is referred to as the fractional flow or global pressure-

saturation formulation of the system (2.1)-(2.4) for the two incompressible fluids. It con-

sists of the global pressure equation (2.11), which is an elliptic equation with the parameter

t ∈]0, T [, and the nonlinear convection-diffusion equation for the non-wetting saturation

(2.13), whose diffusion term ai degenerates as it satisfies ai(Sn = 0) = ai(Sn = 1) = 0.

These two equations are coupled through the total velocity qt and the coefficients which

depend on Sn. By introducing the global pressure, the transformed system is established

that is less strongly coupled and the derived equations are well mathematically structured.

Introduction of the global pressure for the two-phase immiscible compressible flow is con-

sidered in the next Section.

2.4 Immiscible compressible two-phase flow in porous

media by the concept of global pressure

For two and three-phase compressible flow, the concept of the global pressure was

introduced in [48]. The authors derived the formulation with the global pressure and
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one saturation as primary variables under the assumption that the phase densities vary

slowly with the pressure and that the capillary pressure, a difference between Pn and

Pw, is small. In this case, it was considered that the error caused by evaluating phase

density ρj at the global pressure P instead of the phase pressure Pj can be ignored. This

assumption has been since employed in petroleum engineering applications [51, 53]. A

numerical analysis performed in [11] revealed that such simplified models based on a mass

density approximation can be used safely in applications where the mean field pressure

is high, capillary pressure is low and the wetting phase is not highly compressible, such

as the oil reservoir simulations, but are inadequate in many underground gas and water

flows where the difference between the phase pressures and the global pressure can be

significant. Only recently, the global pressure formulation for two-phase flow in porous

media has been derived without any simplifying assumptions. Namely, the formulation

that is fully equivalent to the original phase equations, where the phase pressures and the

phase saturations are primary unknowns, was established for the water-gas flow in [8], and

for the general case of two compressible fluids in [11]. A fully equivalent global pressure

formulation for three-phase flow was derived in [47]. The global pressure formulation is

more suitable for mathematical and numerical analysis, for more details see [12, 13, 104].

The current Section begins by establishing the fractional flow formulation of two-phase

compressible flow in Subsection 2.4.1. Then the fully equivalent global pressure formulation

for two-phase compressible immiscible flow is presented in Subsection 2.4.2, and a brief

display of the simplified model is given in Subsection 2.4.3.

2.4.1 Fractional flow formulation for the compressible case

We consider the system (2.1)-(2.4) in the case of two compressible fluids and select

the non-wetting saturation Sn and the wetting phase pressure Pw for primary variables.

Following the path used in the incompressible case, we introduce the total flux

Qt = ρw(Pw)qw + ρn(Pn)qn,

and the following nonlinear coefficients: the total mobility function

λ(Sn, Pw) = ρw(Pw)λw(Sn) + ρn(Pn)λn(Sn), (2.14)

the fractional flow functions

fj(Sn, Pw) =
ρj(Pj)λj(Sn)

λ(Sn, Pw)
, j ∈ {w, n}, (2.15)
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and the nonlinear functions

ρ(Sn, Pw) = (ρw(Pw)
2λw(Sn) + ρn(Pn)

2λn(Sn))/λ(Sn, Pw),

α(Sn, Pw) = ρw(Pw)ρn(Pn)λw(Sn)λn(Sn)/λ(Sn, Pw),

a(Sn, Pw) = −α(Sn, Pw)P
′
c(Sn),

b(Sn, Pw) = α(Sn, Pw)(ρw − ρn).

After summing the equations (2.1)-(2.4), one obtains the transformed system

Φ
∂

∂t
(ρw(Pw)(1− Sn) + ρn(Pn)Sn) + divQt = Fw + Fn, (2.16)

Qt = −λ(Sn, Pw)K (∇Pw + fn(Sn, Pw)∇Pc(Sn)− ρ(Sn, Pw)g) , (2.17)

Φ
∂

∂t
(ρn(Pn)Sn) + div(fn(Sn, Pw)Qt − b(Sn, Pw)Kg) + div(a(Sn, Pw)K∇Sn) = Fn. (2.18)

In regards to the primary system (2.1)-(2.4), the new system for the unknowns Pw and Sn

is less coupled and its structure is more evident. Namely, (2.18) is a nonlinear convection-

diffusion equation for the saturation, while the pressure equation (2.16) is a nonlinear

parabolic equation that is still strongly coupled to the saturation equation through the

gradient of capillary pressure and the time derivative term.

As mentioned before, the idea of [21,48] is to introduce the global pressure P in order

to further decouple the equations (2.16)-(2.18). This accounts for posing

∇Pw + fn(Sn, Pw)∇Pc(Sn) = ω(Sn, P )∇P, (2.19)

where a function ω(Sn, P ) and the variable P are to be determined.

Let us point out that the fractional flow formulation in the compressible case could

have alternatively be derived by using the total velocity qt = qw + qn instead of the total

flux, which would induce equations in a non-conservative form. This formulation has been

studied in [6, 14,68–72,75–77]. However, the total flux behaves more smoothly [52].

2.4.2 Fully equivalent model

In this part we present the fully equivalent global pressure formulation for two com-

pressible fluids, following [11,104] which we refer to for details.

In order to resolve (2.19), we assume that the wetting-phase pressure is an unknown
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function Pw related to a new variable P (the global pressure) by

Pw = Pw(Sn, P ). (2.20)

Combining (2.19) and (2.20) leads to

∂Pw

∂Sn

(Sn, P )∇Sn +
∂Pw

∂P
(Sn, P )∇P = ω(Sn, P )∇P − fn(Sn, Pw(Sn, P ))P

′
c(Sn)∇Sn.

Since P and Sn are independent variables this yields the equations

∂Pw

∂Sn

(Sn, P ) = −fn(Sn, Pw(Sn, P ))P
′
c(Sn), (2.21)

∂Pw

∂P
(Sn, P ) = ω(Sn, P ). (2.22)

By integrating (2.21) one obtains the equation for the wetting pressure function Pw(Sn, P ) :

Pw(Sn, P ) = P −
∫ Sn

0

fn(s, Pw(s, P ))P
′
c(s)ds, (2.23)

where it is set Pw(0, P ) = P . Then the formula for the non-wetting phase pressure follows,

Pn(Sn, P ) = P + Pc(0) +

∫ Sn

0

fw(s, Pw(s, P ))P
′
c(s)ds. (2.24)

After introducing the capillary pressure u = Pc(Sn) as an independent variable, which

simplifies the form of the equation, the integral equation (2.23) can be rewritten as a Cauchy

problem for an ordinary differential equation with the parameter P as follows [11,104]:
dP̂w(u, P )

dS
= − ρn(P̂w(u, P ) + u)λ̂n(S)

λ(ρw(P̂w(u, P ))λ̂w(S) + ρn(P̂w(u, P ) + u)λ̂n(S))
, u > 0

P̂w(0, P ) = P − Pc(0),

(2.25)

where we denote f̂(u) = f(Sn(u)) utilizing the monotonicity of the capillary pressure. The

problem (2.25) has a global solution P̂w(u, P ) [11] and we put

Pw(Sn, P ) = P̂w(Pc(Sn), P ).
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For known Pw(Sn, P ), the function ω is determined from (2.22) and it holds [11]

ω(Sn, P ) =
∂Pw(Sn, P )

∂P
=
∂Pn(Sn, P )

∂P
. (2.26)

Next, the coefficients in (2.16)-(2.18) are now functions of the global pressure P instead of

the phase pressures Pg and Pw, and of the non-wetting saturation. Thus we denote (using

the same letters for the new functions)

ρw(Sn, P ) = ρw(Pw(Sn, P )), ρn(Sn, P ) = ρn(Pw(Sn, P ) + Pc(Sn)),

λ(Sn, P ) = ρw(Sn, P )λw(Sn) + ρn(Sn, P )λn(Sn), (2.27)

fj(Sn, P ) =
ρj(Sn, P )λj(Sn)

λ(Sn, P )
, j ∈ {w, n}, (2.28)

ρ(Sn, P ) = ρ(Sn, Pw(Sn, P )), α(Sn, P ) = α(Sn, Pw),

a(Sn, P ) = a(Sn, Pw(Sn, P )), b(Sn, P ) = b(Sn, Pw(Sn, P )).

Then one can calculate [11]

ω(Sn, P ) = exp

(
−
∫ Sn

0

(νn(s, P )− νw(s, P ))
ρw(s, P )ρn(s, P )λw(s)λn(s)P

′
c(s)

(ρw(s, P )λw(s) + ρn(s, P )λn(s))2
ds

)
,

where the phase compressibilities are given by

νw(Sn, P ) =
ρ′w(Pw(Sn, P ))

ρw(Pw(Sn, P ))
, νn(Sg, P ) =

ρ′n(Pn(Sn, P ))

ρn(Pn(Sn, P ))
.

Finally, we replace Pw by Pw(Sn, P ) in the equations (2.16)-(2.18) and employ (2.19) to

establish the following system of equations for Sn and P :

Φ
∂

∂t
(ρw(Sn, P )(1− Sn) + ρn(Sn, P )Sn) + divQt = Fw + Fn, (2.29)

Qt = −λ(Sn, P )K (ω(Sn, P )∇P − ρ(Sn, P )g) , (2.30)

Φ
∂

∂t
(ρn(Sn, P )Sn) + div(fn(Sn, P )Qt − b(Sn, P )Kg) + div(a(Sn, P )K∇Sn) = Fn. (2.31)

Let us emphasize that the equations (2.29)-(2.31) are fully equivalent to the system (2.16)-

(2.18), and therefore to the initial standard two-phase flow equations (2.1)-(2.4), as argued

in [11,104].

Remark 1 Having the global pressure at the disposal, the total flow Qt is rewritten in the

form of the Darcy-Muskat law in (2.30), as intended. Hence the global pressure can be
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seen as a mixture pressure where the two phases are considered as mixture constituents,

and (2.29) may be interpreted as the mass conservation law of the ”idealized” compressible

fluid replacing the mixture of the two fluids. Furthermore, from (2.23) and (2.24) one can

obtain the ”energy equality” (see [11])

ρw(Sn, P )λw(Sn)K∇Pw · ∇Pw + ρn(Sn, P )λn(Sn)K∇Pn · ∇Pn

= λ(Sn, P )ω(Sn, P )
2K∇P · ∇P + α(Sn, P )K∇Pc(Sn) · ∇Pc(Sn),

(2.32)

which indicates physical relevance of the global pressure and will be used to obtain the a

priori estimates on the solutions. Moreover, it is Pw ≤ P ≤ Pn.

Lastly, by introducing the functions

Λj(Sn, P ) = ρj(Sn, P )λj(Sn)ω(Sn, P ), j ∈ {w, n}, (2.33)

the system (2.29)-(2.31) is rewritten as ( [8, 11]):

Φ
∂

∂t
(ρw(Sn, P )(1− Sn))− div(Λw(Sn, P )K∇P ) + div(a(Sn, P )K∇Sn)

+ div(λw(Sn)ρw(Sn, P )
2Kg) = Fw,

(2.34)

Φ
∂

∂t
(ρn(Sn, P )Sn)− div(Λn(Sn, P )K∇P )− div(a(Sn, P )K∇Sn)

+ div(λn(Sn)ρn(Sn, P )
2Kg) = Fn.

(2.35)

The system (2.34)-(2.35) for the unknowns P and Sn contains two nonlinear degenerate

parabolic equations which are highly coupled. Chapter 4 of this work is devoted to proving

that there are weak solutions for this model of two-phase immiscible flow in porous media

in the case of one compressible and one incompressible fluid.

2.4.3 A simplified model

As in [48], now we reconsider the equation (2.19) adopting a hypothesis that the phase

densities (and the other nonlinear functions defined via phase pressures) can be computed

at the global pressure P instead of the corresponding phase pressures, in other words, that

the phase pressure in the non-wetting fractional flow function can be replaced by the global

pressure P . In this situation, (2.19) is reduced to

∇Pw + fn(Sn, P )∇Pc(Sn) = ω(Sn, P )∇P (2.36)
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and it is easy to see that (2.36) will be fulfilled if one puts

Pw = P + γ(Sn, P ), (2.37)

where

γ(Sn, P ) = −
∫ Sn

0

fn(s, Pw(s, P ))P
′
c(s)ds. (2.38)

From (2.36) and (2.37) it follows that

ω(Sn, P ) = 1 +
∂

∂P
γ(Sn, P ). (2.39)

Taking into account the initial approximation assumption, ρw(Pw) is replaced by ρw(P ),

ρn(Pn) by ρn(P ) and consequently the coefficients for a simplified model are defined as

follows:

λsim(Sn, P ) = ρw(P )λw(Sn) + ρn(P )λn(Sn),

f sim
j (Sn, P ) =

ρj(P )λj(Sn)

λ(Sn, P )
, j ∈ {w, n},

ρsim(Sn, P ) = (ρw(P )
2λw(Sn) + ρn(P )

2λn(Sn))/λ(Sn, P ),

αsim(Sn, P ) = ρw(P )ρn(P )λw(Sn)λn(Sn)/λ(Sn, P ),

asim(Sn, P ) = −α(Sn, P )P
′
c(Sn),

bsim(Sn, P ) = α(Sn, P )(ρw(P )− ρn(P )).

Finally one obtains the simplified global pressure formulation of the system (2.16)-(2.18):

Φ
∂

∂t
(ρw(P )(1− Sn) + ρn(P )Sn) + divQt = Fw + Fn, (2.40)

Qt = −λsim(Sn, P )K
(
ω(Sn, P )∇P − ρsim(Sn, P )g

)
, (2.41)

Φ
∂

∂t
(ρn(P )Sn) + div(f sim

n (Sn, P )Qt − bsim(Sn, P )Kg) + div(asim(Sn, P )K∇Sn) = Fn.

(2.42)

Again, the total flux is expressed in a form of Darcy’s law in (2.41).

Let us remark that the simplifying assumption on the phase densities considered in

this Subsection leads to a fractional flow model in which the coefficients are calculated from

the mass densities, the relative permeabilities and the capillary pressure, in contrast to the

formulation (2.29)-(2.31) which demands solving a large number of the Cauchy problems

for ordinary differential equation. For this reason the approximate model (2.40)-(2.42)
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is attractive in the applications. In [11, 104] the error introduced by replacing the phase

pressures with the global pressure in the calculations of the mass densities is investigated

by comparison of the coefficients of the two models and by performing the numerical

simulations. As mentioned previously, this study detected that the simplified model can

be used securely in applications with high mean field pressure and relatively small capillary

pressure, if the wetting phase is not highly compressible, such as oil-gas systems. However,

in hydrogeological applications, where capillary pressures may be increased with respect

to mean field pressure, this approximation can cause unacceptably large errors, especially

in the prediction of total mass of the non-wetting phase [11].

2.5 A review of the existence results for the two-phase

flow

The partial differential equations describing the flow of multiple phase flow in porous

media have been studied by many authors in the past few decades. In particular, the

existence and regularity of weak solutions for the incompressible immiscible two-phase

flow has been shown under various assumptions on physical data in [4,21,23,36,48,49,61,

65,78,79,101,102]. For immiscible two-phase flows of one or more compressible fluids with

exchange between the phases, i.e. for partially miscible flow or multi-component model

(like hydrogen dissolved in water), existence of weak solutions to these equations under

some assumptions on the compressibility of the fluids and the finite transfer velocity among

the phases has been recently established in [46,64,80,84,96,97]. The miscible compressible

flow in porous media and the corresponding existence issues have been investigated in

[17–19, 55, 67]. In [63] the existence for three-phase immiscible incompressible flow in

porous medium is proved under Chavent’s ”total differentiability” condition. When a

porous medium is exposed to a mechanical deformation, that is, in the case when the

porosity depends on the pressure, the existence for a two phase incompressible flow was

shown in [61].

On the other hand, for immiscible compressible two-phase flow in porous media only

recently several results have been obtained. Regarding immiscible two-phase flows with one

or more compressible fluids without any exchange between the phases, some approximate

models were studied in [45,48,68–71]. Namely, in these works the phase mass densities are

assumed to depend not on the physical pressure, but on the global pressure. This assump-

tion was introduced in [48] taking advantage of the fact that the densities vary slowly with

the pressure and that the difference between the phase pressures, i.e. the capillary pressure

is small, so the density can be evaluated at intermediate global pressure. As shown in [11],
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the models based on the mass density approximation can be suitable in oil reservoir simu-

lations but are inadequate in many underground gas and water flows where the difference

between the phase pressures and the global pressure can be significant. Moreover, [45] is

concerned with the existence for compressible immiscible flow of two fluids if the porosity

depends on the global pressure and on the space variable. In [68] certain terms related

to the compressibility are neglected. The contributions [68–72] pose stronger assumptions

on the regularity of the porosity, absolute permeability and the capillary pressure function

which excludes the case of discontinuous medium coefficients and unbounded capillary

pressure.

The authors of [72,75–77] consider a more general immiscible compressible two-phase

flow model in porous media. In these contributions, the models are based on phase formu-

lations, i.e. the main unknowns are the phase pressures and the saturation of one phase,

and the feature of the global pressure as introduced in [21, 48] for incompressible immis-

cible flows is used to establish a priori estimates. The results are established under the

restrictive assumption that the capillary pressure is bounded, and no discontinuity of the

porosity and the permeability is permitted.

Existence results of weak solutions for the fully equivalent global pressure formulation

for the two-phase compressible flows are obtained in [12] under some realistic assumptions

on the data which cover the cases of unbounded capillary pressure function, and the dis-

continuous porosity and absolute permeability tensors.

In Chapter 4 of this thesis a new existence result is established for a model of water-

gas flow in porous media in the fully equivalent formulation using the concept of the

global pressure. This work extends the results of [12] to the case of an incompressible

phase (water) and a compressible phase (gas). Due to the incompressibility of one phase,

establishing a priori estimates and passage to the limit is more involved in this case. In

comparison to earlier existence results for this type of flow, the required hypotheses on

data are significantly weakened, so that only physically relevant assumptions are made.

In particular, our result includes the cases of unbounded capillary pressure function, and

the discontinuous porosity and absolute permeability tensors. Also, the non homogenous

Dirichlet and Neumann conditions on the boundary are allowed.



Chapter 3

A review of homogenization of

two-phase flow in porous media

This Chapter is intended to provide a preparatory material for the homogenization

results for two-phase immiscible compressible flow in the case of ordinary porous media

and fractured porous media, which will be presented in Chapters 5 and 6, respectively.

The current chapter is organized as follows. In Section 3.1 we indicate the basic ideas

of mathematical homogenization theory and display the definitions and results concerning

the notion of two-scale convergence which is going to be employed in the homogenization

process. Section 3.3 provides a detailed exposition of the concept of double porosity for

the flow in fractured porous media and in Subsection 3.3.1 we introduce the dilation op-

erator, which is going to be used in Chapter 6. Finally, Section 3.4 contains a review of

contributions in mathematical homogenization of flow in porous media, with the results on

two-phase immiscible flow pointed out.

3.1 Introduction

Many relevant scientific and engineering problems in physics, chemistry or geology

describe phenomena that occur at various length and time scales, for example heat, sound,

current and stress distribution in composite materials, macroscopic properties of crystalline

or polymer structures, atmospheric turbulence, and in particular our primary interest, flow

and transport in porous media. Composite materials are characterized by the fact that

they contain two or more finely mixed constituents. Therefore, a common feature of com-

posite materials is presence of two length scales which are well separated: the macroscopic

scale, describing the overall behavior of the composite, and the microscopic one, depicting

the heterogeneities which are small with respect to the global dimension of the material.

25
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In general, one is interested in the overall properties of the composite materials. These

are usually ”better” than the average behavior of their individual constituents and due

to that trait, the composites are widely used in industry nowadays. Likewise, since the

characteristic dimension of a porous medium domain is much larger than the characteristic

dimension of a pore, one observes two or more various spacial scales characterizing a porous

medium.

Physical properties of a heterogenous porous medium, such as porosity or absolute

permeability, may notably vary from one point of the domain to another. This counts to

strong variations of the characteristic functions of the medium which figure in the governing

equations. Numerical simulation models of flow and transport in porous medium should

be capable to determine the value of these functions at every point of the domain. If

a highly heterogenous medium is placed in a standard framework, one faces difficulties

in computations performed on the basis of the original equations because heterogeneity

occurs at many different length scales. More precisely, the mesh fineness should fit a size

of a heterogeneity block, which is very small and therefore, in view of the size of the model

domain, a full numerical simulation of the flow and transport in porous medium directly on

a microscopic or pore scale over many time steps becomes infeasible, even with the modern

computers and parallel computing technology at disposal. Hence, it is desired to develop

methods for representing the effects of finer scale variations on larger scale flow results.

The standard approach for numerical simulations of flow in heterogeneous reservoirs is to

average or upscale physical parameters such as porosity and absolute permeability, which

allows the use of a coarse computational grid.

It is often reasonable to assume that the microstructure of the porous medium is

periodic. Taking this into account, the problems of flow and transport in heterogenous

porous medium, for instance in oil reservoir simulation or hydrogeology, are modeled by

using partial differential equations with periodically and rapidly oscillating coefficients.

The periodic homogenization is a fundamental tool for treating this type of problems.

In general, the aim of homogenization theory is to establish the macroscopic be-

havior of a system which is microscopically heterogeneous by taking into account its mi-

croscopic properties, in order to describe some characteristics of the considered heteroge-

neous medium (for instance, thermal or electrical conductivity of a composite material,

or the porous medium permeability and porosity). In other words, a strongly heteroge-

neous medium is replaced by a fictitious homogeneous one (the ’homogenized’ or effective

medium), whose global characteristics are a good approximation of the initial ones. From a

mathematical point of view, the idea of the homogenization is to model the problem using

techniques of asymptotic analysis to account for the fine scale variations. In this sense,
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the microscopic heterogeneities are represented by a small positive length parameter ε, the

typical size of a pore. Rather than considering a single heterogeneous medium with a fixed

length scale ε0, the microscopic model is embedded in a series of similar problems with

periodic coefficients parametrized by a length scale ε, from which, as ε tends to zero, the

homogenized macroscopic or effective problem is obtained. Mathematically, the work that

needs to be done in the homogenization procedure is to establish rigorously the convergence

in some sense of the corresponding solutions of a sequence of boundary value problems,

depending on a small parameter, to some limit, and to explicitly describe a limit boundary

value problem that the limit function solves. In other words, the goal is to replace the

governing equations with highly oscillatory coefficients by a simpler set of equations with

uniform macroscopic or effective coefficients whose solution can be numerically resolved on

a reasonable coarse-scale mesh and this solution approximates the average behavior of the

solution of the governing equations.

Let us remark that in this context the Darcy-Muskat law can be understood as a

”first level of homogenization” for a passage from the pore scale to the macroscale, where

a porous medium is homogenized or averaged in a sense that the pore and the matrix are

no longer distinguishable.

Since the initial contributions in the mathematical theory of homogenization (Spag-

nolo) in the late 1960s, the literature in this area has been vast. For an advanced general

presentation of mathematical homogenization one can consult the classical books [31], [59]

and [93]. An extensive collection of applications to porous media can be found in [74].

In subsequent Section we overview the standard methods of mathematical homoge-

nization that are going to be employed in the following.

3.2 Methods of homogenization

Historically premier and anyhow basic technique of periodic homogenization is the

two-scale asymptotic expansion or method of multiple scales (see [31,59,74,93]).

Let the periodic structure of the porous medium Ω be described by a small parameter

ε > 0 representing the ratio of a cell size to the size of the domain. Denote the reference cell

by Y =]0, 1[d. The solutions of the microscopic problem with rapidly oscillating coefficients

in Ω depend on ε and on the position x ∈ Ω. Let uε be such a solution for ε > 0. Two

scales describe the problem: the variable x is the macroscopic or the ”slow” variable, while

y = x
ε
depicts the microscopic scale (”fast” variable). Indeed, if x ∈ Ω, by the definition of

the reference unit cell Y , there exists a unique k ∈ Zd such that x
ε
= y+ k for some y ∈ Y .

Accordingly, x gives the position of a point in the physical domain Ω of the microscopic
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model while y denotes its position in the standard cell Y . This suggests that one may

assume uε having the (formal) asymptotic expansion, with respect to ε, of the form

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · , (3.1)

where the coefficients ui(x, y) are Y -periodic in second variable and y = x
ε
(the dependence

of the solution on time is left out since it is not subject to scaling by ε). The derivatives

follow the rule

∇ = ∇x +
1

ε
∇y, div = divx +

1

ε
divy, △ = △x + 2

1

ε
△xy +

1

ε2
△y.

After inserting (3.1) into the equations and comparing the coefficients of the different

powers of ε, a series of equations for the unknowns ui is obtained. Finally, the homogenized

limit of the starting equation is the equation for u0 which is obtained by averaging with

respect to y of the equation for ε0.

Mathematically, the method of two-scale asymptotic expansions is only formal be-

cause, a priori, there are no arguments to ensure that (3.1) holds true. Also, the process

is carried out arguing as if the coefficients were smooth, while in applications they are

not even continuous. Still, the model obtained by this type of inference can be utilized

to anticipate the limit macroscopic model which afterwards needs to be rigorously justi-

fied. Moreover, the process provides a better apprehension of the structure of the effective

model.

Generally speaking, one needs to prove the convergence of the sequence (uε) as ε→ 0

in some sense to a solution of the effective problem that was formally obtained by the

asymptotic expansion. In order to prove the needed convergence results, several different

approaches and methods can be employed. We mention here two of the most commonly

used: the energy method and the two-scale convergence method.

The energy method or variational method of oscillating test functions is a homoge-

nization method due to Tartar [98]. In its general form, this method does not require any

geometrical assumptions on the behavior of the coefficients of the partial differential dif-

ferential equations describing the microstructure, like periodicity or statistical properties.

The key idea is to use an appropriate set of oscillating test functions, instead of a fixed

test function, in the weak formulation of the problem. The special form of the chosen test

functions permits to replace products of weakly convergent sequences with products of a

weakly and a strongly convergent sequence. Thus, one can pass to the limit in the vari-

ational formulation using a compensated compactness argument ( [98]; see also [74]). In

particular, for the case of periodic coefficients the test functions are periodic. The energy
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method is more general and successful in homogenizing many different types of equations,

but it is also not entirely satisfactory because it consists of two steps, the formal derivation

of the homogenized problem and then the rigorous justification of it, which have little in

common and are partly redundant.

In this work we will use the mathematical homogenization method as described in [74]

and [90] for flow in porous media. Namely, we employ the asymptotic expansion and the

two-scale convergence method. Contrary to the energy method, the two-scale convergence

method is restricted to the periodic homogenization problems but at the same time, it is

simpler and more efficient in the periodic setting. The method of the two-scale convergence

is based on the new type of convergence which is presented in the next Subsection.

3.2.1 Two-scale convergence

The concept of two-scale convergence has been introduced by G. Nguetseng in [86,87]

and the theory was further developed by Allaire in [2, 3].

The new notion of convergence is motivated by the following. In problems of periodic

homogenization, one works with the sequences of functions gε(x) = g(x
ε
), where g is some

periodic function. The weak limit as ε→ 0 of gε depends only on the average of g over the

basic period. In particular, it does not keep any information on the shape of the oscillations

present in the sequence gε. Furthermore, during the process of rigorous justification of the

effective model, there is typically a need to pass to the limit in products of only weakly

convergent sequences which is impossible since in this case the limit of the product is not

the product of the limits.

This feature of weak limits can be interpreted as an inability of the class of test

functions used in the definition of weak convergence. Therefore, the class of test functions

should be modified in order to pick up the oscillations via some other type of weak limits.

As mentioned earlier, a resolution was proposed by Tartar’s ”compensated compactness”

arguments. Nevertheless, a simpler solution appeared in the concept of the two-scale

convergence. Loosely speaking, the test functions that are used in the definition of the

two scale convergence are able to describe the oscillations through the two-scale limit.

Namely, a two-scale limit is function of variable x and an additional variable y with the

local behavior of the sequence being conserved in y.

The current Subsection will provide the definitions and the standard results on the

two-scale convergence from [2] (see also [59, 74]), slightly modified for the case of homog-

enization with a parameter t (like for example in [60]). However, we point out that these

modifications do not affect the proofs from [2] in any essential way.

We start by introducing the notation. Ω will denote an open subset of Rd, the time
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interval of interest is ]0, T [ and ΩT = Ω×]0, T [. The reference cell is Y =]0, 1[d. In the

sequel the following spaces of Y -periodic functions will be used: C∞
p (Y ) is the space of

infinitely differentiable functions in Rd which are periodic of period Y ; L2
p(Y ) consists

of functions in L2
loc(Rd) which are periodic of period Y ; H1

p (Y ) is the space of functions

in H1
loc(Rd), Y -periodic, and D(ΩT ;C

∞
p (Y )) denotes the space of infinitely smooth and

compactly supported functions in ΩT with values in the space C∞
p (Y ).

We recall now the definition of the two-scale convergence and the key results con-

cerning this notion.

Definition 1 A sequence of functions (vε) in L2(ΩT ) two-scale converges to a limit

v0 ∈ L2(ΩT × Y ), denoted by vε(x, t)
2s
⇀ v0(x, y, t), if for any function φ(x, y, t) ∈

D(ΩT ;C
∞
p (Y )), one has

lim
ε→0

∫
ΩT

vε(x, t)φ(x,
x

ε
, t)dxdt =

∫
ΩT×Y

v0(x, y, t)φ(x, y, t)dydxdt. (3.2)

If, in addition,

lim
ε→0

∥vε∥L2(ΩT ) = ∥v∥L2(ΩT×Y ), (3.3)

the sequence vε is said to strongly two-scale converge to v.

Loosely speaking, the two-scale convergence of a sequence vε(x, t) to a function

v(x, y, t) can be interpreted as vε(x, t) being close to v(x, x
ε
, t) for small values of ε > 0.

Remark 2 Any sequence (vε) which converges strongly in L2(ΩT ) to a limit v(x, t), two-

scale converges to the same limit.

The two-scale convergence implies the weak convergence: if a test function φ(x, t)

independent of y is taken in (3.2), it follows directly that

vε ⇀ v(x, t) =

∫
Y

v0(x, y, t)dy.

Moreover,

lim
ε→0

∥vε∥L2(ΩT ) ≥ ∥v0∥L2(ΩT×Y ) ≥ ∥v∥L2(ΩT
.

For any smooth function a(x, y, t) which is Y -periodic in y, the associated sequence

aε(x, t) = a(x, x
ε
, t) two-scale converges to a(x, y, t).

We see that the two-scale limit contains more information on the behavior of a se-

quence than its weak limit as it takes into account its oscillations.

The fundamental result concerning the new notion of two-scale convergence is the

following compactness theorem ( [2], also [60,81]).
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Theorem 1 From each bounded sequence (vε) in L2(ΩT ) we can extract a subsequence, and

there exists a limit v0(x, y, t) ∈ L2(ΩT × Y ) such that this subsequence two-scale converges

to v0.

If uniform bounds on derivatives of the functions (vε) hold true in addition, more

information on the two-scale limit of the sequence (vε) is given by the next theorem ( [2,

60,81]). Set H = {u ∈ H1
p (Y ) :

∫
Y
udy = 0} = H1

p (Y )/R.

Theorem 2 i) Let (vε) be a bounded sequence in L2(0, T ;H1(Ω)) with a subsequence

that converges weakly to a limit v in L2(0, T ;H1(Ω)). Then, along this subsequence,

vε two-scale converges to v(x, t). Also, there exists a function v1 in L2(ΩT ;H) such

that, up to a subsequence, ∇vε two-scale converges to ∇xv +∇yv1.

ii) Let (vε) and (ε∇xv
ε) be two bounded sequences in L2(ΩT ). Then there exists a func-

tion V (x, t, y) in L2(ΩT ;H) such that, up to a subsequence, vε and ε∇xv
ε two-scale

converge to V (x, t, y) and to ∇yV (x, t, y), respectively.

Let us point out that the two-scale convergence results can justify a posteriori the

homogenization results obtained formally by the multiple-scale method. More precisely,

the two-scale limit of the sequence (vε) is essentially the first term in the multiple scales

expansion of vε. In general it will depend on the oscillations through the auxiliary variable

y. Furthermore, for the functions vε, v and v1 from Theorem 2 it holds

vε(x, t) = v(x,
x

ε
, t) + εv1(x,

x

ε
, t) + · · ·

In other words, a uniform bound on the gradient of vε is enough to justify the second term

in the multiple scales expansion of vε.

A special shape of text functions will be used when passing to the two-scale limit in

Chapter 5, which is allowed by the next result.

Theorem 3 ( [81, Theorem 9]) Let 1 < p, q < +∞ with 1
p
+ 1

q
= 1. Let (uε) be a sequence

in Lp(ΩT ) which two-scale converges to u. Then

lim
ε→0

∫
ΩT

uε(x, t)ψ(x,
x

ε
, t)dxdt =

∫
ΩT

∫
Y

u(x, y, t)ψ(x, y, t)dydxdt,

for every ψ of the form ψ(x, y, t) = ψ1(x, t)ψ2(y), ψ1 ∈ Lrq(ΩT ), ψ2 ∈ Lsq
p (Y ) with 1 ≤

r, s ≤ +∞ and such that 1
r
+ 1

s
= 1.

Finally, an additional condition (3.3) posed for the strong two-scale convergence yields

in return a kind of strong convergence and allows to pass to the limit in some products of
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two weakly convergent sequences in L2(ΩT ). The precise assertions are contained in the

following Theorem [2].

Theorem 4 Let vε ∈ L2(ΩT ) be a sequence that strongly two-scale converges to v0 ∈
L2(ΩT × Y ). Then, for any sequence wε ∈ L2(ΩT ) which two-scale converges to a limit

w0 ∈ L2(ΩT × Y ), it holds

vε(x, t)wε(x, t)⇀

∫
Y

v0(x, y, t)w0(x, y, t)dy in D′(Ω).

Moreover, if the Y -periodic extension of v0(x, y, t) belongs to L
2(ΩT ;Cp(Y )), we have

lim
ε→0

∥vε(x, t)− v0(x,
x

ε
, t)∥L2(ΩT ) = 0.

The second result of Theorem 4 is referred to as a corrector type result which corresponds to

the prior remark on the relation of the two-scale limit and two-scale asymptotic expansion.

3.3 The concept of double porosity

In this Section we present the double porosity model which has been introduced on

physical grounds by engineers and thereafter studied from mathematical point of view

to describe the flow of one or more fluids in a naturally fractured reservoir. The new

result concerning the double porosity model for immiscible compressible two-phase flow in

a fractured reservoir is obtained rigorously by homogenization in Chapter 6.

A naturally fractured reservoir is the one containing many interconnected fracture

planes throughout its extent. The fractures are formed in response to stress which may

originate from high fluid pressure, thermal loading, the movements of the Earth’s crust or

formation of land folds, over millions of years. Accordingly, a fractured reservoir consists

of layers of materials of very different petrographic characteristics. This type of porous

medium is frequently encountered in hydrology and petroleum applications, for instance

the sedimentary rock that composes a hydrocarbon reservoir. Actually, fractured reser-

voirs make up a large and increasing percentage of the world’s hydrocarbon reserves [85].

The drawback of such reservoirs is their extreme complexity due to the vast number of

variables and their interactions which makes them much more difficult to deal with than

with unfractured ones.

It has long been known that the fluid flow mechanism in such reservoirs is significantly

different from that of an ordinary, unfractured reservoirs. Specifically, the flow occurs as if

the reservoir possessed two porous structures, one associated to the porous rock, and the
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other one to the system of fractures. The former being considered as a porous medium

has been justified in the petroleum engineering literature by assuming that the cracks are

partially filled with rock debris.

In the scope of this work we study the totally fractured reservoir that arises for

instance in the modelling of granular materials. Namely, this is a fractured reservoir in

which the system of fractures is so well developed that the matrix is broken into isolated

individual blocks or cells. Consequently, in such a setting no flow takes place directly from

block to block, but only an exchange of fluid between the cell and the surrounding fracture

system is possible. There are also more general situations of partially fissured reservoirs

where not only the fracture system but also the matrix of cells may be connected, so there

is some flow directly within the cell matrix (see, e.g., [56, 60,74]).

Accordingly, a naturally fractured reservoir is considered as a porous medium con-

sisting of two superimposed continua, a discontinuous system of periodically repeating

medium-sized matrix blocks interlaced on a fine scale by a connected system of thin fis-

sures. It is assumed that the width of the fissures is considerably greater than the char-

acteristic size of the pores, so that the fractures are notably more permeable than the

system of pores in the porous matrix blocks. Hence, the reservoir’s effective permeability

is increased with respect to the permeability of the merely rock matrix. The transport of

fluids through the reservoir primarily takes place within the fracture system where the flow

is much readier than in the porous rock. On the other hand, the matrix stores most of the

fluid. These contrasts cause great difficulties in modelling such mediums. Neither fractures

nor matrix, or their interactions must not be neglected in a model of the flow. A discrete

approach in modelling a fractured reservoir is not feasible since the fractures are typically

too small compared to the size of the reservoir, and too numerous. The idea is therefore to

homogenize the reservoir. However, a straightforward homogenization of the entire reser-

voir yields a single porosity model with some averaged overall permeability and porosity

of the reservoir [32,82]. This approach is not adequate since it ignores the contrasts in the

properties of the two very distinct porous structures present in the reservoir, as well as

their interaction which has a strong influence on the flow. This exchange between matrix

blocks and fractures is a microscale process whose effects only must be incorporated in a

large scale description, while the process itself must be withheld on a microscopic level.

A more appropriate way of modelling a naturally fractured reservoir turned out to be

the so-called double porosity model (also referred to as the double porosity/permeability

model or the dual-porosity model). In this model the whole medium is replaced by an

equivalent imaginary coarse grained porous medium for which the fractures play the role

of the pores, while the matrix blocks could be seen as fictive grains. At the macroscopic
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level, the flow occurs in the fractures - the more permeable part of the reservoir, and the

matrix block system plays the role of a global source distributed over the entire medium.

The matrix-fracture coupling on a fine scale is expressed by an additional memory or source

term in the macroscopic fracture equations. At the same time, as ε tends to 0, infinitely

many matrix blocks are obtained. In that sense, in the limit model for each point of the

domain there is an associated matrix block, congruent to a standard matrix block, in which

the equations are given that capture the flow at the medium-size scale. In summary, the

double porosity model justifies its name since it preserves two scales: a macroscopic scale,

corresponding to the high porosity of fractures, and a microscopic one, corresponding to

the low porosity of the matrix blocks.

The double porosity/permeability concept was first derived experimentally as a phys-

ical notion and described by several authors in the engineering literature ( [27,85,91,100]).

Since then it has been used in a wide range of engineering applications related to geohydrol-

ogy, petroleum reservoir engineering, civil engineering or soil science. The model of [27]

assumes that the typical dimension of the fracture is far larger than that of the pores,

that the permeability in the fractures is much greater than that of the matrix blocks and

that the ratio of the volume of the fractures to the total volume is less than the porosity

of each block, since the fractures occupy a smaller volume than the pores. It treats the

interaction between fractures and matrix as a transfer function proportional to the differ-

ence between the pressures of the matrix blocks and fissures. Moreover, quasistationary

exchanges between matrix and fractures are assumed. The supplementary memory terms

are caused by not including such an assumption. Rigorous mathematical proofs for the

dual-porosity model have not been available until [25] where the linearized single phase

flow was considered.

Let us finish the introductory part by few remarks concerning the principles and tools

of homogenization that we will use subsequently.

In a naturally fractured porous medium there are three distinct length scales: the

thickness of the fractures is about 10−4m, the average distance between fractures, i.e. the

size of the matrix blocks is about 0.1 to 1m, and the size of the reservoir may be about

103 − 104m [50]. The basic assumption for the model that we obtain is the existence of a

representative elementary volume that is very small with respect to the size of the domain,

but large enough to capture the interchanges between the matrix and the fractures.

The fracture planes in a fractured reservoir often form a fairly regular geometric pat-

tern and we will work with the matrix blocks represented by identical squares or cubes.

However, cracks generally originate from geological phenomena (shear, folding) which usu-

ally have predominant fracturing directions so for example parallelepiped could also have
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been chosen for the reference cell. An underlying assumption is that the flow is uniform

at the surface of each matrix block. Besides, we are supposing a periodic structure of the

medium which is standard hypothesis (there are studies in a probabilistic framework [38]).

In this work we study the double porosity model assuming that the width of the fractures

is of the same order as the blocks sizes, in other words, the volume fraction of the fissured

part and the non-fissured part are kept positive constants of the same order. The various

cases of the ratio between the fractures and matrix block sizes have been considered for

instance in [16].

The microscopic model consists of the usual equations describing Darcy flow in a

reservoir with the specific feature of a highly discontinuous porosity and permeability

coefficients. Over the matrix domain the permeability is scaled by a parameter ε2, where ε

represents the size of a matrix block in regard to the size of the whole domain. This scaling

conserves the flow between the matrix and the fractures from degenerating or blowing up as

the block size tends to zero [26]. From other point of view, the characteristic time scale for

any parabolic evolution in a single matrix block is of order ε−2 [39]. Anyhow, by scaling by

ε2 the form of the matrix equations on the standard cell is maintained independently of the

value of ε and in the limit a double porosity model is obtained. The matrix gravitational

term is compensated additionally by ε−1 for the same reason. In [103] the author studies

other scaling factors for the matrix permeability. Indeed, if the ratio of the permeability

for the matrix and the fractures is smaller than of order ε2, the flow in the matrix blocks

contributes very little to the fracture system and the microscopic models converge to the

equations for the fracture flow in the entire domain as ε tends to 0. On the other hand, if

the ratio is greater than ε2, in the matrix blocks the flow is very fast and saturations are

almost constant. In this case, the macroscopic model is of a special single-porosity type.

The homogenization procedure consists of letting a characteristic size of each block,

ε, to zero.

Now we set up notation and terminology for the description of the fractured porous

medium.

A fractured reservoir Ω ⊂ Rd, d = 2, 3 is considered to be a bounded, two-connected

domain with periodic structure. Let Y =]0, 1[d= Ym ∪ Γ ∪ Yf be the unit cell, where

Ym is a matrix block domain surrounded by a fracture domain Yf and Γ is a smooth

internal boundary between two parts. A small parameter ε > 0 is used to describe the

ratio of a matrix block size to the size of Ω, and the fracture thickness is considered to

be of order ε. We assume that the reservoir Ω is covered by the disjoint copies of εY

shifted for the translations from εA, where A is an infinite lattice. For each ε > 0 and

each x ∈ Ω, cε(x) stands for the lattice translation point of the ε-cell domain containing
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x, that is, cε : Ω → εA is defined by considering x ∈ εY + cε(x). More precisely, if

x ∈ ε(Y + k) for some k ∈ Zd, then cε(x) = εk. Further, χr are the characteristic

functions of Yr, r ∈ {f,m}, extended by Y -periodicity to Rd. The system of matrix

blocks, the system of the fractures and the matrix-fracture interface will be denoted by

Ωε
m = {x ∈ Ω; χm(

x
ε
) = 1}, Ωε

f = {x ∈ Ω; χf (
x
ε
) = 1} and Γε, respectively. Here

χε
r(x) = χr(

x
ε
), r ∈ {f,m}. It is Ω = Ωε

m ∪ Γε ∪ Ωε
f ∪ ∂Ω.

3.3.1 Dilation operator

In Chapter 6 we will present a homogenization result for the model of the immiscible

compressible two-phase flow in a fractured porous medium. Using the two-scale conver-

gence, one obtains the effective equations which contain a source-like term modelling the

matrix-fracture interaction. This term is in a non-explicit form due to the non-identified

two-scale limit that it involves. This difficulty is a consequence of the nonlinearity and

the strong coupling in the problem. In order to provide the explicit form for this term,

we will employ the suitable dilation operator which was introduced in [25] and afterwards

used in [14,39,54,103]. The term periodic modulation is used for the same concept [39]. In

this Subsection we provide the definitions and the basic properties of the dilation operator

which we are going to need in Chapter 6.

Definition 2 For given ε > 0 and 1 ≤ p < ∞ we define a dilation operator Dε

mapping a measurable function ψ ∈ L2(Ωε
m×]0, T [) to a measurable function Dεψ ∈ L2(Ω×

Ym×]0, T [) by

(Dεψ)(x, y, t) = ψ(εy + cε(x), t) for x ∈ Ω, y ∈ Ym, t ∈]0, T [. (3.4)

Remark 3 For given ε > 0 and for given function ψ which is defined on the matrix part

Ωε
m of the reservoir, the dilated function Dεψ is defined on the fixed domain Ω.

Dεψ is constant in x on a fixed ε-block in Ω, that is, on any ε(Y + k), k ∈ Zd.

For a fixed x ∈ Ω, Dεψ(x, Ym) = εYm + cε(x).

One can extend Dε by periodicity to allow y ∈ ∪k∈Zd(Ym + k) and consequently Dεψ

is regarded as Y -periodic function in its second argument.

Essentially, the dilation operator provides the link between the macroscopic domain

scaled by ε and the microscopic level of the standard cell. Namely, it transforms a macro-

scopic (slow) variable x = εy + cε(x) ∈ ε(Y + k) into the microscopic variable y ∈ Y .

The main properties of the dilation operator are given by the following Lemma ( [25],

Lemma 2):
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Lemma 1 For v, w ∈ L2(0, T ;H1(Ωε
m)),

∥Dεv∥L2(Ω×Ym×]0,T [) = ∥v∥L2(Ωε
m×]0,T [),

∇y(D
εv) = εDε(∇xv) a.e. in Ω× Ym×]0, T [,

∥∇y(D
εv)∥(L2(Ω×Ym×]0,T [))d = ε∥Dε(∇xv)∥(L2(Ω×Ym×]0,T [))d = ε∥∇xv∥(L2(Ωε

m×]0,T [))d ,

(Dεv,Dεw)L2(Ω×Ym×]0,T [) = (v, w)L2(Ωε
m×]0,T [),

(Dεv, w)L2(Ω×Ym×]0,T [) = (v,Dεw)L2(Ω×Ym×]0,T [).

Furthermore, if we consider g ∈ L2(ΩT ) as an element of L2(Ω × Ym×]0, T [) which does

not depend on y, then

Dεg → g strongly in L2(Ω× Ym×]0, T [) as ε→ 0. (3.5)

The two-scale convergence is related to the weak convergence of dilated sequences in

a manner described by the undermentioned result (the proof can be found in [39]).

Lemma 2 Let (uε) be a uniformly bounded sequence in L2(Ωε
m×]0, T [) which satisfies the

conditions

Dεuε ⇀ u0 weakly in L2(ΩT ;L
2
p(Ym))

and

χε
mu

ε 2s
⇀ u∗ ∈ L2(ΩT ;L

2
p(Y )),

then

u0 = u∗ a.e. in Ω× Ym×]0, T [.

In addition, we present another result concerning the dilations (see [103]).

Lemma 3 If uε ∈ L2(Ωε
m×]0, T [) and χε

mu
ε 2s
⇀ u ∈ L2(ΩT ;L

2
p(Ym)) strongly, then D

εuε →
u strongly in L2(Ω× Ym×]0, T [).

Remark 4 The concept of the dilation operator is closely related to the notion of the

unfolding operator which was introduced in [57]. The definition and the properties of the

unfolding operator can be found in [58] which contains all the proofs for this approach with

some extensions and applications.
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3.4 Review of homogenization results for immiscible

two-phase flow

This Section contains a review of the references studying the problems of homoge-

nization for the two-phase immiscible flow in porous media, both for ordinary porous media

and for the fractured porous media. We also mention the contributions concerning the ho-

mogenization of the single phase flow, and the miscible displacement of one compressible

fluid by another.

3.4.1 Single porosity

An extensive reviews on upscaling methods for flow simulation models are given

in [62,66]. More information on the homogenization of one phase flow in the framework of

the geological disposal of radioactive waste can be found in [33,34,40,41,44]. Many authors

have studied the homogenization and upscaling of incompressible immiscible two-phase flow

in porous media, see for instance [30,35,37,38,42,43,73,74,83,89,90,94,99]. Homogenization

results for compressible miscible two-phase flow in porous media were rigorously obtained

in [17,56], and a solute transport in a highly heterogeneous aquifer was upscaled by means

of the asymptotic expansion in [7]. On the other hand, for immiscible compressible two-

phase flow in porous media, the first result was only recently established in [6]. In that

work homogenization results were obtained for water-gas flow in porous media using the

phase formulation, under the assumption that the capillary pressure function is bounded

which is too restrictive for some applications.

A new result which extends such results to immiscible flow of two compressible phases

in porous media in the global pressure formulation including the case of unbounded capil-

lary pressure function is presented in Chapter 5.

3.4.2 Double porosity

A general form of the double porosity model for a single phase flow in a naturally

fractured reservoir has been first described in [22]. The model was derived by explicitly

considering fluid flow in individual matrix blocks. In presence of gravity, a linearized

approximation of the density function is considered. In [25], this general model is rigorously

justified from the point of view of homogenization theory, using the dilation operator that

the authors introduce in this paper. One-phase flow model in a fractured porous medium is

studied also in [15], where the authors rigorously obtain the effective models for two types

of fractured porous medium: the medium characterized by the asymptotically vanishing
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volume fraction of fractures, and the case when the width of the fractures and the porous

block size are of the same order. In [16] the global behavior of single phase incompressible

flow in fractured media is discussed with respect to different parameters such as the fracture

thickness, the size of blocks and the ratio of the block permeability and the permeability

of fissures, and oscillating source terms.

The first contribution on the derivation of the double porosity model for two-phase

flow in a fractured medium is [26], where the effective equations of the double porosity

model are established by formal technique of asymptotic expansion for the cases of com-

pletely miscible incompressible flow, and immiscible incompressible two-phase flow. For

the case of immiscible incompressible two-phase flow in a reduced pressure formulation, the

double porosity model is rigorously justified by periodic homogenization in [39]. Another

result on the two-phase incompressible immiscible flow in fractured media is established

in [103]. In this work three different situations are considered: when the ratio of the per-

meabilities in the matrix blocks and in the fractures is of order ε2, smaller than ε2 and

greater than ε2, respectively. For the first case, the limit model is of a dual porosity type.

The second case leads to a single-porosity model for the fracture flow, while the last one

yields another type of single-porosity model for the fractures, with the addition of a source

term from matrix blocks. For the displacement of one compressible miscible fluid by an-

other in a naturally fractured reservoir, the double porosity model was rigorously derived

in [54]. A dual porosity model for compositional three-phase flow was established by the

formal asymptotic expansion in [24, 50]. Furthermore, [101] studies the existence of weak

solutions for the model of the immiscible two-phase flow in fractured porous media. More

precisely, four relations for the phase mobilities and capillary pressures are presented and

the corresponding problems are shown to have an appropriately formulated weak solution

when any of these relationships are satisfied. Finally, the double porosity model for the

compressible flow of two fluids in an approximate form with the global pressure has only

lately been established in [14].

Chapter 6 in this thesis presents a new result on the rigorous justification of the

homogenization process for a double porosity model of immiscible compressible two-phase

flow through a fractured porous medium in a fully equivalent global pressure formulation.



Chapter 4

An existence result for water-gas

immiscible flow in global pressure

formulation

4.1 Introduction

The objective of this Chapter is to present proof of the existence of the weak solutions

for the fully equivalent global pressure formulation of immiscible, compressible two-phase

flow in porous media, under physically relevant assumptions and allowing the non ho-

mogenous Dirichlet and Neumann boundary conditions. The system under study consists

of incompressible wetting phase and compressible non-wetting phase, such as water and

hydrogen in the context of gas migration through engineered and geological barriers for

a deep repository of nuclear waste. The difficulties in dealing with this type of equations

are generated by the nonlinearities and the coupling of the equations as well as by the

degeneracy of the diffusion term in the saturation equation and the degeneracy of the time

derivative term in the global pressure equation, where both weaken the energy estimates

and make a proof of compactness results more involved. The results of this Section are

contained in [9].

Section 4.2 begins with the formulation of the mathematical and physical model

under consideration, then the assumptions on the data are stated and the main result

on the existence of weak solutions of the problem is presented. This result is proved in

three steps. In Section 4.3 we define the adequate regularized system by introducing a

small regularization parameter η > 0 and state the existence result for weak solutions of

the regularized problem. Section 4.4 provides a construction of the approximate solutions

to the regularized system by replacing the time derivatives with finite differences with a

40
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small time step h > 0 and the existence result for the corresponding system, as well as a

maximum principle for the saturation. In Section 4.5 we establish uniform estimates with

respect to h and η using suitable test functions. This allows us to pass to the limit when

h → 0 which gives the existence of a weak solution for the regularized problem; this is

performed in Section 4.6. Finally, in Section 4.7 we pass to the limit as η → 0 using an

adapted compactness result, as in [12,76,95], and prove the existence of weak solutions of

the problem defined in Section 4.2.

4.2 Mathematical model and the main result

Here we study the model of water-gas immiscible flow in the fully equivalent global

pressure formulation which is presented in Subsection 2.4.2 of Chapter 2. Throughout

the current Chapter, the wetting phase (water) and the non-wetting phase (gas) will be

indicated by subscripts w and g, respectively. The system is formulated with the non-

wetting phase saturation S := Sg and the global pressure P as primary variables, and the

phase pressures Pw, Pg are expressed through S and P in (2.23)-(2.24). Accordingly, recall

the problem in question:

Φ
∂

∂t
(ρw(S, P )(1− S))− div(Λw(S, P )K∇P ) + div(a(S, P )K∇S)

+ div(λw(S)ρg(S, P )
2Kg) = Fw,

(4.1)

Φ
∂

∂t
(ρg(S, P )S)− div(Λg(S, P )K∇P )− div(a(S, P )K∇S)

+ div(λg(S)ρg(S, P )
2Kg) = Fg.

(4.2)

Here Φ = Φ(x) is the porosity, K = K(x) is the absolute permeability tensor of the porous

medium, Fw, Fg are known source terms and the gravity vector is denoted by g. It is

assumed that the wetting phase is incompressible (ρw = const.) and the non-wetting

phase (gas) is compressible, ρg = ρg(Pg).

As mentioned in Remark 1, one of the advantages of inducting the global pressure

is that from the uniform estimates on the degenerate quadratic terms λj(Sj)K∇Pj · ∇Pj,

j ∈ {w, g}, one obtains the uniform bound on the global pressure and the degenerate

capillary term. In order to remove the degeneracy of the capillary term in the a priori

estimates, the non-wetting phase saturation Sg will be replaced by a new variable θ [12]

(the saturation potential, cf. [4]) which is defined by

θ = β(S) =

∫ S

0

√
λw(s)λg(s)P

′
c(s)ds. (4.3)
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Since β is strictly increasing, the transformation is well defined and we set S = (β)−1.

Still, this change of variables does not eliminate the degeneracy from the diffusion term in

the equations.

By introducing the coefficient A(S, P ) as

A(S, P ) = ρwρg(S, P )

√
λw(S)λg(S)

λ(S, P )
, (4.4)

and rewriting the system (4.1)-(4.2), we obtain the following equations describing the flow

of water and gas in an equivalent formulation by the concept of the global pressure (as

in [8]):

−ρwΦ
∂S

∂t
− div(Λw(S, P )K∇P ) + div(A(S, P )K∇θ) + ρ2wdiv(λw(S)Kg) = Fw, (4.5)

Φ
∂

∂t
(ρg(S, P )S)− div(Λg(S, P )K∇P )− div(A(S, P )K∇θ) + div(λg(S)ρg(S, P )

2Kg) = Fg.

(4.6)

The system (4.5)-(4.6) is completed with the boundary and initial conditions as fol-

lows. Let a porous domain Ω ⊂ Rd, d = 1, 2, 3, be a bounded, connected, Lipschitz domain.

Throughout the whole thesis, we maintain the following notation: the domain boundary is

considered to be decomposed as ∂Ω = ΓD ∪ ΓN , the time interval of interest is ]0, T [ and

we denote Q = Ω×]0, T [, ΓT
i = Γi×]0, T [, i ∈ {D,N}. The boundary conditions for the

system in consideration are imposed in this way:

θ = θD, P = PD on ΓT
D, (4.7)

Qw · n = Gw, Qn · n = Gg on ΓT
N . (4.8)

Here PD, θD, Gw and Gg are given functions, n is the outward unit normal to ∂Ω and

Qw = ρwqw = −Λw(S, P )K∇P + A(S, P )K∇θ + ρ2wλw(S)Kg,

Qg = ρg(Pg)qg = −Λg(S, P )K∇P − A(S, P )K∇θ + ρg(S, P )
2λg(S)Kg

are the phase mass fluxes with qj being the volumetric velocity of the j-phase, j ∈ {w, g}.
The Dirichlet boundary data PD, θD are assumed to be defined in the whole domain Q.

In order to express their regularity the following space and the corresponding norm are

introduced:

W = {φ ∈ L2(0, T ;H1(Ω)) : φ ∈ L∞(0, T ;L1(Ω)), ∂tφ ∈ L1(Q)}, (4.9)
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|||φ||| = ∥φ∥L2(0,T ;H1(Ω)) + ∥φ∥L∞(0,T ;L1(Ω)) + ∥∂tφ∥L1(Q).

The values of the non-wetting saturation and the phase pressures on the Dirichlet boundary

are defined by

SD = S(θD), PwD = Pw(SD, PD), PgD = Pg(SD, PD),

where S = β−1.

The initial conditions are

θ(x, 0) = θ0(x), P (x, 0) = p0(x) in Ω. (4.10)

We are going to prove the existence of weak solutions of the coupled system (4.5),

(4.6) with the boundary and initial conditions (4.7), (4.8) and (4.10) under the following

assumptions:

(A.1) The porosity Φ belongs to L∞(Ω), and there exist constants, 0 < ϕm ≤ ϕM < +∞,

such that 0 < ϕm ≤ Φ(x) ≤ ϕM a.e. in Ω.

(A.2) The permeability tensor K belongs to (L∞(Ω))d×d, and there exist constants 0 <

km ≤ kM < +∞, such that for almost all x ∈ Ω and all ξ ∈ Rd it holds:

km|ξ|2 ≤ K(x)ξ · ξ ≤ kM |ξ|2.

(A.3) The relative mobilities satisfy λw, λg ∈ C([0, 1];R+), λw(Sw = 0) = 0 and λg(Sg =

0) = 0; λj is an increasing function of Sj. Moreover, there exist constants λM ≥
λm > 0 such that for all S ∈ [0, 1]

0 < λm ≤ λw(S) + λg(S) ≤ λM .

(A.4) There exist constants pc,min > 0 and M > 0 such that the capillary pressure function

S 7→ Pc(S), Pc ∈ C([0, 1[;R+) ∩ C1(]0, 1[;R+), for all S ∈]0, 1[ satisfy

P ′
c(S) ≥ pc,min > 0, (4.11)∫ 1

0

Pc(s) ds+
√
λg(S)λw(S)P

′
c(S) ≤M. (4.12)
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Moreover, there exist S# ∈]0, 1[ and γ > 0 such that for all S ∈]0, S#]

S2−γP ′
c(S) ≤M, (4.13)

Pc(S)− Pc(0) ≤MSP ′
c(S). (4.14)

(A.5) There exist 0 < τ < 1 and C > 0 such that for all S1, S2 ∈ [0, 1]

C

∣∣∣∣∫ S2

S1

√
λg(s)λw(s) ds

∣∣∣∣τ ≥ |S1 − S2|.

(A.6) ρw > 0, ρg is a C1(R) increasing function, and there exist ρm, ρM > 0 such that for

all p ∈ R it holds

ρm ≤ ρg(p) ≤ ρM , 0 < ρ′g(p) ≤ ρM .

(A.7) Fw, Fg ∈ L2(Q); Fw ≥ 0 a.e. in Q.

(A.8) The boundary and initial data satisfy:

PD, Pc(SD) ∈ W, 0 ≤ SD ≤ 1 a.e. in Q;

Gw, Gg ∈ L2(ΓN), Gw ≤ 0;

p0, θ0 ∈ L2(Ω), 0 ≤ θ0 ≤ β(1) a.e. in Ω.

Remark 5 Assumptions (A.1)− (A.3) are classical for porous media. The strength of sin-

gularities in the capillary pressure and its derivative at the end points S = 0, 1 is controlled

by (A.4), which is together with (A.5) used to prove the Hölder continuity of the functions

S = β−1 and (S, P ) 7→ ρg(S, P )S in the proofs of Lemma 8 and Lemma 9. Let us point

that, as a consequence of incompressibility of the wetting phase, the restrictions on the cap-

illary pressure Pc in (4.13), (4.14) are given only at S = 0, which is less strict compared

to the corresponding assumptions in [12], where both phases are compressible.

The requirements on the sign of the boundary data in (A.7) and (A.8) are necessary

only if the capillary pressure curve is unbounded at S = Sg = 1. In that case the restrictions

Fw ≥ 0 and Gw ≤ 0 do not allow extraction of the wetting phase from the domain, since

otherwise we can not control the growth of the wetting phase pressure to −∞.

From the assumptions PD, Pc(SD) ∈ W in (A.8) it easily follows that the functions

PwD = Pw(SD, PD) and PgD = Pg(SD, PD) also belong to the space W . These are the con-



4.2 Mathematical model and the main result 45

ditions on boundary data that allow us to obtain uniform a priori estimates in Section 4.5.

Furthermore, due to (4.11) in (A.4) it is also SD ∈ W .

Remark 6 The boundedness of the phase mobilities and the phase densities in (A.3) and

(A.6) imply the following bound for the gas pressure:

|Pg(S, P )| ≤ C(|P |+ 1), (4.15)

while for the wetting phase pressure we have

Pw(S, P ) ≤ P, (4.16)

due to S 7→ Pc(S) being an increasing function. These bounds are going to be used to

obtain the uniform a priori estimates in Chapter 6. Indeed, while the non-wetting pressure

Pg is bounded, the wetting phase pressure Pw is unbounded when S → 1 ( [12, 104]; cf.

Remark 5).

Remark 7 It can be seen using (A.3) and (A.6) (see [8]) that ω is a positive smooth

function for which there is a constant C such that

e−CS ≤ ω(S, P ) ≤ 1 in [0, 1]× R. (4.17)

It also follows from (4.11) and (A.5) that S = β−1 is Hölder continuous with exponent τ .

More precisely,

pτc,min

C
|S2 − S1| ≤ |β(S2)− β(S1)|τ . (4.18)

In order to incorporate the Dirichlet boundary condition, the following space is in-

troduced:

V = {u ∈ H1(Ω);u|ΓD
= 0}.

The existence result for weak solutions of the system (4.5)-(4.6) with the boundary

and initial conditions (4.7)-(4.10) is stated in the following theorem.

Theorem 5 Let (A.1)–(A.8) hold. Denote S = S(θ). Then there exists (P, θ) such that

P ∈ L2(0, T ;V ) + PD, θ ∈ L2(0, T ;V ) + θD, 0 ≤ θ ≤ β(1) a.e. in Q,

∂t(ΦS) ∈ L2(0, T ;V ′), ∂t(Φρg(S, P )S) ∈ L2(0, T ;V ′);
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for all φ, ψ ∈ L2(0, T ;V )

−ρw
∫ T

0

⟨∂t(ΦS), φ⟩dt+
∫
Q

[Λw(S, P )K∇P · ∇φ− A(S, P )K∇θ · ∇φ]dxdt

−
∫
Q

λw(S)ρ
2
wKg · ∇φdxdt =

∫
Q

Fwφdxdt−
∫
ΓT
N

Gwφdσdt,

(4.19)

∫ T

0

⟨∂t(Φρg(S, P )S), ψ⟩dt+
∫
Q

[Λg(S, P )K∇P · ∇ψ + A(S, P )K∇θ · ∇ψ]dxdt

−
∫
Q

λg(S)ρg(S, P )
2Kg · ∇ψdxdt =

∫
Q

Fgψdxdt−
∫
ΓT
N

Ggψdσdt.

(4.20)

Furthermore, for all ψ ∈ V the functions

t 7→
∫
Ω

ΦSψdx, t 7→
∫
Ω

Φρg(Pg(S, P ))Sψdx

are continuous in [0, T ] and the initial conditions are satisfied in the following sense:(∫
Ω

ΦSψdx

)
(0) =

∫
Ω

Φs0ψdx,

(∫
Ω

Φρg(Pg(S, P ))Sψdx

)
(0) =

∫
Ω

Φρg(Pg(s0, p0))s0ψdx,

where s0 = S(θ0).

The proof of Theorem 5 is complicated primarily by the degeneracy of the equations

caused by vanishing of the diffusion coefficient A(S, P ) at both ends S = 0 and S =

1. Therefore, we will introduce a regularized problem with a strictly positive coefficient

A(S, P ) by adding a small positive constant η to it. In the same time we will regularize

the unbounded capillary pressure function and prove Theorem 5 by passing to the limit as

η → 0 in the regularized problem. The other difficulty in proving Theorem 5 is vanishing

of the time derivative term in equation (4.20) in the region where the gas phase is not

present since therein the gas density can not be determined by its evolution. This trouble

will be treated in Section 4.7 with appropriate compactness theorem.

4.3 Regularized problem

In this Section we construct the regularized problem which is formulated with the

global pressure P and the non-wetting phase saturation S as primary variables. Introduc-

tion of this non-degenerate approximate problem is motivated by the following. A priori
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estimates, uniform with respect to the regularization parameter η, will be developed in

Section 4.5 by using the phase pressures Pw(S, P ) and Pg(S, P ) as test functions in the

variational formulation of the problem. This use of the phase pressures generates a new

problem since, under the hypothesis (A.4) on the capillary pressure, the wetting and the

non-wetting phase pressure partial derivatives with respect to S can be unbounded at

S = 1 and S = 0 and thus for P, S ∈ L2(0, T ;H1(Ω)), Pw(S, P ) and Pg(S, P ) may not

be valid test functions. Therefore, following the idea of [12], we will correct the capillary

pressure function by introducing a regularized capillary pressure derivative, a regularized

capillary pressure and regularized phase pressures as follows:

Rη(P
′
c(S)) =


2(1− S

η
)Pc(η)−Pc(0)

η
+ (2S

η
− 1)P ′

c(η) for S ≤ η

P ′
c(S) for η ≤ S ≤ 1− η

P ′
c(1− η) for 1− η ≤ S ≤ 1

, (4.21)

P η
c (S) = Pc(0) +

∫ S

0

Rη(P
′
c(s)) ds, (4.22)

P η
g (S, P ) = P + Pc(0) +

∫ S

0

fw(s, P )Rη(P
′
c(s)) ds, (4.23)

P η
w(S, P ) = P −

∫ S

0

fg(s, P )Rη(P
′
c(s)) ds. (4.24)

It is clear that P η
g (S, P )− P η

w(S, P ) = P η
c (S). Some properties of the regularized capillary

pressure are listed below (the details can be found in [12,104]).

For any η > 0, P η
c (S) is a bounded, monotone, C1([0, 1]) function, and P η

c (S) = Pc(S)

for S ∈ [η, 1− η]. For sufficiently small η from (A.4) it follows that

d

dS
P η
c (S) ≥ pc,min/2 > 0. (4.25)

Also, |Rη(P
′
c(S))| ≤ pηc,max < +∞ for some constant pηc,max.

Further, there is a constant M ≥ 1 such that

Rη(P
′
c(S)) ≤MP ′

c(S), for S ∈]0, 1[. (4.26)

If S ≥ η, it is easy to check (4.26) with M = 1. To establish (4.26) for S < η we use (4.14)
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in (A.4) to get:

Rη(P
′
c(S)) = 2(1− S

η
)
Pc(η)− Pc(0)

η
+ (2

S

η
− 1)P ′

c(η)

≤ 2(1− S

η
)MP ′

c(η) + (2
S

η
− 1)P ′

c(η) ≤ (2M + 1)P ′
c(η) ≤ (2M + 1)P ′

c(S),

since the capillary pressure function is concave near S = 0. Let us point out that (4.14)

is assumed only to obtain (4.26), and moreover, (4.26) will be utilized solely in order to

establish the estimates, uniform in η, on the regularized boundary data (see Remark 8).

The derivatives of the regularized phase pressures are mutually equal, as in the non-

regularized case and it holds

∂P η
g

∂P
=
∂P η

w

∂P
= ωη(S, P ),

where

ωη(S, P ) = exp

(
−
∫ S

0

νg(s, P )
ρwρg(s, P )λw(s)λg(s)Rη(P

′
c(s))

(ρwλw(s) + ρg(s, P )λg(s))2
ds

)
.

It is easily seen that

∇P η
w = ωη(S, P )∇P − fg(S, P )Rη(P

′
c(S))∇S, (4.27)

∇P η
g = ωη(S, P )∇P + fw(S, P )Rη(P

′
c(S))∇S, (4.28)

so that P η
w, P

η
g ∈ L2(0, T ;H1(Ω)) for P, S ∈ L2(0, T ;H1(Ω)), as intended.

Another step in defining the regularized problem is substituting the function A(S, P )

by Aη(S, P ), for η > 0, defined by

Aη(S, P ) =
ρwρg(S, P )

λ(S, P )
λw(S)λg(S)Rη(P

′
c(S)) + η > 0. (4.29)

At last, we are going to consider the regularized version of the system (4.5), (4.6) in which

we will replace ρg(S, P ) by

ρηg(S, P ) := ρg(P
η
g (S, P )). (4.30)

Now the regularized system is defined as

−ρwΦ
∂Sη

∂t
− div(Λη

w(S
η, P η)K∇P η) + div(Aη(Sη, P η)K∇Sη)

+ ρ2wdiv(λw(S
η)Kg) = Fw,

(4.31)
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Φ
∂

∂t
(ρηg(S

η, P η)Sη)− div(Λη
g(S

η, P η)K∇P η)− div(Aη(Sη, P η)K∇Sη)

+ div(λg(S
η)ρηg(S

η, P η)2Kg) = Fg,
(4.32)

where we define

Λη
w(S, P ) = ρwλw(S)ω

η(S, P ), Λη
g(S, P ) = ρg(S, P )λg(S)ω

η(S, P ) (4.33)

and introduce the regularized total mobility

Λη(S, P ) = Λη
w(S, P ) + Λη

g(S, P ), (4.34)

and the regularized function β:

βη(S) =

∫ S

0

√
λw(s)λg(s)Rη(P

′
c(s)) ds. (4.35)

We will denote Sη = (βη)−1.

Now we quote some uniform estimates and limits for the regularized coefficients,

proved in [12], Lemma 1.

Lemma 4 Assume (A.4) and (A.6). Then there exists a constant C > 0, independent of

η, such that

|P η
g (S, P )| ≤ C(|P |+ 1), (4.36)

P η
w(S, P ) ≤ P, (4.37)

|λw(S)P η
w(S, P )| ≤ C(|P |+ 1), (4.38)

e−CS ≤ ωη(S, P ) ≤ 1, (4.39)

and the following sequences converge uniformly in [0, 1]× R as η → 0:

P η
g (S, P ) → Pg(S, P ), (4.40)

ωη(S, P ) → ω(S, P ), (4.41)

Λη
j (S, P ) → Λj(S, P ), j ∈ {w, g}, (4.42)

βη(S) → β(S) uniformly in [0, 1]. (4.43)

Remark 8 From the assumption on the boundary data PD, Pc(SD) ∈ W in (A.8) it is easy

to show, as mentioned in Remark 5, that PwD, PgD, β(SD) ∈ W . We define the regularized
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phase pressure boundary values by P η
wD = P η

w(SD, PD) and P
η
gD = P η

g (SD, PD). Now using

the estimate (4.26) we can also show that the norms |||P η
wD|||, |||P

η
gD||| and |||βη(SD)||| are

uniformly bounded with respect to the parameter η. For example,

∇P η
wD = ωη(SD, PD)∇PD − fg(SD, PD)Rη(P

′
c(SD))∇SD,

which, by (4.26) and (4.39), gives the estimate

|∇P η
wD| ≤ |∇PD|+MP ′

c(SD)|∇SD|,

leading to

∥∇P η
wD∥L2(0,T ;H1(Ω)) ≤ C(1 + ∥∇PD∥L2(0,T ;H1(Ω)) + ∥Pc(SD)∥L2(0,T ;H1(Ω))).

The boundedness for the other two norms defining the norm ||| · ||| and for PgD can be

obtained analogously. Also, due to uniform convergence in (4.43) we have

βη(SD)⇀ θD = β(SD) weakly in L2(0, T ;H1(Ω)) as η → 0. (4.44)

The variational formulation of the regularized problem as well as the result on the

existence of its weak solutions is stated in the following theorem.

Theorem 6 Assume (A.1)–(A.4), (A.6)–(A.8) hold and p0, s0 ∈ H1(Ω). For all η > 0

sufficiently small there exists (P η, Sη) satisfying

P η ∈ L2(0, T ;V ) + PD, S
η ∈ L2(0, T ;V ) + SD, 0 ≤ Sη ≤ 1 a.e. in Q,

∂t(ΦS
η), ∂t(Φρ

η
g(S

η, P η)Sη) ∈ L2(0, T ;V ′);

for all φ, ψ ∈ L2(0, T ;V )

−ρw
∫ T

0

⟨∂t(ΦSη), φ⟩dt+
∫
Q

[Λη
w(S

η, P η)K∇P η · ∇φ− Aη(Sη, P η)K∇Sη · ∇φ]dxdt

−
∫
Q

λw(S
η)ρ2wKg · ∇φdxdt =

∫
Q

Fwφdxdt−
∫
ΓT
N

Gwφdσdt,

(4.45)
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∫ T

0

⟨∂t(Φρηg(Sη, P η)Sη), ψ⟩dt

+

∫
Q

[Λη
g(S

η, P η)K∇P η · ∇ψ + Aη(Sη, P η)K∇Sη · ∇ψ]dxdt

−
∫
Q

λg(S
η)ρηg(S

η, P η)2Kg · ∇ψdxdt =
∫
Q

Fgψdxdt−
∫
ΓT
N

Ggψdσdt.

(4.46)

Furthermore, Sη, ρηg(S
η, P η)Sη ∈ C([0, T ];L2(Ω)) and

Sη(·, 0) = s0, ρ
η
g(S

η, P η)Sη(·, 0) = ρηg(s0, p0)s0 a.e. in Ω. (4.47)

Theorem 6 will be proved by performing the following steps: the discretization of

the time derivatives with a small parameter h > 0, establishing uniform estimates for the

solutions of the discretized problem, and passing to the limit as h→ 0. These are presented

in three following sections, respectively.

4.4 Time discretization

In this Section we deal with the regularized problem (4.45)-(4.47) for a fixed η > 0

and for simplicity of the notation we skip the dependence of the saturation and the global

pressure on the small parameter η in writing.

In order to discretize the regularized system (4.45)-(4.46), the time derivative is

approximated by a backward difference. Namely, for each positive integer N the interval

[0, T ] is divided intoN subintervals, each of length h = T/N . Let tn = nh and Jn =]tn−1, tn]

for 1 ≤ n ≤ N , and for any h > 0 denote the time difference operator by

∂hv(t) =
v(t+ h)− v(t)

h
.

Next, for any Hilbert space H, let

lh(H) = {v ∈ L∞(0, T ;H) : v is constant in time on each subinterval Jn ⊂ [0, T ]}.

Besides, for any vh ∈ lh(H) we set vn = (vh)n = vh|Jn and assign to vh a piecewise linear

in time function

ṽh =
N∑

n=1

(
tn − t

h
vn−1 +

t− tn−1

h
vn
)
χJn(t), ṽh(0) = vh(0) = v0 (4.48)



52
Chapter 4. An existence result for water-gas immiscible flow in global

pressure formulation

which satisfies

∂tṽ
h(t) = ∂−hvh(t), for t ̸= nh, n = 0, 1, . . . , N.

Lastly, for any function f ∈ L1(0, T ;H) we define fh ∈ lh(H) by

fh(t) =
1

h

∫
Jn

f(τ)dτ, t ∈ Jn.

The discrete problem is defined as follows: find P h ∈ lh(V )+P h
D and Sh ∈ lh(V )+Sh

D

such that for all φ ∈ lh(V ),

−ρw
∫
Q

Φ∂−hShφdxdt+

∫
Q

[Λη
w(S

h, P h)K∇P h · ∇φ− Aη(Sh, P h)K∇Sh · ∇φ]dxdt

−
∫
Q

λw(S
h)ρ2wKg · ∇φdxdt =

∫
Q

F h
wφdxdt−

∫
ΓT
N

Gh
wφdσdt,

(4.49)

for all ψ ∈ lh(V ),∫
Q

Φ∂−h(ρηg(S
h, P h)Sh)ψdxdt

+

∫
Q

[Λη
g(S

h, P h)K∇P h · ∇ψ + Aη(Sh, P h)K∇Sh · ∇ψ]dxdt

−
∫
Q

λg(S
h)ρηg(S

h, P h)2Kg · ∇ψdxdt =
∫
Q

F h
g ψdxdt−

∫
ΓT
N

Gh
gψdσdt,

(4.50)

and Sh = s0, P
h = p0 for t = 0.

The following Proposition gives the existence result for the discrete system (4.49),

(4.50), (4.47).

Proposition 1 Assume (A.1)–(A.8). Then there exists a solution P h ∈ lh(V ) + P h
D, S

h ∈
lh(V ) + Sh

D of (4.49), (4.50); moreover, 0 ≤ Sh ≤ 1 a.e. in Q.

Proof. The proof is based on the Schauder fixed point theorem.

For fixed 1 ≤ k ≤ N , it is enough to prove that for known P k−1 ∈ V + P k−1
D , Sk−1 ∈

V + Sk−1
D such that 0 ≤ Sk−1 ≤ 1, the following problem has a unique solution P k ∈

V + P k
D, S

k ∈ V + Sk
D:

ρw
h

∫
Ω

Φ(Sk−1 − Sk)φdx+

∫
Ω

[Λη
w(S

k, P k)K∇P k · ∇φ− Aη(Sk, P k)K∇Sk · ∇φ]dx

−
∫
Ω

λw(S
k)ρ2wKg · ∇φdx =

∫
Ω

F k
wφdx−

∫
ΓN

Gk
wφdσ

(4.51)
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for all φ ∈ V , and

1

h

∫
Ω

Φ(ρηg(S
k, P k)Sk − ρηg(S

k−1, P k−1)Sk−1)ψdx

+

∫
Ω

[Λη
g(S

k, P k)K∇P k · ∇ψ + Aη(Sk, P k)K∇Sk · ∇ψ]dx

−
∫
Ω

λg(S
k)ρηg(S

k, P k)2Kg · ∇ψdx =

∫
Ω

F k
g ψdx−

∫
ΓN

Gk
gψdσ

(4.52)

for all ψ ∈ V . Alternatively, one can show the existence of a unique solution of the

equivalent system which consists of (4.52) and the sum of the equations (4.51) and (4.52).

This is achieved by applying the Schauder theorem to the mapping T : L2(Ω)× L2(Ω) →
L2(Ω)×L2(Ω) defined by T (S, P ) = (S, P ). Here (S, P ) is a solution of the following linear

system: for all φ ∈ V

1

h

∫
Ω

Φ(Hη(Z(S), P )−Hη(Sk−1, P k−1))φdx+

∫
Ω

Λη(Z(S), P )K∇P · ∇φdx

−
∫
Ω

[Hη
1 (Z(S), P )Kg · ∇φ−Hη

2 (Z(S), P )F
k
Pφ]dx

=

∫
Ω

(F k
w + F k

g )φdx−
∫
ΓN

(Gk
w +Gk

g)φdσ,

(4.53)

and for all ψ ∈ V

1

h

∫
Ω

Φ(ρηg(Z(S), P )Z(S)− ρηg(S
k−1, P k−1)Sk−1)ψdx

+

∫
Ω

[Λη
g(Z(S), P )K∇P · ∇ψ + Aη(Z(S), P )K∇S · ∇ψ]dx

−
∫
Ω

[λg(Z(S))ρ
η
g(Z(S), P )

2Kg · ∇ψ − ρηg(Z(S), P )fg(Z(S), P )F
k
Pψ]dx

=

∫
Ω

F k
g ψdx−

∫
ΓN

Gk
gψdσ,

(4.54)

where Hη, Hη
1 and Hη

2 are certain nonlinear functions of S and P , and Z(S) is an appro-

priate cut-off function for S ∈ [0, 1] (see [12]). In here, (4.53) is a linear elliptic equation

for the pressure P , and for given P , (4.54) is an elliptic problem for the saturation S. The

uniform ellipticity is guaranteed by (4.29) and the solutions of these elliptic equations exist

from the Lax-Milgram lemma.

2
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4.5 Uniform estimates

In order to pass to the limit as h → 0 in (4.49)-(4.50), we need a priori estimates

uniform with respect to h. Recall that the problem is considered for fixed η > 0 which is

skipped in writing. We will establish in this section the estimates that are uniform in h

and also in η. For k ∈ {1, . . . , N} we set

rkg = ρg(P
η
g (S

k, P k))Sk

and denote by rhg and r̃hg the corresponding functions which are piecewise constant in time

and the associated piecewise linear in time functions, respectively.

Proposition 2 Suppose that the assumptions of Proposition 1 hold. Let (P h)h and (Sh)h

be the sequences of solutions to (4.49)-(4.50). Then the following bounds hold, uniform

with respect to h:

∥P h∥L2(0,T ;H1(Ω)) + ∥Sh∥L2(0,T ;H1(Ω)) + ∥βη(Sh)∥L2(0,T ;H1(Ω)) ≤ C, (4.55)

∥S̃h∥L2(0,T ;H1(Ω)) + ∥rhg∥L2(0,T ;H1(Ω)) + ∥r̃hg∥L2(0,T ;H1(Ω)) ≤ C, (4.56)

∥∂t(ΦS̃h)∥L2(0,T ;V ′) + ∥∂t(Φr̃hg )∥L2(0,T ;V ′) ≤ C. (4.57)

Proof. First, we quote some identities that are going to be used throughout the proof.

From the relations (4.27), (4.28) and the definitions of the functions Aη and βη we can

obtain the following representations of the regularized wetting and non-wetting phase fluxes

(without gravity term)

Λη
w(S, P )K∇P − Aη(S, P )K∇S = ρwλw(S)K∇P η

w − ηK∇S, (4.58)

Λη
g(S, P )K∇P + Aη(S, P )K∇S = ρg(S, P )λg(S)K∇P η

g + ηK∇S, (4.59)

as well as the equality

ρwλw(S)K∇P η
w · ∇P η

w + ρg(S, P )λg(S)K∇P η
g · ∇P η

g

= Λη(S, P )ωη(S, P )K∇P · ∇P +
ρwρg(S, P )

λ(S, P )
K∇βη(S) · ∇βη(S). (4.60)

In this section, for simplicity, we assume that Pc(0) = 0. From now on, C,C1, . . .

denote generic constants that do not depend on h or η.

Let us consider the discrete problem taken at a time level k, that is, the variational

equations (4.51), (4.52). Similarly as in [72, 75–77] we use the following test functions in
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(4.51), (4.52):

φ = φ(P η,k
w ) =

1

ρw
(P η,k

w − P η,k
wD) and ψ = ψ(P η,k

g ) =

∫ P η,k
g

P η,k
gD

dp

ρg(p)
,

respectively, where we write P η,k
j = P η

j (S
k, P k) and P η,k

jD = P η
jD(S

k
D, P

k
D), j ∈ {w, g}. Note

that φ(P η,k
w ) and ψ(P η,k

g ) are admissible test functions for the system in consideration due

to (4.27), (4.28). The sum of the equations (4.51) and (4.52) with the chosen test functions

reads by taking into account the relations (4.58) and (4.59):

1

h

∫
Ω

Φ
[
(Sk−1 − Sk)P η,k

w + (ρg(P
η,k
g )Sk − ρg(P

η,k−1
g )Sk−1)

∫ P η,k
g

0

dp

ρg(p)

]
dx

+
1

ρw

∫
Ω

[λw(S
k)ρwK∇P η,k

w − ηK∇Sk] · ∇P η,k
w dx

+

∫
Ω

1

ρg(P
η,k
g )

[λg(S
k)ρg(S

k, P k)K∇P η,k
g + ηK∇Sk] · ∇P η,k

g dx

=
1

h

∫
Ω

Φ
[
(Sk−1 − Sk)P η,k

wD + (ρg(P
η,k
g )Sk − ρg(P

η,k−1
g )Sk−1)

∫ P η,k
gD

0

dp

ρg(p)

]
dx

+
1

ρw

∫
Ω

[λw(S
k)ρwK∇P η,k

w − ηK∇Sk] · ∇P η,k
wDdx

+

∫
Ω

1

ρg(P
η,k
gD )

[λg(S
k)ρg(S

k, P k)K∇P η,k
g + ηK∇Sk] · ∇P η,k

gD dx

+

∫
Ω

[λw(S
k)ρwKg · ∇P η,k

w + λg(S
k)ρg(P

η,k
g )Kg · ∇P η,k

g ]dx

−
∫
Ω

[λw(S
k)ρwKg · ∇P η,k

wD + λg(S
k)
ρ2g(P

η,k
g )

ρg(P
η,k
gD )

Kg · ∇P η,k
gD ]dx

+

∫
Ω

[
1

ρw
F k
w(P

η,k
w − P η,k

wD) + F k
g

∫ P η,k
g

P η,k
gD

dp

ρg(p)
]dx

−
∫
ΓN

[
1

ρw
Gk

w(P
η,k
w − P η,k

wD) +Gk
g

∫ P η,k
g

P η,k
gD

dp

ρg(p)
]dx.

(4.61)

Let us denote the integral terms in the expression (4.61) by Z1, Z2, . . . , Z10, respec-

tively. Denote the discrete time derivative terms as

Z1 =
1

h

∫
Ω

Φ
[
(Sk−1−Sk)P η,k

w +(ρg(P
η,k
g )Sk−ρg(P η,k−1

g )Sk−1)

∫ P η,k
g

0

dp

ρg(p)

]
dx =

1

h

∫
Ω

ΦXk
1 dx,

Z4 =
1

h

∫
Ω

Φ
[
(Sk−1−Sk)P η,k

wD+(ρg(P
η,k
g )Sk−ρg(P η,k−1

g )Sk−1)

∫ P η,k
gD

0

dp

ρg(p)

]
dx =

1

h

∫
Ω

ΦXk
4 dx.
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We can obtain as in [12,75], using the monotonicity of the non-wetting phase mass density

and the monotonicity of the capillary pressure,

Xk
1 = P η,k

w (Sk−1 − Sk) + ρg(P
η,k
g )Sk

∫ P η,k
g

0

dp

ρg(p)
− ρg(P

η,k−1
g )Sk−1

∫ P η,k−1
g

0

dp

ρg(p)

+ ρg(P
η,k−1
g )Sk−1

∫ P η,k−1
g

P η,k
g

dp

ρg(p)
≥ Hη(Sk, P k)−Hη(Sk−1, P k−1),

(4.62)

where the function Hη is introduced by

Hη(S, P ) =

(
ρg(P

η
g )

∫ P η
g

0

dp

ρg(p)
− P η

g

)
S +

∫ S

0

P η
c (z)dz.

Since S ≥ 0 a.e. in Q and Pc ≥ 0, we then have

Hη(S, P ) ≥

(
ρg(P

η
g )

∫ P η
g

0

dp

ρg(p)
− P η

g

)
S.

Using the monotonicity and the boundedness of the gas density in (A.6), it is easy to show

that νg(p) = ρg(p)
∫ p

0
dz

ρg(z)
− p ≥ 0, and consequently

Hη(S, P ) ≥ 0. (4.63)

The second discrete time derivative term can be transformed as follows:

Z4 =
N∑
k=1

Xk
4 =

N∑
k=1

[
(Sk−1 − Sk)P η,k

wD + (ρg(P
η,k
g )Sk − ρg(P

η,k−1
g )Sk−1)

∫ P η,k
gD

0

dp

ρg(p)

]
= s0P

η,0
wD − SNP η,N

wD +
N∑
k=1

Sk−1(P η,k
wD − P η,k−1

wD )

− ρg(P
η
g (s0, p0))s0

∫ P η,0
gD

0

dp

ρg(p)
+ ρg(P

η
g (S

N , PN))SN

∫ P η,N
gD

0

dp

ρg(p)

−
N∑
k=1

ρg(P
η,k−1
g )Sk−1

∫ P η,k
gD

P η,k−1
gD

dp

ρg(p)
,
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and by using (A.1) and (A.6)

|
N∑
k=1

∫
Ω

ΦXk
4 dx|

≤ 2ϕMρM
ρm

(
sup
t

∫
Ω

|P η
wD|dx+ sup

t

∫
Ω

|P η
gD|dx+

∫
Q

(|∂−hP η,h
wD|+ |∂−hP η,h

gD |)dxdt
)

(4.64)

≤ C
(
∥P η

wD∥L∞(0,T ;L1(Ω)) + ∥P η
gD∥L∞(0,T ;L1(Ω)) + ∥∂tP η

wD∥L1(Q) + ∥∂tP η
gD∥L1(Q)

)
.

Next, for the terms Z2 and Z3, we apply the equality (4.60), relations (4.27) and

(4.28), and use (A.2), (A.3), (A.6) and the bounds (4.25), (4.39) to obtain

Z2 + Z3 ≥
λmρmω

2
mkm

ρM

∫
Ω

|∇P k|2dx+ ρ2mkm
λMρ2M

∫
Ω

|∇βη(Sk)|2dx

+ η
kmpc,min

2ρM

∫
Ω

|∇Sk|2dx− η
kMωM

2ρm

∫
Ω

|∇P k| · |∇Sk|dx.

It follows that one can find a constant C1 and a constant η0, such that for all 0 < η ≤ η0,

Z2 + Z3 ≥ C1

∫
Ω

(|∇P k|2 + |∇βη(Sk)|2 + η|∇Sk|2)dx.

Using the relations (4.27), (4.28) we first get

Z5 + Z6 =

∫
Ω

λw(S
k)K(ωη(Sk, P k)∇P k − fg(S

k, P k)Rη(P
′
c(S

k))∇Sk) · ∇P η,k
wDdx

+

∫
Ω

1

ρg(P
η,k
gD )

λg(S
k)ρg(S

k, P k)K(ωη(Sk, P k)∇P k + fw(S
k, P k)Rη(P

′
c(S

k))∇Sk) · ∇P η,k
gD dx

− η

∫
Ω

1

ρw
K∇Sk · ∇P η,k

wDdx+ η

∫
Ω

1

ρg(P
η,k
gD )

K∇Sk · ∇P η,k
gD dx.

By applying the definition of βη given by (4.35), and by using (A.2), (A.3) and (A.6) we

then obtain

|Z5 + Z6| ≤
λMkMωMρM

ρm

∫
Ω

|∇P k|(|∇P η,k
wD|+ |∇P η,k

gD |)dx

+
ρ2MλMkM
ρ2mλm

∫
Ω

|∇βη(Sk)|(|∇P η,k
wD|+ |∇P η,k

gD |)dx

+η
kM
ρm

∫
Ω

|∇Sk|(|∇P η,k
wD|+ |∇P η,k

gD |)dx,
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and finally we get

|Z5 + Z6| ≤ C2

∫
Ω

(|∇P k|2 + |∇βη(Sk)|2 + η|∇Sk|2)dx + C3

∫
Ω

(|∇P η,k
wD|

2 + |∇P η,k
gD |2)dx,

where C2 > 0 can be chosen arbitrary small.

Similarly, using (4.27), (4.28) and (A.2), (A.3) and (A.6) yields

|Z7 + Z8| ≤ 2λMρMkMωm|g|
∫
Ω

|∇P k|2dx+ 2ρ2MλMkM |g|
ρmλm

∫
Ω

|∇βη(Sk)|2dx

+
λMρ

2
MkM |g|
ρm

∫
Ω

(|∇P η,k
wD|+ |∇P η,k

gD |)dx.

Hence it can be seen that for any C4 > 0,

|Z7 + Z8| ≤ C4

∫
Ω

(|∇P k|2 + |∇βη(Sk)|2)dx + C5

∫
Ω

(1 + |∇P η,k
wD|

2 + |∇P η,k
gD |2)dx.

In order to estimate Z9, we use the uniform bounds on the regularized phase pressures

(4.36) and (4.37), the assumption (A.6) and the nonnegativity of the source term Fw in

(A.7) to obtain

|Z9| ≤
1

ρm

∫
Ω

(
|F k

w|+ |F k
g |)(|P k|+ 1) + |F k

w||P
η,k
wD|+ |F k

g ||P
η,k
gD |
)
dx,

which leads to

|Z9| ≤ C6

∫
Ω

|P k|2dx + C7

∫
Ω

(1 + |F k
w|2 + |F k

g |2 + |P η,k
wD|

2 + |P η,k
gD |2)dx,

for arbitrary C6 > 0.

Finally, in a similar manner, (4.36), (4.37), (A.6), the condition Gw ≤ 0 in (A.8) and

the trace theorem imply that for any C8 > 0 it holds

|Z10| ≤ C8∥P k∥2H1(Ω) + C9(1 + ∥P η,k
wD∥

2
H1(Ω) + ∥P η,k

gD ∥2H1(Ω) + ∥Gk
w∥2L2(ΓN ) + ∥Gk

g∥2L2(ΓN )).
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Collecting the estimates for Zj, j = 1, . . . , 10 we get for arbitrary small C2 > 0,

C3 > 0

1

h

∫
Ω

Φ(Hη(Sk, P k)−Hη(Sk−1, P k−1))dx

+ C1

∫
Ω

(|∇P k|2 + |∇βη(Sk)|2 + η|∇Sk|2)dx

≤ 1

h

∫
Ω

ΦXk
4 dx+ C2(

∫
Ω

|∇P k|2dx+
∫
Ω

|∇βη(Sk)|2dx+ η

∫
Ω

|∇Sk|2dx)

+ C3

∫
Ω

|P k|2dx+ C4(1 + ∥P η,k
wD∥

2
L2(0,T ;H1(Ω)) + ∥P η,k

gD ∥2L2(0,T ;H1(Ω))

+ ∥F k
w∥2L2(Ω) + ∥F k

g ∥2L2(Ω) + ∥Gk
w∥2L2(ΓN ) + ∥Gk

g∥2L2(ΓN )).

We multiply this inequality by h, sum it for k = 1, . . . , N , take into account (4.64)

and use the Poincaré inequality for P to find∫
Ω

ΦHη(Sh, P h)(T )dx+ C1

∫
Q

(|∇P h|2 + |∇βη(Sh)|2 + η|∇Sh|2)dxdt

≤ C2(1 + ∥Fw∥2L2(Q) + ∥Fg∥2L2(Q) + ∥PD∥2L2(0,T ;H1(Ω)) (4.65)

+ |||P η
wD|||

2 + |||P η
gD|||

2 + ∥Gw∥2L2(ΓT
N ) + ∥Gg∥2L2(ΓT

N )) +

∫
Ω

ΦHη(s0, p0)dx.

The first term in (4.65) is nonnegative due to (4.63), and the last term is uniformly

bounded with respect to η which can be easily seen from the estimate (4.36). Further, all

the other terms on the right-hand side of the inequality (4.65) are bounded, uniformly in

η, which follows from (A.7), and from the uniform boundedness of the regularized phase

pressure boundary data which is a consequence of (A.8), as commented in Remark 8. Now

we employ the Poincaré inequality and the fact that PD, SD ∈ L2(0, T ;H1(Ω)), as well as

βη(SD) being bounded in L2(0, T ;H1(Ω)) independently of η, which is assured by (4.44)

(see Remark 8). Therefore, the uniform estimate (4.55) is established.

To prove (4.56), we first note that the functions Sh, S̃h, rhg and r̃hg are uniformly

bounded in L∞(Q). Next, using the relations (4.27) and (4.28) we easily obtain

|∇rhg | ≤ Cη(|∇P h|+ |∇Sh|), |∇S̃h| ≤ C|∇Sh|, |∇r̃hg | ≤ Cη(|∇P h|+ |∇Sh|).

These estimates brought together with the uniform bound (4.55) yield the estimate (4.56).

Eventually, for the time derivative of ΦS̃h we obtain from the variational equation (4.49),
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for any φ ∈ lh(V ):

−ρw
∫
Q

Φ∂t(ΦS̃
h)φdxdt = −

∫
Q

[Λη
w(S

h, P h)K∇P h · ∇φ+ Aη(Sh, P h)K∇Sh · ∇φ]dxdt

+

∫
Q

λw(S
h)ρ2wKg · ∇φdxdt+

∫
Q

F h
wφdxdt−

∫
ΓT
N

Gh
wφdσdt.

(4.66)

By using the estimate (4.55), the boundedness of the coefficients independently of h and

η, and the density of ∪h>0lh(V ) in L2(0, T ;V ), one establishes the first estimate in (4.57).

The estimate on the time derivative of Φr̃hg is obtained analogously, using (4.50). This

completes the proof of Proposition 2. 2

Let us re-emphasize that the uniform bounds obtained in Proposition 2 are also

independent of η, which will be the key point in establishing uniform a priori estimates for

the solutions of the non-degenerate problem in Proposition 4.

4.6 Proof of Theorem 6

In this Section we will perform passage to the limit as h→ 0 in the discrete problem.

Since one does not establish the almost everywhere convergence of the global pressure in

the whole domain Q, in order to identify the limit of the function ρg(P
η
g (S

h, P h))Sh, we

need to use an auxiliary result that is now presented. This result covers also an analogous

problem which occurs when passing to the limit as η → 0 in Section 4.7.

Lemma 5 Let η > 0 be fixed and let (Sε)ε, (P
ε)ε be sequences satisfying as ε→ 0:

i) Sε → S a.e. in Q; 0 ≤ Sε ≤ 1 a.e. in Q;

ii) P ε ⇀ P in L2(Q);

iii) ρg(P
η
g (S

ε, P ε))Sε → rηg a.e. in Q.

Then rηg = ρg(P
η
g (S, P ))S. The same is true if P η

g (S, P ) is replaced by Pg(S, P ), and r
η
g by

rg.

Proof. Let us denote Q+ = {(x, t) ∈ Q : S(x, t) > 0} and Q0 = {(x, t) ∈ Q : S(x, t) = 0}.
Consider first the case S > 0. From i) and iii) we conclude that, as ε→ 0,

ρg(P
η
g (S

ε, P ε)) → rg
S

a.e. in Q+
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and

P η
g (S

ε, P ε) → (ρg)
−1(

rg
S
) a.e. in Q+,

due to the smoothness and monotonicity of ρg. Using the boundedness of the function

λw(S)P
′
c(S) in neighborhood of S = 1 (which is a consequence of the assumption (4.12) in

(A.4)) and (A.3), (A.6), for any S1, S2 we obtain

|P η
g (S1, P )− P η

g (S2, P )| ≤ C(|P η
c (S1)− P η

c (S2)|+ |S1 − S2|)

and therefore

P η
g (S, P

ε) → (ρg)
−1(

rg
S
) a.e. in Q+.

Since P 7→ P η
g (S, P ) is invertible (see (4.39)), we have P ε → X a.e. in Q+, for some X.

From ii) we have X = P so rg = ρg(P
η
g (S, P ))S a.e. in Q+. On the other hand, if S = 0,

then the boundedness of ρg and i) imply

ρg(P
η
g (S

ε, P ε))Sε → rg = 0 = ρg(P
η
g (S, P ))S a.e. in Q0.

The same argument holds if P η
g is replaced by Pg. 2

Before stating the results of convergence for the weak solutions of the discrete prob-

lem, we cite a compactness lemma from [12, Lemma 7] which is going to be applied to es-

tablish the strong convergence of the sequences Sh and rhg as h→ 0. Indeed, [12, Lemma 7]

is a generalization of a classical compactness result from [95] (cf. [71]), and its proof is based

on the simple modification of Lemma 8 in [95] (see [11, Lemma 8]).

Lemma 6 (Lemma 7, [12]) Let Ω be a bounded open set and Q = Ω×]0, T [. Let (rh)h>0

be a family of functions in L2(Q) and let Φ ∈ L∞(Ω) be such that 0 < ϕm ≤ Φ(x) ≤ ϕM <

+∞. Let V ⊆ H1(Ω), dense in L2(Ω) and 0 < σ < 1, p ≥ 2. Assume that (rh)h>0 satisfies:

• (rh)h>0 is uniformly bounded in L2(0, T ;W σ,p(Ω));

• (∂t(Φr
h))h>0 is uniformly bounded in L2(0, T ;V ′).

Then (rh)h>0 is relatively compact in L2(Q).

Now we obtain the convergence results holding as h → 0 as well as the maximum

principle for the saturation.
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Proposition 3 If the assumptions of Theorem 6 are satisfied then the following conver-

gence results hold true as h→ 0, up to a subsequence:

∥Sh − S̃h∥L2(Q) + ∥rhg − r̃hg∥L2(Q) → 0, (4.67)

Sh → S ∈ L2(0, T ;V ) + SD weakly in L2(0, T ;H1(Ω)), strongly in L2(Q), (4.68)

rhg → rg = ρg(P
η
g (S, P ))S strongly in L2(Q), (4.69)

βη(Sh)⇀ βη(S) ∈ L2(0, T ;V ) + βη(SD) weakly in L2(0, T ;H1(Ω)) and a.e. in Q, (4.70)

P h ⇀ P ∈ L2(0, T ;V ) + PD weakly in L2(0, T ;H1(Ω)). (4.71)

Moreover, 0 ≤ S ≤ 1 a.e. in Q and

∂t(ΦS̃
h)⇀ ∂t(ΦS) weakly in L2(0, T ;V ′), (4.72)

∂t(Φr̃
h
g )⇀ ∂t(Φrg) weakly in L2(0, T ;V ′). (4.73)

Proof. In order to prove (4.67) we employ the test functions φ = (Sk−1 − Sk)ζ in (4.51)

and ψ = (rkg − rk−1
g )ξ in (4.52), where ζ and ξ are arbitrary positive functions in C1

0(Ω),

used to eliminate the non-homogenous boundary conditions (cf. [12, Proposition 4] and

also [75, Proposition 3.3]). From (4.51) we hence obtain

ρw
h

∫
Ω

Φ(Sk−1 − Sk)2ζdx

= −
∫
Ω

[Λη
w(S

k, P k)K∇P k − Aη(Sk, P k)K∇Sk] · ∇((Sk−1 − Sk)ζ)dx

+

∫
Ω

[λw(S
k)ρ2wKg · ∇((Sk−1 − Sk)ζ) + F k

w(S
k−1 − Sk)ζ]dx−

∫
ΓN

Gk
w(S

k−1 − Sk)ζdσ.

(4.74)

Since the coefficients are bounded, one proceeds from (4.74) as follows:

ϕmρw
h

∫
Ω

(Sk−1 − Sk)2ζdx ≤ C(1 + ∥∇P k∥L2(Ω) + ∥∇Sk∥L2(Ω))∥∇((Sk−1 − Sk)ζ)∥L2(Ω)

+ C(∥F k
w∥L2(Ω) + ∥Gk

w∥L2(ΓN )) ∥(Sk−1 − Sk)ζ∥L2(Ω).

This leads to the further estimate

ϕmρm
h

∥(Sk−1 − Sk)
√
ζ∥2L2(Ω)

≤ C(1 + ∥∇P k∥L2(Ω) + ∥∇Sk∥L2(Ω))(∥∇Sk∥L2(Ω) + ∥∇Sk−1∥L2(Ω))

+ C(∥F k
w∥2L2(Ω) + ∥Gk

w∥2L2(ΓN )),
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and, after multiplying by h and summing for k from 1 to N , to

ϕmρm

N∑
k=1

∥(Sk−1 − Sk)
√
ζ∥2L2(Ω) ≤ C

(
1 + ∥∇P h∥2L2(Q) + 2∥Sh∥2L2(Q) + 2∥∇Sh∥2L2(Q)

+∥s0∥2L2(Ω) + ∥∇s0∥2L2(Ω) + ∥F h
w∥2L2(Q) + ∥Gh

w∥2L2(ΓT
N )

)
.

By applying a priori estimates from Proposition 2 and using s0 ∈ H1(Ω), we conclude that,

for a constant C independent of h and η,

N∑
k=1

∥(Sk−1 − Sk)
√
ζ∥2L2(Ω) ≤ C.

Furthermore, it is easy to compute that for bounded ζ it holds

∥(Sh − S̃h)ζ∥2L2(Q) =
h

3

N∑
k=1

∥(Sk − Sk−1)ζ∥2L2(Ω),

which means that

∥(Sh − S̃h)
√
ζ∥L2(Q) → 0 as h→ 0.

Due to the positivity of ζ in Ω we finally obtain, possibly along a subsequence, employing

the Lebesgue thorem,

∥Sh − S̃h∥L2(Q) → 0 as h→ 0.

The second estimate in (4.67) can be derived analogously.

The weak convergence results for the sequences P h, Sh and βη(Sh) in L2(0, T ;H1(Ω))

follow from the a priori estimates in Proposition 2. Since P h
D ⇀ PD in L2(0, T ;H1(Ω)), we

can conclude P ∈ L2(0, T ;V )+PD. In the same manner it follows that S ∈ L2(0, T ;V )+SD

and θ ∈ L2(0, T ;V ) + θD, where θ is the weak limit of βη(Sh).

Next, the uniform estimates (4.56) and (4.55) in Proposition 2 allow us to apply

Lemma 6 to a sequence S̃h and to obtain the relative compactness of S̃h in L2(Q). From

(4.67) it follows that Sh is relatively compact in L2(Q) Combined with the weak convergence

of Sh to S, this completes the proof of (4.68). The fact that 0 ≤ Sh ≤ 1 a.e. in Q implies

that 0 ≤ S ≤ 1 a.e. in Q.

The limit of βη(Sh) is identified using a.e. convergence of Sh.

Using the same arguments as for S̃h, we obtain that r̃hg → rg strongly in L2(Q)

and also rhg → rg strongly in L2(Q). Moreover, the limit rg is identified by Lemma 5 as
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rg = ρg(P
η
g (S, P ))S.

Finally, the existence of the weak limits (4.72) and (4.73) is a consequence of the

estimate (4.57) and the limits are identified in a standard way. Therefore Proposition 3 is

proved.

2

The final step in proving the existence of weak solutions of the regularized system

(4.31)-(4.32) is to pass to the limit as h → 0 in the discrete system (4.49)-(4.50). Since

we have established the pointwise convergence of the global pressure P h only on the set

where the limit of saturation is strictly positive, in order to pass to the limit as h → 0 in

the nonlinear functions of S and P we are going to utilize their particular form which is

recognized in the following lemma. Let us remark that this result will be used for passing

to the limit as η → 0 as well.

Lemma 7 Let F ∈ C([0, 1]× R) and let there exist functions F1, F2 ∈ C([0, 1]) such that

F1(S) ≤ F (S, P ) ≤ F2(S) and F1(0) = F2(0). Denote Q+ = {(x, t) ∈ Q : S(x, t) > 0}.
Then for any two sequences (Sε)ε, (P

ε)ε, such that, as ε→ 0, it holds

i) Sε → S a.e. in Q;

ii) P ε → P a.e. in Q+,

we have

F (Sε, P ε) → F (S, P ) a.e. in Q. (4.75)

Proof. For a.e. (x, t) ∈ Q+, F (Sε, P ε) → F (S, P ) because of the continuity of F and

the pointwise convergences of its arguments Sε and P ε. When S = 0, one has due to the

boundedness and the continuity of F1 and F2

F (Sε, X) → L := F1(0) = F2(0) = F (0, X) for any X ∈ R,

and hence (4.75) is established. 2

Remark 9 It is easy to verify that Lemma 7 can be applied to all (nonlinear) coefficients

in (4.49)-(4.50) and that these coefficients converge to the following limits a.e. in Q as
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h→ 0 :

Λη
w(S

h, P h) → Λη
w(S, P ), Aη(Sh, P h) → Aη(S, P ), fw(S

h, P h) → fw(S, P ),

Λη
g(S

h, P h) → Λη
g(S, P ), λg(S

h)ρηg(S
h, P h)2 → λg(S)ρ

η
g(S, P )

2,

ρηg(S
h, P h)fg(S

h, P h) → ρηg(S, P )fg(S, P ).

Now we employ the convergence results in Proposition 3 and Remark 9 to pass to

the limit as h → 0 in the discrete system (4.49)-(4.50) and obtain (4.45)-(4.46). Next, we

conclude in a standard way that ρg(P
η
g (S, P ))S, S ∈ C([0, T ];L2(Ω)) and that the initial

conditions are satisfied (see [12]). This completes the proof of Theorem 6.

4.7 Proof of Theorem 5

In this section we prove the existence of weak solutions for the degenerate problem.

From now on we express again the dependence of the solution of the regularized problem

on the parameter η. Our final step is passing to the limit as η → 0 in the regularized

problem (4.45), (4.46). Note that Theorem 6 on the existence of the weak solutions for the

regularized problem holds assuming that the initial data p0, s0 belong to H
1(Ω). Therefore,

in order to be able to apply Theorem 6, we will replace the initial conditions s0 and p0 by

the regularized initial conditions sη0 and pη0 from H1(Ω) such that sη0 → s0 and pη0 → p0 in

L2(Ω) and a.e. in Ω when η tends to zero.

Proposition 4 For sufficiently small η, let (P η, Sη)η be the sequence of solutions given

by Theorem 6. Denote P η
g = P η

g (S
η, P η). The following bounds are valid, uniform with

respect to η:

∥P η∥L2(0,T ;H1(Ω)) ≤ C, (4.76)

∥βη(Sη)∥L2(0,T ;H1(Ω)) ≤ C, (4.77)

∥√η∇Sη∥L2(Q)d ≤ C, (4.78)

∥∂t(ΦSη)∥L2(0,T ;V ′) + ∥∂t(Φρg(P η
g )S

η)∥L2(0,T ;V ′) ≤ C. (4.79)

Proof. We pass to the limit as h → 0 in the estimate (4.65) which is uniform in η, and

then make use of the weak lower semicontinuity of the seminorms f 7→
∫
Q
|∇f |2dxdt to
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obtain ∫
Q

(|∇P η|2 + |∇βη(Sη)|2) dxdt+ η

∫
Q

|∇Sη|2dxdt

≤ C(1 + ∥Fw∥2L2(Q) + ∥Fg∥2L2(Q) + ∥PD∥2L2(0,T ;H1(Ω)) + |||P η
wD|||

2 + |||P η
gD|||

2

+ ∥Gw∥2L2(ΓT
N ) + ∥Gg∥2L2(ΓT

N )).

Using Remark 8 and the Poincaré inequality, (4.76), (4.77) and (4.78) follow imme-

diately. The uniform estimates for the time derivatives of the functions (ΦSη)η and

(Φρg(P
η
g )S

η)η follow in a standard way from the estimates (4.76)-(4.78) by setting an

arbitrary φ ∈ L2(0, T ;V ) in the weak formulation (4.45)-(4.46). This completes the proof

of Proposition 4. 2

The compactness results for the families (Sη)η and (ρg(P
η
g (S

η, P η))Sη)η will follow

from the two following Lemmas, which can be considered as special cases of Lemma 5

in [12] (see also [75], Lemma 4.3) and therefore we will not give the proofs.

Lemma 8 For any c > 0 and for any η0 > 0, the set

Ac,η0 ={S : 0 < η ≤ η0, ∥βη(S)∥L2(0,T ;H1(Ω)) ≤ c, ∥∂t(ΦS)∥L2(0,T ;V ′) ≤ c}

is relatively compact in L2(Q).

Lemma 9 For any c > 0 and for any η0 > 0, the set

Bc,η0 = {ρg(P η
g (S, P ))S : 0 < η ≤ η0, ∥P∥L2(0,T ;H1(Ω)) ≤ c,

∥βη(S)∥L2(0,T ;H1(Ω)) ≤ c, ∥∂t(Φρg(P η
g (S, P ))S)∥L2(0,T ;V ′) ≤ c}

is relatively compact in L2(Q).

The limit behavior as η → 0 of the solutions to the regularized problem given by

Theorem 6, as well as the maximum principle for the saturation, is described by the

following result.

Lemma 10 Let θη = βη(Sη). The following convergence results hold, up to a subsequence,
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as η → 0.

P η ⇀ P ∈ L2(0, T ;V ) + PD weakly in L2(0, T ;H1(Ω)), (4.80)

θη ⇀ θ ∈ L2(0, T ;V ) + θD weakly in L2(0, T ;H1(Ω)) and a.e. in Q, (4.81)

Sη → S(θ) strongly in L2(Q), (4.82)

∂t(ΦS
η)⇀ ∂t(ΦS(θ)) weakly in L2(0, T ;V ′), (4.83)

∂t(Φρg(P
η
g (S

η, P η))Sη)⇀ ∂t(Φρg(Pg(S(θ), P ))S(θ)) weakly in L2(0, T ;V ′). (4.84)

Moreover, 0 ≤ θ ≤ β(1) a.e. in Q.

Proof. Weak convergences of (P η), (θη), ∂t(ΦS
η) and ∂t(Φρg(P

η
g (S

η, P η))Sη) follow from

the uniform bounds (4.76), (4.77) and (4.79) in Proposition 4. Herein, the boundary values

of the limits P and θ in ΓD are kept equal to PD and θD, respectively. Strong convergence of

Sη to S in L2(Q) is a consequence of Lemma 8, and the limit can be identified as S = S(θ).
Moreover, Lemma 9 gives that

ρg(P
η
g (S

η, P η))Sη → Lg in L2(Q) and a.e. in Q.

Taking into account the uniform convergence of P η
g in (4.40), it follows

ρg(Pg(S
η, P η))Sη → Lg in L2(Q) and a.e. in Q,

and the limit can be identified as Lg = ρg(S, P )S by applying Lemma 5. Finally, this

enables us to identify the limit given in (4.84) in a standard way. This completes the proof

of Lemma 10.

2

Remark 10 Using Lemma 7 we get the following convergence results a.e. in Q, as η → 0,

Λw(S
η, P η) → Λw(S, P ), A(Sη, P η) → A(S, P ), fw(S

η, P η) → fw(S, P ),

Λg(S
η, P η) → Λg(S, P ), λg(S

η)ρηg(S
η, P η)2 → λg(S)ρg(S, P )

2,

ρηg(S
η, P η)fg(S

η, P η) → ρg(S, P )fg(S, P ).
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Finally, we insert a test function φ ∈ C1([0, T ];V ) such that φ(T ) = 0 into (4.31).

After the integration by parts in the time derivative term we obtain

ρw

∫
Q

ΦSη∂tφdxdt+

∫
Q

[Λη
w(S

η, P η)K∇P η · ∇φ− A(Sη, P η)K∇θη · ∇φ]dxdt

−
∫
Q

λw(S
η)ρ2wKg · ∇φdxdt− η

∫
Q

K∇Sη · ∇φdxdt

=

∫
Q

Fwφdxdt−
∫
ΓT
N

Gwφdσdt− ρw

∫
Ω

Φsη0φ(0)dx.

Here we take into account the definitions (4.29), (4.4) and (4.35) which give

Aη(Sη, P η)∇Sη = A(Sη, P η)∇βη(Sη) + η∇Sη.

We can pass to the limit as η → 0 in the nonlinear terms using pointwise convergence in

Remark 10 and uniform convergence in Lemma 4. The penalisation term tends to zero due

to (4.78). Thus we obtain

ρw

∫
Q

ΦS∂tφdxdt+

∫
Q

[Λw(S, P )K∇P · ∇φ− A(S, P )K∇θ · ∇φ]dxdt

−
∫
Q

λw(S)ρ
2
wKg · ∇φdxdt

=

∫
Q

Fwφdxdt−
∫
ΓT
N

Gwφdσdt− ρw

∫
Ω

Φs0φ(0)dx,

where S = S(θ). In the same way, taking a test function ψ ∈ C1([0, T ];V ) with ψ(T ) = 0

we get by integration by parts from (4.46)

−
∫
Q

Φρηg(S
η, P η)Sη∂tψdxdt

+

∫
Q

[Λη
g(S

η, P η)K∇P η · ∇ψ + A(Sη, P η)K∇θη · ∇ψ]dxdt

−
∫
Q

λg(S
η)ρηg(S

η, P η)2Kg · ∇ψdxdt+ η

∫
Q

K∇Sη · ∇ψdxdt

=

∫
Q

Fgψdxdt−
∫
ΓT
N

Ggψdσdt+

∫
Ω

Φρηg(s
η
0, p

η
0)s

η
0ψ(0)dx,
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and after passing to the limit as η → 0,

−
∫
Q

Φρg(S, P )S∂tψdt+

∫
Q

[Λg(S, P )K∇P · ∇ψ + A(S, P )K∇θ · ∇ψ]dxdt

−
∫
Q

[λg(S)ρg(S, P )
2Kg · ∇ψ − ρg(S, P )fg(S, P )FPψ]dxdt

=

∫
Q

Fgψdxdt−
∫
ΓT
N

Ggψdσdt+

∫
Ω

Φρg(s0, p0)s0ψ(0)dx.

Using the fact that the functions Φρg(S, P )S and ΦS belong to C([0, T ];V ′) and

by an integration by parts, we easily conclude that the initial condition in Theorem 5 is

satisfied and the proof of Theorem 5 is completed.



Chapter 5

Homogenization of immiscible

compressible two-phase flow in a

global pressure formulation

5.1 Introduction

In this Chapter we present a homogenization result for the model of immiscible com-

pressible two-phase flow in porous media in the fully equivalent global pressure formulation,

focusing our attention to a strongly heterogeneous porous media of a single-rock type with

a periodic microstructure. A general case of two compressible fluids is considered, taking

into account gravity and capillary effects. Under some realistic assumptions on the data, a

nonlinear homogenized problem is obtained. The effective coefficients of the macroscopic

model are described as solutions of a cell problem, and the upscaled model is rigorously

mathematically derived by means of the two-scale convergence. This Chapter contains

results from [10]. In Section 5.2 we formulate the problem describing the microscopic be-

havior for our model and we state the assumptions on data. For completeness, we quote the

existence result for weak solutions of the microscopic problem obtained in [12]. The main

result of the current Chapter is the homogenized model which is presented in Section 5.3.

The a priori estimates with respect to the space and time variables of weak solutions of the

microscopic problem are obtained in Section 5.4, and Section 5.5 is devoted to establishing

the compactness results for weak solutions of the microscopic problem, which are needed

to pass to the limit as ε → 0 in the microscopic equations. Finally, the homogenization

result is proven in Section 5.6, using the two-scale convergence technique.

70
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5.2 Mathematical formulation

Our starting point is a microscopic model defined on a domain with a periodic mi-

crostructure. More precisely, we model a reservoir Ω ⊂ Rd, d = 1, 2, 3, as a bounded,

connected, Lipschitz domain with a periodic structure. In such a geometrical configuration

of the reservoir with strongly and quickly varying petrographic properties, we assume that

the porosity and the absolute permeability tensor are rapidly oscillating functions of the

microscopic scale y = x/ε, where x is the macroscopic scale and ε > 0 is a small parameter

depicting the characteristic size of the periodicity blocks of the periodic reservoir. Namely,

let Φε(x) = Φ(x/ε) and Kε(x) = K(x/ε) be the porosity and the absolute permeability

of the porous medium, where Φ and K are Y -periodic functions of y and the unit cell is

noted by Y =]0, 1[d. Recall the notation Q = Ω×]0, T [, ∂Ω = ΓD∪ΓN and ΓT
i = Γi×]0, T [,

i ∈ {D,N}.
The two compressible phases will be indicated by the subscripts w (wetting phase)

and n (non-wetting phase) throughout the current Chapter. Let Sε
w, S

ε := Sε
n, P

ε
w, P

ε
n

be the saturations of the wetting and the non-wetting phases, and the pressures of the

wetting and the non-wetting phases, respectively. The global pressure is denoted by P ε,

and θε = β(Sε) is the saturation potential, where β is defined in (4.3). As presented in

Subsection 2.4.2, the phase pressures are related to the global pressure and the non-wetting

saturation by

P ε
n := P ε

n(S
ε, P ε) = P ε + Pc(0) +

∫ Sε

0

fw(s, P
ε)P ′

c(s)ds, (5.1)

P ε
w := P ε

w(S
ε, P ε) = P ε

n(S
ε, P ε)− Pc(S

ε). (5.2)

The microscopic equations for the compressible two-phase flow in a heterogenous porous

medium in the global pressure formulation are given in Q by (see (2.34)-(2.35)):

Φε ∂

∂t
(ρw(S

ε, P ε)(1− Sε))− div(Λw(S
ε, P ε)Kε∇P ε) + div(A(Sε, P ε)Kε∇θε)

+ div(λw(S
ε)ρw(S

ε, P ε)2Kεg) + ρw(S
ε, P ε)fw(S

ε, P ε)FP = ρw(S
ε, P ε)S∗

wFI ,
(5.3)

Φε ∂

∂t
(ρn(S

ε, P ε)Sε)− div(Λn(S
ε, P ε)Kε∇P ε)− div(A(Sε, P ε)Kε∇θε)

+ div(λn(S
ε)ρn(S

ε, P ε)2Kεg) + ρn(S
ε, P ε)fn(S

ε, P ε)FP = ρn(S
ε, P ε)S∗

nFI ,
(5.4)

where the nonlinear coefficients Λj(S, P ), A(S, P ) and fj(S, P ) (j ∈ {w, n}) are given by

(2.33), (4.4) and (2.28)-(2.27), respectively, and the source/sink terms are specified through

the given injection and production rates FI , FP ≥ 0 and a known saturation determining
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the composition of the injected fluid, denoted by S∗
j (j ∈ {w, n}). For convenience we are

assuming that S∗
n = 1.

The boundary conditions for the system (5.3)-(5.4) are taken in the form

θε = 0, P ε = 0 on ΓT
D, (5.5)

Qε
w · n = Qε

n · n = 0 on ΓT
N , (5.6)

where n is the outward pointing unit normal to ∂Ω and

Qε
w = ρw(P

ε
w)q

ε
w = −Λw(S

ε, P ε)Kε∇P ε + A(Sε, P ε)Kε∇θε + λw(S
ε)ρw(S

ε, P ε)2Kεg,

Qε
n = ρn(P

ε
n)q

ε
n = −Λn(S

ε, P ε)Kε∇P ε − A(Sε, P ε)Kε∇θε + λn(S
ε)ρn(S

ε, P ε)2Kεg

are the phase mass fluxes with qε
j being the volumetric velocity of the j-phase, j ∈ {w, n}.

The initial conditions are given by

θε(x, 0) = θ0(x), P ε(x, 0) = p0(x) in Ω. (5.7)

Now we state the assumptions on the data which will assure the existence for weak

solutions of the microscopic problem by the result of [12].

(H.1) The porosity Φ = Φ(y) is an Y -periodic function which belongs to L∞(Y ), and there

exist constants, 0 < ϕm ≤ ϕM < +∞, such that 0 < ϕm ≤ Φ(y) ≤ ϕM a.e. in Y .

(H.2) The permeability tensor K = K(y) is an Y -periodic function which belongs to

(L∞(Y ))d×d, and there exist constants 0 < km ≤ kM < +∞, such that for almost all

y ∈ Y and all ξ ∈ Rd it holds

km|ξ|2 ≤ K(y)ξ · ξ ≤ kM |ξ|2.

(H.3) The relative mobilities satisfy λw, λn ∈ C([0, 1];R+), λw(Sw = 0) = 0 and λn(S =

0) = 0; λj is a non decreasing function of Sj. Moreover, there exist constants

0 < λm ≤ λM < +∞ such that for all S ∈ [0, 1]

0 < λm ≤ λw(S) + λn(S) ≤ λM .

(H.4) There exist constants pc,min > 0 and M > 0 such that the capillary pressure function
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Sn 7→ Pc(Sn), Pc ∈ C([0, 1[;R+) ∩ C1(]0, 1[;R+), for all S ∈]0, 1[ satisfy

P ′
c(S) ≥ pc,min > 0, (5.8)

Pc(S)(1− S) +

∫ 1

0

Pc(s) ds+
√
λn(S)λw(S)P

′
c(S) ≤M. (5.9)

(H.5) There exists S# ∈]0, 1[, 0 < γ and M > 0 such that for all S ∈]0, S#]

S−γλn(S)(Pc(S)− Pc(0)) + S2−γP ′
c(S) ≤M, (5.10)

and for all S ∈ [S#, 1[

(1− S)2−γP ′
c(S) ≤M. (5.11)

(H.6) The functions ρw and ρn are non decreasing and belong to C1(R). Furthermore, there

exist ρm, ρM > 0 such that for all p ∈ R it holds

ρm ≤ ρw(p), ρn(p) ≤ ρM , 0 < ρ′w(p), ρ
′
n(p) ≤ ρM .

(H.7) FI , FP ∈ L2(Q) and FI , FP ≥ 0 a.e. in Q.

(H.8) There exist 0 < τ < 1 and C > 0 such that for all S1, S2 ∈ [0, 1]

C

∣∣∣∣∫ S2

S1

√
λn(s)λw(s) ds

∣∣∣∣τ ≥ |S1 − S2|.

(H.9) θ0, p0 ∈ L2(Ω), 0 ≤ θ0 ≤ β(1) a.e. in Ω.

Remark 11 From (H.4) it easily follows (see [12]) that there exists a constant M , inde-

pendent of ε, such that for all S ∈ [0, 1] and P ∈ R,

|Pn(S, P )| ≤ |P |+M, |λw(S)Pw(S, P )| ≤ λw(S)|P |+M, |(1− S)Pw(S, P )| ≤ |P |+M.

(5.12)

As before, we set V = {u ∈ H1(Ω);u|ΓD
= 0}.

According to [12], the existence result for weak solutions of the system (5.3)-(5.4)

with the boundary and initial conditions (5.5)-(5.7) is given by the following theorem.
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Theorem 7 (Existence for fixed ε > 0, cf. [12]) Let (H.1)-(H.9) hold. Let ε > 0, then

there exists (P ε, θε) satisfying

P ε ∈ L2(0, T ;V ), θε ∈ L2(0, T ;V ), 0 ≤ θε ≤ β(1) a.e. in Q, Sε = S(θε),

Φε∂t(ρw(S
ε, P ε)(1− Sε)) ∈ L2(0, T ;V ′), Φε∂t(ρn(S

ε, P ε)Sε) ∈ L2(0, T ;V ′),

for all φ, ψ ∈ L2(0, T ;V )∫ T

0

⟨Φε∂t(ρw(S
ε, P ε)(1− Sε)), φ⟩dt+

∫
Q

[Λw(S
ε, P ε)Kε∇P ε · ∇φ− A(Sε, P ε)Kε∇θε · ∇φ]dxdt

−
∫
Q

[λw(S
ε)ρw(S

ε, P ε)2Kεg · ∇φ− ρw(S
ε, P ε)fw(S

ε, P ε)FPφ]dxdt = 0,

(5.13)

∫ T

0

⟨Φε∂t(ρn(S
ε, P ε)Sε), ψ⟩dt+

∫
Q

[Λn(S
ε, P ε)Kε∇P ε · ∇ψ + A(Sε, P ε)Kε∇θε · ∇ψ]dxdt

−
∫
Q

[λn(S
ε)ρn(S

ε, P ε)2Kεg · ∇ψ − ρn(S
ε, P ε)fn(S

ε, P ε)FPψ]dxdt

=

∫
Q

ρn(S
ε, P ε)FIψdxdt.

(5.14)

Furthermore, for all ψ ∈ V the functions

t 7→
∫
Ω

Φερw(Pw(S
ε, P ε))(1− Sε)ψdx, t 7→

∫
Ω

Φερn(Pn(S
ε, P ε))Sεψdx

are continuous in [0, T ] and the initial conditions are satisfied in the following sense:(∫
Ω

Φερw(Pw(S
ε, P ε))(1− Sε)ψdx

)
(0) =

∫
Ω

Φερw(Pw(s0, p0))(1− s0)ψdx,

(∫
Ω

Φερn(Pn(S
ε, P ε))Sεψdx

)
(0) =

∫
Ω

Φερn(Pn(s0, p0))s0ψdx,

where s0 = S(θ0).

5.3 A homogenization result

We have already pointed out that we study the asymptotic behavior of the solution

to the problem (5.3)-(5.4), (5.5)-(5.7) as ε → 0. In particular, we are going to show that
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the effective model reads

⟨Φ⟩ ∂
∂t

(ρw(S, P )(1− S))− div(Λw(S, P )Kh∇P ) + div(A(S, P )Kh∇θ)

+ div(λw(S)ρw(S, P )
2Khg) + ρw(S, P )fw(S, P )FP = 0;

(5.15)

⟨Φ⟩ ∂
∂t

(ρn(S, P )S)− div(Λn(S, P )Kh∇P )− div(A(S, P )Kh∇θ)

+ div(λn(S)ρn(S, P )
2Khg) + ρn(S, P )fn(S, P )FP = ρn(S, P )FI ,

(5.16)

where ⟨u⟩ denotes the mean value of the function u over the unit cell Y and the homogenized

tensor Kh is given by

Khei =

∫
Y

K(y)(ei +∇yχi(y))dy. (5.17)

Here, χi(y) (for i = 1, . . . , d) is a solution of the cell problem− divy (K(y)(ei +∇yχi(y))) = 0 in Y,

χi(y) Y − periodic,
(5.18)

with ei being the unit vector in the i-th direction.

The boundary conditions for the system (5.15)-(5.18) are

θ = 0, P = 0 on ΓT
D, (5.19)

Qw · n = Qn · n = 0 on ΓT
N , (5.20)

where

Qw = −Λw(S, P )Kh∇P + A(S, P )Kh∇θ + λw(S)ρw(S, P )
2Khg,

Qn = −Λn(S, P )Kh∇P − A(S, P )Kh∇θ + λn(S)ρn(S, P )
2Khg.

The initial conditions for the system (5.15)-(5.18) read

θ(x, 0) = θ0(x), P (x, 0) = p0(x) in Ω. (5.21)

Now we are ready to state the main result of this Chapter.

Theorem 8 Let (H.1)-(H.9) hold. Let (P ε, θε) be a weak solution of the problem (5.3),



76 Chapter 5. Homogenization of immiscible compressible two-phase flow

(5.4), (5.5), (5.6), (5.7) and Sε = Sε(θε). Then, up to a subsequence, it holds

P ε ⇀ P weakly in L2(0, T ;V ) and a.e. in Q,

θε ⇀ θ weakly in L2(0, T ;V ),

Sε → S a.e. in Q,

∇P ε(x, t)
2s
⇀ ∇P (x, t) +∇yP1(x, y, t),

∇θε(x, t) 2s
⇀ ∇θ(x, t) +∇yθ1(x, y, t),

where

P1(x, y, t) =
d∑

i=1

(
∂P

∂xi
(x, t)−B(S, P )gi

)
χi(y), (5.22)

θ1(x, y, t) =
d∑

i=1

(
∂θ

∂xi
(x, t)− E(S, P )gi

)
χi(y), (5.23)

with χi(y) being a solution of the cell problem (5.18), while the functions B and E are

given by

B(S, P ) =
λw(S)ρw(S, P )

2 + λn(S)ρn(S, P )
2

Λw(S, P ) + Λg(S, P )
, (5.24)

E(S, P ) =
λ(S, P )

√
λw(S)λn(S)ω(S, P )

Λw(S, P ) + Λg(S, P )
(ρn(S, P )− ρw(S, P )). (5.25)

Finally, the pair (P, θ) is a weak solution of the problem (5.15)-(5.21) and S = S(θ).

Here
2s
⇀ denotes the two-scale convergence which is defined in Section 3.2.1. Theorem 8 is

proven in Section 5.6.

5.4 A priori estimates

In order to obtain the needed uniform estimates, we follow the choice of the test

functions suggested in [72] (see also [75–77]). In this section, for simplicity, we assume that

Pc(0) = 0. From now on, C,C1, . . . denote generic constants that do not depend on ε. We

will also use the notation

hw(S
ε, P ε) = ρw(S

ε, P ε)(1− Sε) and hn(S
ε, P ε) = ρn(S

ε, P ε)Sε.

Lemma 11 Let (P ε)ε and (θε)ε be the sequences of solutions to (5.13)-(5.14) and let Sε =
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S(θε). Then the following uniform bounds with respect to ε hold:

∥P ε∥L2(0,T ;V ) + ∥θε∥L2(0,T ;V ) ≤ C, (5.26)

∥∂t(Φεhw(S
ε, P ε))∥L2(0,T ;V ′) + ∥∂t(Φεhn(S

ε, P ε))∥L2(0,T ;V ′) ≤ C. (5.27)

Proof. In the same manner as in Section 4.5, we begin by quoting some relations that are

going to be used throughout the proof. First, from the relations (5.1) and (5.2) and the

definition of the function ω it follows that the gradients of the phase pressures and the

gradient of the global pressure are related by (cf. (4.27)-(4.28)):

ω(Sε, P ε)∇P ε = ∇Pw(S
ε, P ε) +

λn(S
ε)ρn(S

ε, P ε)

λ(Sε, P ε)
∇Pc(S

ε) (5.28)

= ∇Pn(S
ε, P ε)− λw(S

ε)ρw(S
ε, P ε)

λ(Sε, P ε)
∇Pc(S

ε). (5.29)

Next, using the relations (5.28) and (5.29) and the definition of the function β, we can

obtain the following representations of the phase fluxes, without gravity term, (cf. (4.58)-

(4.59)):

Λw(S
ε, P ε)Kε∇P ε − A(Sε, P ε)Kε∇θε = λw(S

ε)ρw(S
ε, P ε)Kε∇Pw(S

ε, P ε), (5.30)

Λn(S
ε, P ε)Kε∇P ε + A(Sε, P ε)Kε∇θε = λn(S

ε)ρn(S
ε, P ε)Kε∇Pn(S

ε, P ε), (5.31)

as well as the equality (cf. (2.32), (4.60))

λw(S
ε)ρw(S

ε, P ε)Kε∇P ε
w · ∇P ε

w + λn(S
ε)ρn(S

ε, P ε)Kε∇P ε
n · ∇P ε

n =

ρw(S
ε, P ε)ρn(S

ε, P ε)

λ(Sε, P ε)
Kε∇θε · ∇θε + ω(Sε, P ε)2λ(Sε, P ε)Kε∇P ε · ∇P ε,

(5.32)

Following [72], as test-functions in the weak formulation (5.13)-(5.14) we choose

φε =

∫ P ε
w

0

dp

ρw(p)
, ψε =

∫ P ε
n

0

dp

ρn(p)
.
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After summing the obtained equations we get∫
Ω

Φε ∂

∂t
hw(S

ε, P ε)φdx+

∫
Ω

Φε ∂

∂t
hn(S

ε, P ε)ψdx

+

∫
Ω

(Λw(S
ε, P ε)Kε∇P ε − A(Sε, P ε)Kε∇θε) 1

ρw(Sε, P ε)
· ∇P ε

wdx

+

∫
Ω

(Λn(S
ε, P ε)Kε∇P ε + A(Sε, P ε)Kε∇θε) 1

ρn(Sε, P ε)
· ∇P ε

ndx

=

∫
Ω

λw(S
ε)ρw(S

ε, P ε)Kεg · ∇P ε
wdx+

∫
Ω

λn(S
ε)ρn(S

ε, P ε)Kεg · ∇P ε
ndx

−
∫
Ω

ρw(S
ε, P ε)fw(S

ε, P ε)FPφdx−
∫
Ω

ρn(S
ε, P ε)fn(S

ε, P ε)FPψdx

+

∫
Ω

ρn(S
ε, P ε)FIψdx.

(5.33)

Let us denote the integral terms in the expression (5.33) by Z1, Z2, . . . , Z9, respectively.

First, as in (4.62), an easy computation shows that (cf. [72])

Z1 + Z2 =

∫
Ω

Φε ∂

∂t
H(Sε, P ε)dx,

where

H(Sε, P ε) = hw(S
ε, P ε)φ+ hn(S

ε, P ε)ψ − (1− Sε)P ε
w − SεP ε

n +

∫ Sε

0

Pc(s)ds.

Since Sε ≥ 0 a.e. in Q and Pc ≥ 0, we have

H(Sε, P ε) ≥ (hw(S
ε, P ε)φ− (1− Sε)P ε

w) + (hn(S
ε, P ε)ψ − SεP ε

n)

=(1− Sε)

(
ρw(S

ε, P ε)

∫ P ε
w

0

dp

ρw(p)
− P ε

w

)
+ Sε

(
ρn(S

ε, P ε)

∫ P ε
n

0

dp

ρn(p)
− P ε

n

)
.

Using (H.6), it is easy to show that νj(p) = ρj(p)
∫ p

0
dz

ρj(z)
− p ≥ 0, j ∈ {w, n}, and

consequently

H(Sε, P ε) ≥ 0 a.e. in Q. (5.34)

Next, by applying the identities (5.30) and (5.31) and using (H.6) it follows that

Z3 + Z4 ≥
1

ρM

∫
Ω

(λw(S
ε)ρw(S

ε, P ε)Kε∇P ε
w · ∇P ε

w + λn(S
ε)ρn(S

ε, P ε)Kε∇P ε
n · ∇P ε

n) dx.
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Combining this bound with the expression (5.32) and the assumptions (H.3) and (H.6)

yields the following estimate:

Z3 + Z4 ≥ C1

(∫
Ω

|∇θε|2dx+
∫
Ω

|∇P ε|2dx
)
,

where C1 = min( ρ2mkm
ρ2MλM

, ρmλmω2
mkm

ρM
).

From relations (5.28) and (5.29) it follows that the sum of the terms Z5 and Z6 can

be written as

|Z5 + Z6| = |
∫
Ω

λ(Sε, P ε)ω(Sε, P ε)Kεg · ∇P εdx| ≤ C1

2

∫
Ω

|∇P ε|2dx+ C2,

with C2 =
(λMρMωMkM |g|)2|Ω|

2C1
.

In order to estimate the integrals Z7, Z8 and Z9, we use (5.12). In this way we get

|Z7 + Z8|+ |Z9| ≤
ρ2M
λmρ2m

∫
Ω

FP (λw(S
ε)|Pw(S

ε, P ε)|+ λn(S
ε)|Pn(S

ε, P ε)− Pc(0)|) dx

+
ρM
ρm

∫
Ω

FI |Pn(S
ε, P ε)|dx ≤ C3

∫
Ω

(FP + FI)(|P ε|+ 1)dx,

with C3 = max(
λMρ2M
λmρ2m

,
ρ2M

λmρ2m
(M(1 + λM) + λMPc(0)),

ρM
ρm
, ρM
ρm

(M + Pc(0))).

Finally, we collect all obtained estimates for Zk, k = 1, . . . , 9. Thus for a.e. t ∈]0, T [
it follows that ∫

Ω

Φε ∂

∂t
H(Sε, P ε)dx+ C1

∫
Ω

|∇θε|2dx+ C1

2

∫
Ω

|∇P ε|2dx

≤ C2 + C3

∫
Ω

(FP + FI)(|P ε|+ 1)dx.

(5.35)

From (H.4) and the relation (5.12) it follows that 0 ≤ H(S, P ) ≤ C(|P | + 1) and hence∫
Ω
ΦεH(s0, p0)dx ≤ C. Therefore, by integrating (5.35) we obtain

C1

∫ T

0

∫
Ω

|∇θε|2dxdτ + C1

2

∫ T

0

∫
Ω

|∇P ε|2dxdτ ≤ C4∥P ε∥L2(Q) + C5,

which implies the estimate (5.26).

The uniform estimates for the time derivatives of the functions Φεhj(S
ε, P ε) (j ∈

{w, n}) follow directly from the estimates (5.26) by setting an arbitrary φ ∈ L2(0, T ;V ) in

the weak formulation (5.13)-(5.14). This completes the proof of Lemma 11. 2
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5.5 A compactness result

In this section we obtain compactness results that will be used in passing to the

limit as ε → 0 in the weak formulation (5.13)-(5.14). Compactness of the family

{(hw(Sε, P ε), hn(S
ε, P ε))}ε>0 in L2(Q) is achieved in two steps: first we prove that the

functions hw and hn are Hölder continuous with respect to θ and P , where we write

hj(θ, P ) = hj(S(θ), P ), j ∈ {w, n}. Then we show that this allows us to apply the com-

pactness result from [6] (Lemma 4.2)

Lemma 12 There exists 0 < σ < 1 such that for any θi ∈ [0, β(1)], Pi ∈ R, i = 1, 2,

|hw(θ2, P2)− hw(θ1, P1)|+ |hn(θ2, P2)− hn(θ1, P1)| ≤C(|P2 − P1|σ + |θ2 − θ1|σ). (5.36)

Proof. Following the idea from [12, Lemma 5], we choose arbitrary Pi ∈ R, Si ∈ [0, 1] and

denote θi = β(Si), i = 1, 2. For the case S1 < S2 (and the opposite case is treated in the

same way) we can get by using (H.6) and (4.17):

|hw(θ2, P2)− hw(θ1, P1)|

≤|(ρw(S2, P2)− ρw(S2, P1))(1− S2)|+ |(ρw(S2, P1)− ρw(S1, P1))(1− S2)|

+|ρw(S1, P1)(S2 − S1)|

≤ρM
(
3min(1, |P2 − P1|) + (1− S2)|

∫ S2

S1

fn(s, P1)P
′
c(s)ds|+ |S2 − S1|

)
.

For the second summand we have by applying (H.3), (H.4) and (H.6), for γ given by (H.5),

(1− S2)|
∫ S2

S1

fn(s, P1)P
′
c(s)ds| ≤


C1|S2 − S1| if S1 < S2 ≤ S#

C2|S2 − S1|γ if S# ≤ S1 < S2

C1|S2 − S1|+ C2|S2 − S1|γ if S1 < S# < S2.

(5.37)

In the summary we obtain the bound

|hw(θ2, P2)− hw(θ1, P1)| ≤ C (min(1, |P2 − P1|) + |S2 − S1|+ |S2 − S1|γ) ,

and finally it can be seen that

|hw(θ2, P2)− hw(θ1, P1)| ≤ C (|P2 − P1|σ + |θ2 − θ1|σ) ,
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where σ = τγ if γ ≤ 1, σ = τ if γ > 1, and 0 < τ < 1 is given in (H.8). The proof for hn

is similar. Thus (5.36) is proven.

2

Next we claim that the functions P ε, Sε converge a.e. in Q. We start the proof by

obtaining the following compactness result for the sets {hj(Sε, P ε) : ε > 0}, j ∈ {w, n}.

Lemma 13 The set {hj(Sε, P ε) : ε > 0} is compact in L2(Q), j ∈ {w, n}.

The proof of Lemma 13 is based on the application of a new compactness result

obtained in [6, Lemma 4.2]. Let us recall this result.

Lemma 14 (Lemma 4.2, [6]) Let the function Φ = Φ(y) be a Y -periodic function, Φ ∈
L∞(Y ), and there are positive constants ϕm, ϕM such that 0 < ϕm ≤ Φ(y) ≤ ϕM < 1

a.e. in Y , Φε(x) = Φ(x
ε
) and let {vε}ε>0 ⊂ L2(Q) be a family of functions satisfying the

properties:

1. the function vε is uniformly bounded in the space L∞(Q), i.e. 0 ≤ vε ≤ C;

2. there exists a function ϖ such that ϖ(ξ) → 0 as ξ → 0 and the following inequality

holds true: ∫
Q

|vε(x+ h, t)− vε(x, t)|2dxdt ≤ Cϖ(|h|);

3. the function vε is such that

∥ ∂
∂t

(Φεvε)∥L2(0,T ;H−1(Ω)) ≤ C.

Then the family {vε}ε>0 is a compact set in L2(Q).

Proof. [Proof of Lemma 13] We only need to verify the condition 2. of Lemma 14. For

P ε ∈ L2(0, T ;V ), by Lemma 11, we have∫
Q

|P ε(x+ h, t)− P ε(x, t)|2dxdt ≤ h2∥∇P ε∥2L2(Q) ≤ Ch2.

Next, using the Hölder inequality we get for any 0 < α < 1∫
Q

|P ε(x+ h, t)− P ε(x, t)|2αdxdt ≤ C

(∫
Q

|P ε(x+ h, t)− P ε(x, t)|2dxdt
)α

≤ Ch2α.
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An analogous conclusion can be drawn for the function θε. Now we use the result of

Lemma 12 to obtain for j ∈ {w, n}∫
Q

|hj(θε(x+ h, t), P ε(x+ h, t))− hj(θ
ε(x, t), P ε(x, t))|2dxdt

≤ C(

∫
Q

|θε(x+ h, t)− θε(x, t)|2σdxdt+
∫
Q

|P ε(x+ h, t)− P ε(x, t)|2σdxdt)

≤ Ch2σ.

Thus the assumptions of Lemma 14 are satisfied and the result of Lemma 13 follows di-

rectly. 2

Corollary 1 There exist functions P, S ∈ L2(Q) such that, up to a subsequence,

P ε → P a.e. in Q, (5.38)

Sε → S a.e. in Q. (5.39)

Proof. From Lemma 13 we conclude there are functions hw, hn ∈ L2(Q) such that, up to

a subsequence,

hw(θ
ε, P ε) → hw strongly in L2(Q) and a.e. in Q,

hn(θ
ε, P ε) → hn strongly in L2(Q) and a.e. in Q.

Now we exploit the fact that the map G defined by

G(Sε, P ε) = (hw(θ
ε, P ε), hn(θ

ε, P ε)), θε = β(Sε)

is a diffeomorphism from [0, 1] × R to G([0, 1] × R) (for details see [12, 104]) so it has

a continuous inverse. Therefore, almost everywhere in Q convergence of hj(θ
ε, P ε) (for

j ∈ {w, n}) implies the convergences (5.38) and (5.39), as claimed.

2

5.6 The proof of the homogenization result

The goal of this section is to rigorously justify the convergence results for the homog-

enized problem (5.15)-(5.21) given by Theorem 8. In order to pass to the limit as ε → 0
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in the weak formulation (5.13)-(5.14), we use the a priori estimates and the compactness

results of the previous two Sections. Moreover, we use the two-scale convergence technique

which is presented in Subsection 3.2.1.

By D(Q) we denote the space of infinitely smooth and compactly supported functions

inQ with values in R. Recall also the notationH = {u ∈ H1
p (Y ) :

∫
Y
udy = 0} = H1

p (Y )/R.
Now the theory results on the two-scale convergence cited in Subsection 3.2.1 will be

applied to the uniform estimates for the functions P ε, θε and Sε which were obtained in

the previous sections. Taking into account also the compactness results for these functions

from the Section 5.5, we will establish the convergence results for the sequence of solutions

depending on ε which will allow us to pass to the limit as ε → 0 in the weak formulation

(5.13)-(5.14).

Namely, the a priori estimate (5.26) with the convergence results (5.38) and (5.39)

implies that there exist P, θ ∈ L2(0, T ;V ) such that, up to a subsequence,

P ε ⇀ P in L2(0, T ;V ), θε ⇀ θ in L2(0, T ;V )

and we can identify θ = β(S), where S is given by (5.39). Moreover, due to the a priori

estimate (5.26) and Theorem 2, there exist functions

P1(x, y, t), θ1(x, y, t) ∈ L2(Q;H)

such that

∇P ε(x, t)
2s
⇀ ∇P (x, t) +∇yP1(x, y, t), (5.40)

∇θε(x, t) 2s
⇀ ∇θ(x, t) +∇yθ1(x, y, t). (5.41)

We proceed by passing to the limit in the weak formulation (5.13)-(5.14). First, let

us consider the equation (5.13). We take the test function of the form

φw(x,
x

ε
, t) = φ(x, t) + εζ(x,

x

ε
, t) = φ(x, t) + εζ1(x, t)ζ2(

x

ε
),
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in (5.13), where φ ∈ D(Q), ζ1 ∈ D(Q), ζ2 ∈ C∞
p (Y ), which yields

−
∫
Q

Φ(
x

ε
)ρw(S

ε, P ε)(1− Sε)
[
∂tφ(x, t) + ε∂tζ(x,

x

ε
, t)
]
dxdt

+

∫
Q

Λw(S
ε, P ε)K(

x

ε
)∇P ε · [∇φ+ ε∇xζ +∇yζ] dxdt

−
∫
Q

A(Sε, P ε)K(
x

ε
)∇θε · [∇φ+ ε∇xζ +∇yζ] dxdt

−
∫
Q

λw(S
ε)ρw(S

ε, P ε)2K(
x

ε
)g · [∇φ+ ε∇xζ +∇yζ] dxdt

+

∫
Q

ρw(S
ε, P ε)fw(S

ε, P ε)FP

[
φ(x, t) + εζ(x,

x

ε
, t)
]
dxdt = 0

(5.42)

Passing to the limit as ε→ 0 in nonlinear terms of the equation (5.42) can be accomplished

using the following facts: the a priori estimates (5.26), the strong convergence results from

Lemma 13, the two-scale convergence results (5.40), (5.41) and Lebesgue’s theorem, with

the latter result being applicable due to the almost everywhere convergence from Corollary

1, the continuity and the boundedness of the coefficients.

Thus, taking the two-scale limit in the equation (5.42) gives

− ⟨Φ⟩
∫
Q

ρw(S, P )(1− S)∂tφ(x, t)dxdt

+

∫
Q

∫
Y

Λw(S, P )K(y)(∇P +∇yP1(x, y, t)) · [∇φ(x, t) +∇yζ(x, y, t)]dydxdt

−
∫
Q

∫
Y

A(S, P )K(y)(∇θ +∇yθ1(x, y, t)) · [∇φ(x, t) +∇yζ(x, y, t)]dydxdt

−
∫
Q

∫
Y

λw(S)ρw(S, P )
2K(y)g · [∇φ+∇yζ]dydxdt

+

∫
Q

ρw(S, P )fw(S, P )FPφ(x, t)dxdt = 0.

(5.43)

Next, we consider the equation (5.14) in the same way. After taking the appropriate test

function, we pass to the limit when ε→ 0. One gets
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− ⟨Φ⟩
∫
Q

ρn(S, P )S∂tφ(x, t)dxdt

+

∫
Q

∫
Y

Λn(S, P )K(y)(∇P +∇yP1(x, y, t)) · [∇φ(x, t) +∇yζ(x, y, t)]dydxdt

+

∫
Q

∫
Y

A(S, P )K(y)(∇θ +∇yθ1(x, y, t)) · [∇φ(x, t) +∇yζ(x, y, t)]dydxdt

−
∫
Q

∫
Y

λn(S)ρn(S, P )
2K(y)g · [∇φ+∇yζ]dydxdt

+

∫
Q

ρn(S, P )fn(S, P )FPφ(x, t)dxdt−
∫
Q

ρn(S, P )FIφ(x, t)dxdt = 0.

(5.44)

Our next goal is a separation of variables for the functions P1 and θ1. To this end, we set

φ ≡ 0 in the equations (5.43) and (5.44). After summing the two equations one gets∫
Y

K(y)(∇P (x, t)−B(S, P )g) · ∇yζ2(y)dy = −
∫
Y

K(y)∇yP1(x, y, t) · ∇yζ2(y)dy, (5.45)

where the coefficient B is given by (5.24). From this equation we obtain P1 in form given

by (5.22).

Finally, by setting φ ≡ 0 in (5.43) and by using (5.24) we get

(
Λw(S, P )B(S, P )− λw(S)ρw(S, P )

2
) ∫

Y

K(y)g · ∇yζ2(y)dy

= A(S, P )

(∫
Y

K(y)∇θ(x, t) · ∇yζ2(y)dy +

∫
Y

K(y)∇yθ1(x, y, t) · ∇yζ2(y)dy

)
.

Denoting Λ(S, P ) = Λw(S, P ) + Λg(S, P ) and using the fact that

Λw(S, P )B(S, P )− λw(S)ρw(S, P )
2 =

Λw(S, P )Λn(S, P )

ω(S, P )Λ(S, P )
(ρn(S, P )− ρw(S, P ))

and the expression (5.25), we can write∫
Y

K(y)(∇θ(x, t)− E(S, P )g) · ∇yζ2(y)dy = −
∫
Y

K(y)∇yθ1(x, y, t) · ∇yζ2(y)dy. (5.46)

This equation leads to the form of the function θ1 given by the formula (5.23).

In our final step towards establishing the homogenized equations, we choose ζ2 ≡ 0

in (5.43) and (5.44), take into account the representations (5.22) and (5.23) and use the

definition of the homogenized tensor Kh given by (5.17) and (5.18). In this way, for all
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φ ∈ D(Q) we obtain

⟨Φ⟩
∫
Q

∂t(ρw(S, P )(1− S))φ(x, t)dxdt+

∫
Q

Λw(S, P )Kh∇P (x, t) · ∇φ(x, t)dxdt

−
∫
Q

A(S, P )Kh∇θ(x, t) · ∇φ(x, t)dxdt−
∫
Q

λw(S)ρw(S, P )
2Khg · ∇φ(x, t)dxdt

+

∫
Q

ρw(S, P )fw(S, P )FP (x, t)φ(x, t)dxdt = 0

and

⟨Φ⟩
∫
Q

∂t(ρn(S, P )S)φ(x, t)dxdt+

∫
Q

Λn(S, P )Kh∇P (x, t) · ∇φ(x, t)dxdt

+

∫
Q

A(S, P )Kh∇θ(x, t) · ∇φ(x, t)dxdt−
∫
Q

λn(S)ρn(S, P )
2Khg · ∇φ(x, t)dxdt

+

∫
Q

ρn(S, P )fn(S, P )FP (x, t)φ(x, t)dxdt−
∫
Q

ρn(S, P )FI(x, t)φ(x, t)dxdt = 0.

This finishes the proof of Theorem 8.

2

Remark 12 Combining the techniques of this Chapter and the Chapter 4, the homogeniza-

tion results established in the current Chapter are also valid in the case where the wetting

and the non-wetting phases are treated as incompressible and compressible, respectively.

Namely, first we may derive the a priori estimates for the space derivatives of the func-

tions P ε and θε, just as in the case of the two compressible fluids. On the other hand,

the uniform estimates on time derivatives can be established for the functions ΦεSε and

Φερg(S
ε, P ε)Sε. Thereafter, as in the Chapter 4, we can obtain a convergence of Sε a.e.

in Q, and a convergence of P ε a.e. in the set where the limit of the saturation is strictly

positive. This is enough to pass to the limit as ε → 0 in the nonlinear terms due to their

specific shape (see Lemma 7).

Nevertheless, let us point out that in the case of the incompressible and compressible

phases we could have also considered the non-homogenous Dirichlet and Neumann boundary

data, due to the existence result in Chapter 4, Theorem 5.



Chapter 6

A double porosity model for

immiscible compressible two-phase

flow

6.1 Introduction

This Chapter contains a new homogenization result for the system modelling a fully

equivalent global pressure formulation for immiscible compressible two-phase flow in a frac-

tured porous medium. More precisely, the objective of the current Chapter is to rigorously

justify the homogenization process for a double porosity model for the new formulation of

immiscible compressible two-phase flow, by using the notion of the two-scale convergence.

The considered system consists of an incompressible wetting phase and a compressible

non-wetting phase. The Chapter is organized in the following way. In Section 6.2 we set

up the problem which describes the microscopic model, we state the assumptions on data

and recall an existence result for weak solutions of the microscopic problem obtained in

Chapter 4. Section 6.3 exhibits the double porosity homogenized model whose derivation

is a central result of the present Chapter. To that aim, in Section 6.4 first we introduce the

extension operator operating from the fracture subdomain to the whole domain, as in [1].

Then we obtain the a priori estimates for the weak solutions of the microscopic problem

in regard to the space and time variables. In Section 6.5 the modes of convergence of the

microscopic solutions to the solutions of the effective problem are stated. The requisite

compactness results for the extended fracture solutions are established in Section 6.6; the

two-scale convergence results for the weak solutions are formulated as well. These conver-

gence results are used to pass to the limit as ε → 0 in the microscopic equations, which

is accomplished in Subsection 6.7.1 by using two-scale convergence arguments. However,

87
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the obtained effective equations for the flow in the fractures contain a non-explicit limit

term. In order to identify this term, in Subsection 6.7.2 we employ the dilation operator

introduced in Section 3.3.1. At the same time the effective equations for the matrix flow

are obtained.

6.2 Mathematical formulation

A naturally fractured reservoir is represented by a bounded, two-connected domain

Ω ⊂ Rd, d = 1, 2, 3, with a periodic structure. More precisely, Ω is a union of disjoint

cube cell domains congruent to a standard cell Y . We take the unit cell Y =]0, 1[d to

consist of a compactly contained domain Ym completely surrounded by a connected fracture

domain Yf , with a smooth internal boundary Γfm between the two media. Therefore it

is Y = Ym ∪ Γfm ∪ Yf . The outward unit normal vector to Ym is denoted by ν. The

periodic microstructure of a reservoir is depicted by a small parameter ε > 0 representing

the typical (linear) size of a matrix block with respect to the size of Ω, and the fracture

thickness is considered to be of order ε.

Accordingly, for ε > 0 the reservoir Ω is assumed to be covered by the disjoint copies

of εY shifted for the translations from εA, where A is an appropriate infinite lattice.

The system of the matrix blocks in a reservoir, the fractured part of a reservoir and the

matrix-fracture interface are denoted by Ωε
m, Ω

ε
f and Γε

fm, respectively. Hence we have

Ωε
m = Ω ∩

∪
c∈A

ε(Ym + c),

Ωε
f = Ω ∩

∪
c∈A

ε(Yf + c) = Ω \ Ωε
m,

Γε
fm = Ω ∩

∪
c∈A

ε(Γfm + c) = ∂Ωε
f ∩ ∂Ωε

m ∩ Ω.

We denote the outward unit normal vector to Ωε
m by νε. In order to avoid technical details

in relation with the reservoir boundary, it is supposed that the family of parameters ε is

such that ∂Ω ⊂ ∂Ωε
f .

For any ε > 0 and any x ∈ Ω, cε(x) stands for the lattice translation point of the ε-cell

domain containing x, that is, cε : Ω → εA is well defined by considering x ∈ εY + cε(x).

More precisely, if x ∈ ε(Y + k) for some k ∈ Zd, then cε(x) = εk. Further, χr is the

characteristic function of Yr, r ∈ {f,m}, extended by Y -periodicity to Rd, and set χε
r(x) =

χr(
x
ε
), r ∈ {f,m}. Hence one has Ωε

m = {x ∈ Ω; χε
m(x) = 1} and Ωε

f = {x ∈ Ω; χε
f (x) =

1}.
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We keep the notation Q = Ω×]0, T [, ∂Ω = ΓD ∪ΓN and ΓT
i = Γi×]0, T [, i ∈ {D,N}.

Additionally, it will be denoted Ωε,T
r = Ωε

r×]0, T [, r ∈ {f,m} and Γε,T
fm = Γε

fm×]0, T [.

We start from a microscopic model describing the two-phase flow in a fractured

reservoir. In view of the periodicity microstructure assumption and since the identical

properties of the matrix blocks are assumed (see Subsection 3.3), the porosity and the

absolute permeability of the matrix are taken to be the functions ϕε(x) = ϕ(x
ε
) and kε(x) =

k(x
ε
), respectively, where ϕ and k are Y -periodic functions. In the fractures, the porosity

and the absolute permeability are denoted by Φ(x) and K(x), respectively. As argued in

Subsection 3.3, the permeability in the matrix part is scaled by ε2 which preserves the form

of the matrix equations in the effective model [25,39]. Hence we denote

Φε(x) = χε
f (x)Φ(x) + χε

m(x)ϕ
ε(x), (6.1)

Kε(x) = χε
f (x)K(x) + ε2χε

m(x)k
ε(x). (6.2)

The porosity Φε and the absolute permeability Kε of the reservoir are highly discontinuous

across the boundary Γε
fm. We denote the gravity vector by g and write (cf. Subsection 3.3)

gε(x) = χε
f (x)g + χε

m(x)ε
−1g. (6.3)

The system studied in this Chapter consists of an incompressible wetting phase

(marked by the subscript w) and a compressible non-wetting phase (marked by g), for

instance the immiscible flow of gas and water. We maintain the notation of Chapter 5:

by Sε
w, S

ε := Sε
g , P

ε
w, P

ε
g , P

ε and θε we denote the saturations of the wetting and the

non-wetting phases, the wetting and the non-wetting phase pressures, the global pressure

and the saturation potential, respectively. The wetting phase (water) is assumed incom-

pressible (ρw = const.) and the non-wetting phase (gas) is compressible, ρg = ρg(P
ε
g ). Let

us also denote

V ε = V ε(Sε, P ε) = ρg(S
ε, P ε)Sε.

We assume that the fluids have a constant viscosity. The notation for the unknown func-

tions in a fractured porous medium is introduced by using the subscript f for the fracture

functions and m for the matrix functions. Namely, for given ε > 0, the saturation and the

pressure functions in a fractured porous medium are expressed in the following way:

γε(x, t) = χε
f (x)γ

ε
f (x, t) + χε

m(x)γ
ε
m(x, t),

where γ stands for S, P , Pw, Pg, θ, V .

We recall now the microscopic equations describing the immiscible water-gas flow in
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porous media in the global pressure formulation (see (2.34)-(2.35) and (4.5)-(4.6)):

−ρwΦε∂S
ε

∂t
− div(Λw(S

ε, P ε)Kε∇P ε) + div(A(Sε, P ε)Kε∇θε)

+ ρ2wdiv(λw(S
ε)Kεgε) = Fw,

(6.4)

Φε ∂

∂t
(ρg(S

ε, P ε)Sε)− div(Λg(S
ε, P ε)Kε∇P ε)− div(A(Sε, P ε)Kε∇θε)

+ div(λg(S
ε)ρg(S

ε, P ε)2Kεgε) = Fg.
(6.5)

The boundary conditions for this system are taken in the form

θε = 0, P ε = 0 on ΓT
D, (6.6)

Qε
w · n = Qε

g · n = 0 on ΓT
N , (6.7)

where n is the outward pointing unit normal to ∂Ω and

Qε
w = ρwq

ε
w = −Λw(S

ε, P ε)Kε∇P ε + A(Sε, P ε)Kε∇θε + λw(S
ε)ρ2wKεgε,

Qε
g = ρg(P

ε
g )q

ε
g = −Λg(S

ε, P ε)Kε∇P ε − A(Sε, P ε)Kε∇θε + λg(S
ε)ρg(S

ε, P ε)2Kεgε

are the phase mass fluxes with qj being the volumetric velocity of the j-phase, j = w, g.

The initial conditions are given by

θε(x, 0) = θ0(x), P ε(x, 0) = p0(x) in Ω. (6.8)

Now we formulate the assumptions on the data which are going to ensure the exis-

tence of weak solutions for the problem (6.4)-(6.5) with the boundary and initial conditions

(6.6)-(6.8) by Theorem 5 of Chapter 4. Namely, in a periodically fractured porous medium

setting, the assumptions (A.1) and (A.2) regarding the porosity and the absolute perme-

ability functions are going to be substituted by the following hypothesis:

(A.1-d) The fracture porosity Φ belongs to L∞(Ω) and the matrix porosity ϕ = ϕ(y) is an

Y -periodic function which belongs to L∞(Y ). Furthermore, there exist constants,

0 < ϕm ≤ ϕM < +∞, such that 0 < ϕm ≤ Φ(x) ≤ ϕM a.e. in Ω, and 0 < ϕm ≤
ϕ(y) ≤ ϕM a.e. in Y .

(A.2-d) The fracture permeability tensor K belongs to (L∞(Ω))d×d and the matrix perme-

ability tensor k = k(y) is an Y -periodic function which belongs to (L∞(Y ))d×d.

Furthermore, there exist constants 0 < km ≤ kM < +∞, such that for almost all
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x ∈ Ω and all ξ ∈ Rd it holds:

km|ξ|2 ≤ K(x)ξ · ξ ≤ kM |ξ|2,

and for almost all y ∈ Y and all ξ ∈ Rd it holds:

km|ξ|2 ≤ k(y)ξ · ξ ≤ kM |ξ|2.

Also, since the homogenous boundary conditions are considered in this Chapter, we replace

the assumption (A.8) by

(A.8-d) The initial data p0, θ0 ∈ L2(Ω), 0 ≤ θ0 ≤ β(1) a.e. in Ω.

According to Theorem 5, under the assumptions (A.1-d) - (A.2-d), (A.3) - (A.7) and

(A.8-d) for each ε > 0 the problem (6.4)-(6.5) with the boundary and initial conditions

(6.6)-(6.8) has at least one weak solution given by the following theorem.

Recall the notation V = {u ∈ H1(Ω);u|ΓD
= 0}.

Theorem 9 (Existence for fixed ε > 0) Let (A.1-d) - (A.2-d), (A.3) - (A.7) and (A.8-d)

hold; let ε > 0. Denote Sε = S(θε). Then there exists (P ε, θε) such that

P ε ∈ L2(0, T ;V ), θε ∈ L2(0, T ;V ), 0 ≤ θε ≤ β(1) a.e. in Q,

∂t(Φ
εSε) ∈ L2(0, T ;V ′), ∂t(Φ

ερg(S
ε, P ε)Sε) ∈ L2(0, T ;V ′);

for all φ, ψ ∈ L2(0, T ;V )

−ρw
∫ T

0

⟨∂t(ΦεSε), φ⟩dt+
∫
Q

[Λw(S
ε, P ε)Kε∇P ε · ∇φ− A(Sε, P ε)Kε∇θε · ∇φ]dxdt

−
∫
Q

λw(S
ε)ρ2wKεgε · ∇φdxdt =

∫
Q

Fwφdxdt,

(6.9)

∫ T

0

⟨∂t(Φρg(Sε, P ε)Sε), ψ⟩dt+
∫
Q

[Λg(S
ε, P ε)Kε∇P ε · ∇ψ + A(Sε, P ε)Kε∇θε · ∇ψ]dxdt

−
∫
Q

λg(S
ε)ρg(S

ε, P ε)2Kεgε · ∇ψdxdt =
∫
Q

Fgψdxdt.

(6.10)

Furthermore, for all ψ ∈ V the functions

t 7→
∫
Ω

ΦεSεψdx, t 7→
∫
Ω

Φερg(Pg(S
ε, P ε))Sεψdx
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are continuous in [0, T ] and the initial conditions are satisfied in the following sense:(∫
Ω

ΦεSεψdx

)
(0) =

∫
Ω

Φεs0ψdx,

(∫
Ω

Φερg(Pg(S
ε, P ε))Sεψdx

)
(0) =

∫
Ω

Φερg(Pg(s0, p0))s0ψdx,

where s0 = S(θ0).

6.3 A homogenization result

The principal aim of the current Chapter is to show that, as the scaling parameter ε

tends to 0, the microscopic model tends in some sense to the effective model which we now

present. More precisely, in Section 6.7 we will prove that the weak solutions of the problem

(6.4)-(6.5), (6.6)-(6.8) converge as ε→ 0 to weak solutions of the following problem.

The macroscopic equations for the fracture system are given in Q by

−ρwΦH ∂S

∂t
− div(Λw(S, P )KH∇P ) + div(A(S, P )KH∇θ)

+ ρ2wdiv(λw(S)KHg) = Fw +Qw,
(6.11)

ΦH ∂

∂t
(ρg(S, P )S)− div(Λg(S, P )KH∇P )− div(A(S, P )KH∇θ)

+ div(λg(S)ρg(S, P )
2KHg) = Fg +Qg,

(6.12)

where the matrix source terms are given for (x, t) ∈ Q by

Qw(x, t) = ρw

∫
Ym

ϕ(y)
∂s

∂t
(x, y, t)dy (6.13)

and

Qg(x, t) = −
∫
Ym

ϕ(y)
∂

∂t
(ρg(s(x, y, t), p(x, y, t))s(x, y, t))dy; (6.14)

the homogenized fracture porosity ΦH is given by

ΦH(x) = |Yf |Φ∗(x), (6.15)
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and the homogenized fracture system permeability tensor KH is defined by

KH
ij (x) =

∫
Yf

K(x) (ei +∇yχi(x, y)) (ej +∇yχj(x, y)) dy. (6.16)

Here, χi(x, y) (for i = 1, . . . , d) is a solution of the cell problem− divy (K(x)(ei +∇yχi(x, y))) = 0 in Yf ,

y 7→ χi(x, y) Y − periodic,
(6.17)

with ei being the unit vector in the i-th direction.

The boundary conditions for the system (6.11)-(6.17) are

θ = 0, P = 0 on ΓT
D, (6.18)

Qw · n = Qg · n = 0 on ΓT
N , (6.19)

where

Qw = −Λw(S, P )KH∇P + A(S, P )KH∇θ + λw(S)ρ
2
wKHg,

Qg = −Λg(S, P )KH∇P − A(S, P )KH∇θ + λg(S)ρg(S, P )
2KHg.

The initial conditions for the system (6.11)-(6.17) read

θ(x, 0) = θ0(x), P (x, 0) = p0(x) in Ω. (6.20)

On the other hand, to each x ∈ Ω there is an associated matrix block congruent to

Ym. The flow equations in Ω × Ym×]0, T [, which generate the new source terms for the

fracture flow, are as follows:

−ρwϕ(y)
∂s

∂t
− divy(Λw(s, p)k(y)∇yp) + divy(A(s, p)k(y)∇yϑ)

+ ρ2wdiv(λw(s)k(y)g) = Fw,
(6.21)

ϕ(y)
∂

∂t
(ρg(s, p)s)− divy(Λg(s, p)k(y)∇yp)− divy(A(s, p)k(y)∇yϑ)

+ divy(λg(s)ρg(s, p)
2k(y)g) = Fg.

(6.22)

The system (6.21)-(6.22) is completed with the following boundary conditions:

ϑ(x, y, t) = θ(x, t), p(x, y, t) = P (x, t) in Ω× Γfm×]0, T [, (6.23)
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and the initial conditions:

ϑ(x, y, 0) = θ0(x), p(x, y, 0) = p0(x) in Ω× Ym. (6.24)

A mode of convergence of the weak solutions for the microscopic problem to weak

solutions of the effective problem is going to be specified in Section 6.5.

6.4 A priori estimates

6.4.1 Extension of the fracture solutions

In Subsection 6.4.2 there will be obtained the a priori estimates for the solutions of

the microscopic problem in the fractured part Ωε
f . In order to make use of these uniform

estimates for establishing some additional a priori estimates as well as for deriving the

compactness results for the fracture solutions, we will need to extend the functions P ε
f , θ

ε
f ,

Sε
f and V ε

f to the whole fixed domain Ω. To that aim we are going to use the results of [1]

which are presented in this Subsection.

In view of the setting introduced in Section 6.2, we note that for any ε > 0 the

fracture domain Ωε
f = Ω ∩

∪
c∈A

ε(Yf + c), where

∪
c∈A

(Yf + c) is a periodic, connected and open subset of Rd. (6.25)

Let us suppose additionally that∪
c∈A

(Yf + c) has a Lipschitz boundary. (6.26)

For a ∈ R, we denote

Ω(εa) = {x ∈ Ω : d(x, ∂Ω) > εa}.

According to Theorem 2.1 of [1], under the assumptions (6.25) and (6.26) there

exists a linear and continuous extension operator Πε : H1(Ωε
f ) → H1

loc(Ω) and constants
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k0, k1, k2 > 0 such that for all u ∈ H1(Ωε
f ) it holds

Πεu = u a.e. in Ωε
f ,∫

Ω(εk0)

|Πεu|2dx ≤ k1

∫
Ωε

f

|u|2dx,∫
Ω(εk0)

|∇(Πεu)|2dx ≤ k2

∫
Ωε

f

|∇u|2dx.

The constants ki, i = 1, 2, 3 depend on Yf and d but are independent of ε and Ω.

For the sake of simplicity it will be assumed that there are no matrix blocks in an

εk0-neighborhood of ∂Ω and hence the extension results are valid in Ω [1]. Namely, for any

u ∈ H1(Ωε
f ) we have ∫

Ω

|Πεu|2dx ≤ k1

∫
Ωε

f

|u|2dx, (6.27)∫
Ω

|∇(Πεu)|2dx ≤ k2

∫
Ωε

f

|∇u|2dx. (6.28)

Moreover, if C1 < u < C2 a.e. in Ωε
f , then it is also C1 < Πεu < C2 a.e. in Ω [1].

Remark 13 By Theorem 9, for any ε > 0 the solution (P ε
f , θ

ε
f ) to the microscopic problem

belongs to L2(0, T ;H1(Ωε
f )) and satisfies the boundary condition (6.6). Therefore, by the

above arguments the functions P ε
f and θεf can immediately be extended to

P̃ ε
f := ΠεP

ε
f ∈ L2(0, T ;V ), (6.29)

θ̃εf := Πεθ
ε
f ∈ L2(0, T ;V ). (6.30)

However, since the gradients of the functions Sε
f and V ε

f do not belong to L2(Ωε,T
f ), their

extensions to Ω are defined indirectly by

S̃ε
f := S(θ̃εf ) (6.31)

and

Ṽ ε
f := ρg(S̃

ε
f , P̃

ε
f )S̃

ε
f . (6.32)

6.4.2 Uniform estimates

As in the corresponding parts of Sections 4.5 and 5.4, to obtain a priori estimates

we employ suitable test functions, suggested in [72] (cf. [75–77]). In this Subsection, for
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simplicity, we assume that Pc(0) = 0. Throughout the proof, C,C1, . . . denote generic

constants that are independent of ε.

Proposition 5 Let (P ε, θε)ε be the sequence of solutions to (6.9)-(6.10) and let Sε = S(θε).
The following estimates, uniform with respect to ε, hold:

∥P ε
f ∥L2(0,T ;H1(Ωε

f ))
+ ∥θεf∥L2(0,T ;H1(Ωε

f ))
≤ C, (6.33)

∥P ε
m∥L2(Ωε,T

m ) + ∥θεm∥L2(Ωε,T
m ) ≤ C, (6.34)

ε∥∇P ε
m∥L2(Ωε,T

m ) + ε∥∇θεm∥L2(Ωε,T
m ) ≤ C, (6.35)

∥∂t(ΦεSε)∥L2(0,T ;V ′) + ∥∂t(Φερg(S
ε, P ε)Sε)∥L2(0,T ;V ′) ≤ C. (6.36)

Proof. At first we recall the relations (5.28) -(5.32) that were accentuated when obtaining

the uniform estimates in Section 5.4, taking into account that herein the wetting phase

mass density is constant, and the non-wetting (gas) phase is marked by the subscript g.

In fact, the following relations are going to be employed in the sequel.

ω(Sε, P ε)∇P ε = ∇Pw(S
ε, P ε) +

λg(S
ε)ρg(S

ε, P ε)

λ(Sε, P ε)
∇Pc(S

ε) (6.37)

= ∇Pg(S
ε, P ε)− λw(S

ε)ρw
λ(Sε, P ε)

∇Pc(S
ε), (6.38)

λw(S
ε)ρwKε∇P ε

w · ∇P ε
w + λg(S

ε)ρg(S
ε, P ε)Kε∇P ε

g · ∇P ε
g

=
ρwρg(S

ε, P ε)

λ(Sε, P ε)
Kε∇θε · ∇θε + ω(Sε, P ε)2λ(Sε, P ε)Kε∇P ε · ∇P ε,

(6.39)

Λw(S
ε, P ε)Kε∇P ε − A(Sε, P ε)Kε∇θε = λw(S

ε)ρwKε∇Pw(S
ε, P ε), (6.40)

Λg(S
ε, P ε)Kε∇P ε + A(Sε, P ε)Kε∇θε = λg(S

ε)ρg(S
ε, P ε)Kε∇Pg(S

ε, P ε). (6.41)

As in [72], after inserting the test-functions

φε =
1

ρw
P ε
w, ψε =

∫ P ε
g

0

dp

ρg(p)

in the weak formulation (6.9)-(6.10) and summing the obtained equations we get
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− ρw

∫
Ω

Φε∂S
ε

∂t
φεdx+

∫
Ω

Φε∂V
ε

∂t
ψεdx

+

∫
Ω

(Λw(S
ε, P ε)Kε∇P ε − A(Sε, P ε)Kε∇θε) 1

ρw
· ∇P ε

wdx

+

∫
Ω

(Λg(S
ε, P ε)Kε∇P ε + A(Sε, P ε)Kε∇θε) 1

ρg(Sε, P ε)
· ∇P ε

g dx

=

∫
Ω

λw(S
ε)ρwKεg · ∇P ε

wdx+

∫
Ω

λg(S
ε)ρg(S

ε, P ε)Kεg · ∇P ε
g dx

+

∫
Ω

Fwφ
εdx+

∫
Ω

Fgψ
εdx.

(6.42)

The integral terms in the equality (6.42) are denoted by Z1, Z2, . . . , Z8, respectively. We

note that the forthcoming calculations are analogous to those from the proof of Lemma 11

which are still correct if only one of the phases is compressible.

In the same way as for the corresponding terms in the proof of Lemma 11, one can

easily compute that

Z1 + Z2 =

∫
Ω

Φε ∂

∂t
G(Sε, P ε)dx,

where

G(Sε, P ε) = V ε(Sε, P ε)ψ − P ε
gS

ε +

∫ Sε

0

Pc(s)ds,

and

G(Sε, P ε) ≥ 0 a.e. in Q. (6.43)

Then we apply the identities (6.40) and (6.41) and use (A.6) to see that

Z3 + Z4 ≥
1

ρM

∫
Ω

(
λw(S

ε)ρwKε∇P ε
w · ∇P ε

w + λg(S
ε)ρg(S

ε, P ε)Kε∇P ε
g · ∇P ε

g

)
dx.
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Combining this bound with the expression (6.39) and taking into account the assumption

on the permeability tensor (6.2) yields

Z3 + Z4 ≥
1

ρM

∫
Ωε

f

(
ρwρg(S

ε
f , P

ε
f )

λ(Sε
f , P

ε
f )

K∇θεf · ∇θεf + ω(Sε
f , P

ε
f )

2λ(Sε
f , P

ε
f )K∇P ε

f · ∇P ε
f

)
dx

+ε2
1

ρM

∫
Ωε

m

(
ρwρg(S

ε
m, P

ε
m)

λ(Sε
m, P

ε
m)

kε∇θεm · ∇θεm + ω(Sε
m, P

ε
m)

2λ(Sε
m, P

ε
m)k

ε∇P ε
m · ∇P ε

m

)
dx.

Finally we apply the assumptions (A.3) and (A.6) and obtain the estimate

Z3 + Z4 ≥ C1

(∫
Ωε

f

(|∇θεf |2 + |∇P ε
f |2)dx+ ε2

∫
Ωε

m

(|∇θεm|2 + |∇P ε
m|2)dx

)
,

where C1 = min( ρ2mkm
ρ2MλM

, ρmλmω2
mkm

ρM
).

The integrals Z5 and Z6 are estimated by using the relations (6.37) and (6.38).

Thereby it follows that

|Z5 + Z6| =|
∫
Ωε

f

λ(Sε
f , P

ε
f )ω(S

ε
f , P

ε
f )Kg · ∇P ε

f dx+

∫
Ωε

m

λ(Sε
m, P

ε
m)ω(S

ε
m, P

ε
m)ε

2kε
1

ε
g · ∇P ε

mdx|.

Next, one concludes by using (A.1), (A.3) and (A.6) as well as Remark 7 and the Young

inequality that for arbitrary α, β > 0 it holds

|Z5 + Z6| ≤
C2

2α
+ ε

C2

2β
+
C2

2
α

∫
Ωε

f

|∇P ε
f |2dx+ ε

C2

2
β

∫
Ωε

m

|∇P ε
m|2dx,

with C2 = λMρMkM |g|(|Ω|)1/2.
Further, from relations (4.15), (4.16) and the nonnegativity of Fw in (A.7) it follows

that the sum of the terms Z7 and Z8 can be written as

|Z7 + Z8| ≤ |
∫
Ω

1

ρw
FwPwdx|+ |

∫
Ω

Fg

∫ P ε
g

0

dp

ρg(p)
dx| ≤ C3

∫
Ω

(Fw + |Fg|)(|P ε|+ 1)dx,

with C3 =
1
ρm

.
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Finally, all obtained estimates for Zk, k = 1, . . . , 8 are put together. Thus for a.e.

t ∈]0, T [ it follows that for any α, β > 0:

∫
Ω

Φε ∂

∂t
G(Sε, P ε)dx+ C1

(∫
Ωε

f

(|∇θεf |2 + |∇P ε
f |2)dx+ ε2

∫
Ωε

m

(|∇θεm|2 + |∇P ε
m|2)dx

)
≤C2

2α
+ ε

C2

2β
+
C2

2
α

∫
Ωε

f

|∇P ε
f |2dx+ ε

C2

2
β

∫
Ωε

m

|∇P ε
m|2dx+ C3

∫
Ω

(Fw + |Fg|)(|P ε|+ 1)dx.

(6.44)

By choosing α = C1

C2
and β = β(ε) = εC1

C2
we obtain∫

Ω

Φε ∂

∂t
G(Sε, P ε)dx+ C1

∫
Ωε

f

|∇θεf |2dx+
C1

2

∫
Ωε

f

|∇P ε
f |2dx

+ ε2C1

∫
Ωε

m

|∇θεm|2dx+ ε2
C1

2

∫
Ωε

m

|∇P ε
m|2dx

≤C4 +
C2

2

2C1

+ C3

∫
Ω

(Fw + |Fg|)(|P ε|+ 1)dx.

(6.45)

In the next step the integrating of (6.45) over ]0, T [ yields∫
Ω

Φε ∂

∂t
G(Sε, P ε)(T )dx+ C1

∫
Ωε,T

f

|∇θεf |2dxdt+
C1

2

∫
Ωε,T

f

|∇P ε
f |2dxdt

+ ε2C1

∫
Ωε,T

m

|∇θεm|2dxdt+ ε2
C1

2

∫
Ωε,T

m

|∇P ε
m|2dxdt

≤ C5 + C3

∫
Q

(Fw + |Fg|)(|P ε|+ 1)dxdt+

∫
Ω

Φε ∂

∂t
G(s0, p0)dx,

with C5 = C4T +
C2

2

2C1
T .

From (A.4) and the relations (4.15), (4.16) it follows that 0 ≤ G(S, P ) ≤ C(|P | + 1)

and hence
∫
Ω
ΦεG(s0, p0)dx ≤ C. Moreover, by using (6.43) it follows

C1

∫
Ωε,T

f

|∇θεf |2dxdt+
C1

2

∫
Ωε,T

f

|∇P ε
f |2dxdt+ ε2C1

∫
Ωε,T

m

|∇θεm|2dxdt+ ε2
C1

2

∫
Ωε,T

m

|∇P ε
m|2dxdt

≤C + C3(∥Fw∥L2(Q) + ∥Fg∥L2(Q))(∥P ε∥L2(Q) + 1),

and eventually after employing (A.7) we obtain

C1∥∇θεf∥2L2(Ωε,T
f )

+
C1

2
∥∇P ε

f ∥2L2(Ωε,T
f )

+ ε2C1∥∇θεm∥2L2(Ωε,T
m )

+ ε2
C1

2
∥∇P ε

m∥2L2(Ωε,T
m )

≤ C(∥P ε
f ∥L2(Ωε,T

f ) + ∥P ε
m∥L2(Ωε,T

m ) + 1).
(6.46)
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The first term on the right-hand side of (6.46) can be estimated by the Poincaré

inequality taking into account the boundary condition (6.6). Next we estimate the second

term on the right-hand side of (6.46). Namely, by using the continuity of the global pressure

across the interface Γε
fm and the Poincaré inequality we get for any matrix block ε(Ym+k),

k ∈ Zd: ∫ T

0

∫
ε(Ym+k)

|P ε
m − P̃ ε

f |2dxdt ≤ Cε2
∫ T

0

∫
ε(Ym+k)

|∇(P ε
m − P̃ ε

f )|2dxdt,

so it also holds ∫ T

0

∫
Ωε

m

|P ε
m − P̃ ε

f |2dxdt ≤ Cε2
∫ T

0

∫
Ωε

m

|∇(P ε
m − P̃ ε

f )|2dxdt. (6.47)

Now we can estimate by using (6.47), (6.27) and (6.28) as follows.

∥P ε
m∥L2(Ωε,T

m ) ≤∥P ε
m − P̃ ε

f ∥L2(Ωε,T
m ) + ∥P̃ ε

f ∥L2(Ωε,T
m )

≤Cε∥∇P ε
m −∇P̃ ε

f ∥L2(Ωε,T
m ) + ∥P̃ ε

f ∥L2(Q)

≤Cε∥∇P ε
m∥L2(Ωε,T

m ) + Cε∥∇P ε
f ∥L2(Ωε,T

f ) + C∥P ε
f ∥L2(Ωε,T

f ). (6.48)

From the continuity of the saturation potential across Γε
fm by using the same arguments

we can obtain the estimate

∥θεm∥L2(Ωε,T
m ) ≤Cε∥∇θ

ε
m∥L2(Ωε,T

m ) + Cε∥∇θεf∥L2(Ωε,T
f ) + C∥θεf∥L2(Ωε,T

f ). (6.49)

The last terms on the right-hand sides of (6.48) and (6.49) are bounded using the

Poincaré inequality. Finally from (6.46) by using the Young inequality we get for any

γ, δ > 0:

C1∥∇θεf∥2L2(Ωε,T
f )

+
C1

2
∥∇P ε

f ∥2L2(Ωε,T
f )

+ ε2C1∥∇θεm∥2L2(Ωε,T
m )

+ ε2
C1

2
∥∇P ε

m∥2L2(Ωε,T
m )

≤ C(1 + γ∥∇P ε
f ∥2L2(Ωε,T

f )
+ δε2∥∇P ε

m∥2L2(Ωε,T
m )

),
(6.50)

which shows the estimates (6.33) and (6.35). Moreover, now (6.33) and (6.35) along with

(6.48) and (6.49) yield the uniform estimates for the matrix solutions claimed in (6.34).

In order to establish the uniform estimates for the time derivatives of the functions

ΦεSε and Φερg(S
ε, P ε)Sε, we set an arbitrary φ ∈ L2(0, T ;V ) and ψ ∈ L2(0, T ;V ) in

the variational equations (6.9) and (6.10), respectively. By employing the estimates (6.33)-

(6.35), the desired estimate (6.36) easily follows. This completes the proof of Proposition 5.
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2

Remark 14 As a consequence of Proposition 5 we have the following uniform estimates

for the extended fracture functions which follow by the extension operator properties (6.27)

and (6.28):

∥P̃ ε
f ∥L2(0,T ;V ) + ∥θ̃εf∥L2(0,T ;V ) ≤ C. (6.51)

6.5 Convergence results

Now we are ready to state the main result of this Chapter.

Theorem 10 Suppose (A.1-d) - (A.2-d), (A.3) - (A.7) and (A.8-d). Let (P ε, θε) be a weak

solution of the problem (6.4), (6.5), (6.6), (6.7), (6.8). Denote Sε = Sε(θε) and let P̃ ε
f , θ̃

ε
f ,

S̃ε
f and Ṽ ε

f be the functions defined in Remark 13. Then, up to a subsequence, it holds

P̃ ε
f ⇀ P weakly in L2(0, T ;V ) and P̃ ε

f
2s
⇀ P, (6.52)

S̃ε
f → S strongly in L2(Q), (6.53)

θ̃εf ⇀ θ weakly in L2(0, T ;V ), strongly in L2(Q) and θ̃εf
2s
⇀ θ, (6.54)

θ = β(S),

Ṽ ε
f → ρg(S, P )S strongly in L2(Q), (6.55)

∇P̃ ε
f

2s
⇀ ∇P (x, t) +∇yP1(x, t, y), (6.56)

∇θ̃εf
2s
⇀ ∇θ(x, t) +∇yθ1(x, t, y), (6.57)

χε
mP

ε
m

2s
⇀ p ∈ L2(Q;H1

p (Ym)), (6.58)

χε
mθ

ε
m

2s
⇀ ϑ ∈ L2(Q;H1

p (Ym)), (6.59)

χε
mS

ε
m

2s
⇀ s ∈ L2(Q;L2

p(Ym)), (6.60)

χε
mV

ε
m

2s
⇀ v ∈ L2(Q;L2

p(Ym)), (6.61)

εχε
m∇xP

ε
m

2s
⇀ ∇yp(x, t, y), (6.62)

εχε
m∇xθ

ε
m

2s
⇀ ∇yϑ(x, t, y), (6.63)
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where

P1(x, t, y) =
d∑

i=1

(
∂P

∂xi
(x, t)−B(S, P )gi

)
χi(x, y), (6.64)

θ1(x, t, y) =
d∑

i=1

(
∂θ

∂xi
(x, t)− E(S, P )gi

)
χi(x, y), (6.65)

with χi(x, y) being a solution of the cell problem (6.17), while the functions B and E are

given by

B(S, P ) =
λw(S)ρ

2
w + λg(S)ρg(S, P )

2

Λw(S, P ) + Λg(S, P )
, (6.66)

E(S, P ) =
λ(S, P )

√
λw(S)λg(S)ω(S, P )

Λw(S, P ) + Λg(S, P )
(ρg(S, P )− ρw). (6.67)

The pair (P, θ) is a weak solution of the problem (6.11)-(6.20) and S = S(θ). Finally,

the pair (p, ϑ) is a weak solution of the problem (6.21)-(6.24) and s = S(ϑ) a.e. in Ω ×
Ym×]0, T [.

Here
2s
⇀ denotes the two-scale convergence which is presented in Section 3.2.1. The-

orem 10 is proven in Section 6.7.

Remark 15 For completeness we quote here a standard result on a cell problem (see e.g.

[2]). If A(x, y) is a uniformly positively definite tensor which is bounded and Y -periodic

in y-variable, then it can be shown by using Lax-Milgram lemma that the following cell

problem has a unique, up to a constant, solution ϖ ∈ H1
p (Y ):− divy (A(x, y)(∇yϖ(x, y) + ei))) = 0 in Yf ,

y 7→ χi(x, y) Y − periodic.
(6.68)

6.6 A compactness result for the fracture solutions

The aim of this Section is to prove the relative compactness and the corresponding

convergence results for the sequences (S̃ε
f )ε and (Ṽ ε

f )ε. Namely, the family S̃ε
f is treated in

Subsection 6.6.1 by using the result of [95] as the key idea; for the sequence Ṽ ε
f a variant of

the result of [5] is employed in Subsection 6.6.2. This Section is based on the ideas of [14]

(see also [103]).

We begin with two auxiliary results which will be needed in the sequel. First, in

the following Lemma a technical result is given which is easily proved by using the Fubini
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theorem.

Lemma 15 For 0 < h < T
2
and for integrable functions G1(t), G2(t), it holds

∫ T

0

G1(t)

(∫ min(t+h,T )

max(t,h)

G2(τ)dτ

)
dt =

∫ T

h

G2(t)

(∫ t

t−h

G1(τ)dτ

)
dt.

Further, our assumptions on the capillary pressure function imply the result of the

next Lemma, which is going to be used several times in what follows.

Lemma 16 There exist constants 0 < δ ≤ 1 and C > 0 such that for any P ∈ R and any

S1, S2 ∈ [0, 1] it holds:

S2|
∫ S2

S1

fw(s, P )P
′
c(s)ds| ≤ C|S1 − S2|δ.

Proof. Note first that the assumption (4.12) in (A.4) implies that λw(S)P
′
c(S) ≤ C for all

S ∈ [S#, 1⟩ and for some constant C > 0. Therefore, if S1, S2 ≥ S# one can write

S2|
∫ S2

S1

fw(s, P )P
′
c(s)ds| ≤ C

ρM
ρmλm

|S1 − S2|.

Next, using (4.13) in (A.4) one can obtain for some C > 0 and for γ > 0 given by (A.4)

the following estimate valid for S1, S2 ∈]0, S#] [12]:

min(S1, S2)|Pc(S1)− Pc(S2)| ≤ C|S1 − S2|γ. (6.69)

Thus in the case S2 < S1 < S# we can obtain by applying (6.69)

S2|
∫ S2

S1

fw(s, P )P
′
c(s)ds| ≤

ρMλM
ρmλm

S2|Pc(S1)− Pc(S2)| ≤ C|S1 − S2|γ.

If S1 < S2 < S#, applying (6.69) and the boundedness of the capillary pressure in (A.4)

yields the estimate

S2|
∫ S2

S1

fw(s, P )P
′
c(s)ds| ≤

ρMλM
ρmλm

S2|Pc(S1)− Pc(S2)|

≤ρMλM
ρmλm

(|S2 − S1||Pc(S1)− Pc(S2)|+ S1|Pc(S1)− Pc(S2)|)

≤C (|S2 − S1|+ |S1 − S2|γ) .
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The remaining cases S1 < S# < S2 and S2 < S# < S1 can be treated by combining the

previous ones. Finally, we put δ = γ if γ < 1, and δ = 1 if γ ≥ 1. Therefore Lemma 16 is

proved. 2

6.6.1 The compactness of S̃ε
f

In this Subsection we prove the result of the next Proposition.

Proposition 6 Assume (A.1-d) - (A.2-d), (A.3) - (A.7) and (A.8-d). Let (S̃ε
f )ε be the se-

quence defined by (6.31). There exists a function S such that, possibly along a subsequence,

S̃ε
f → S strongly in L2(Q) as ε→ 0. (6.70)

Moreover, 0 ≤ S ≤ 1.

Proof. The proof consists of the following. First the modulus of continuity for the function

θεf is obtained and then this result is extended to the function θ̃εf , which will assure the

convergence result for θ̃εf and finally, the desired convergence (6.70).

Step 1.

Let us consider the variational equation (6.9). Taking into account (6.1) we rewrite it as

follows: for all φ ∈ L2(0, T ;V )

ρw

∫
Ωε,T

f

Φ
∂Sε

f

∂t
φdxdt+ ρw

∫
Ωε,T

m

ϕε∂S
ε
m

∂t
φdxdt

=

∫
Q

Λw(S
ε, P ε)Kε∇P ε · ∇φdxdt−

∫
Q

A(Sε, P ε)Kε∇θε · ∇φdxdt

−
∫
Q

λw(S
ε)ρ2wKεgε · ∇φdxdt−

∫
Q

Fwφdxdt.

(6.71)

Denote the integral terms in the equality (6.71) by Iε1(φ), · · · , Iε6(φ), respectively. Recall

the notation for the time difference operator,

∂−hv(t) =
v(t)− v(t− h)

h
.
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Following the ideas of [14] and [103], for ε > 0 and for 0 < h < T/2 we insert as a test

function in (6.71) the following function:

φε,h(x, t) =

∫ min(t+h,T )

max(t,h)

h∂−hθε(x, τ)dτ. (6.72)

The properties of φε,h are described by the next result.

Lemma 17 Let ε > 0 and let h > 0 small enough. There is a constant C which does not

depend on ε or h such that for the sequence of functions defined by (6.72) it holds

∥φε,h∥L2(Q) ≤Ch, (6.73)

∥∇φε,h∥L2(Ωε,T
f ) ≤Ch, (6.74)

ε∥∇φε,h∥L2(Ωε,T
m ) ≤Ch. (6.75)

Proof of Lemma 17.

For r ∈ {f,m} we have

∥∇φε,h∥2
L2(Ωε,T

r )
≤
∫
Ωε,T

r

(∫ min(t+h,T )

max(t,h)

|∇θεr(x, τ)−∇θεr(x, τ − h)|dτ

)2

dxdt. (6.76)

Since min(t+ h, T )−max(t, h) ≤ h, one gets for a.e. (x, t) ∈ Ωε,T
r :

∫ min(t+h,T )

max(t,h)

|∇θεr(x, τ)−∇θεr(x, τ − h)|dτ ≤h1/2
(∫ min(t+h,T )

max(t,h)

|∇θεr(x, τ)−∇θεr(x, τ − h)|2dτ

)1/2

.

Therefore we have from (6.76)

∥∇φε,h∥2
L2(Ωε,T

r )
≤h
∫
Ωε,T

r

(∫ min(t+h,T )

max(t,h)

|∇θεr(x, τ)−∇θεr(x, τ − h)|2dτ

)
dxdt. (6.77)

Now we apply Lemma 15 with G1(t) = 1, G2(τ) = |∇θεr(x, τ) − ∇θεr(x, τ − h)|2 to (6.77)

to establish for a.e. x ∈ Ωε
r:∫ T

0

(∫ min(t+h,T )

max(t,h)

|∇θεr(x, τ)−∇θεr(x, τ − h)|2dτ

)
dt

=

∫ T

h

|∇θεr(x, t)−∇θεr(x, t− h)|2
(∫ t

t−h

1dτ

)
dt = h

∫ T

h

|∇θεr(x, t)−∇θεr(x, t− h)|2dt.
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It then follows from (6.77)

∥∇φε,h∥2
L2(Ωε,T

r )
≤h2

∫
Ωε

r

∫ T

h

|∇θεr(x, t)−∇θεr(x, t− h)|2dtdx

≤2h2
(∫

Ωε
r

∫ T

h

|∇θεr(x, t)|2dtdx+
∫
Ωε

r

∫ T

h

|∇θεr(x, t− h)|2dtdx
)

≤4h2∥∇θεr∥2L2(Ωε,T
r )

.

Finally, we conclude by applying the uniform estimates (6.33) for the fractures and (6.35)

for the matrix that the estimates (6.74) and (6.75) hold true. In the same manner one can

establish the estimate (6.73) by employing the uniform a priori bounds (6.33) and (6.34).

2

Proof of Proposition 6 continued.

Note that by Lemma 17, φε,h is an admissible test function for any ε > 0 and a

sufficiently small h > 0, due to the boundary condition (6.6).

With the chosen test function (6.72) inserted in the equation (6.71) first we can write

Iε1(φ
ε,h) + Iε2(φ

ε,h) =ρw

∫ T

0

∫
Ωε

f

Φ
∂Sε

f

∂t

(∫ min(t+h,T )

max(t,h)

h∂−hθεf (x, τ)dτ

)
dxdt

+ρw

∫ T

0

∫
Ωε

m

ϕε∂S
ε
m

∂t

(∫ min(t+h,T )

max(t,h)

h∂−hθεm(x, τ)dτ

)
dxdt.

Applying Lemma 15 it follows that

Iε1(φ
ε,h) + Iε2(φ

ε,h) =ρw

∫ T

h

∫
Ωε

f

Φh∂−hθεf (x, t)

(∫ t

t−h

∂Sε
f

∂τ
dτ

)
dxdt

+ρw

∫ T

h

∫
Ωε

m

ϕεh∂−hθεm(x, t)

(∫ t

t−h

∂Sε
m

∂τ
dτ

)
dxdt

=ρw

∫ T

h

∫
Ωε

f

Φ
(
θεf (x, t)− θεf (x, t− h)

) (
Sε
f (x, t)− Sε

f (x, t− h)
)
dxdt

+ρw

∫ T

h

∫
Ωε

m

ϕε (θεm(x, t)− θεm(x, t− h)) (Sε
m(x, t)− Sε

m(x, t− h)) dxdt.
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Since β is a monotone function, we obtain by using (A.1-d)

Iε1(φ
ε,h) + Iε2(φ

ε,h) ≥ ϕmρw[

∫ T

h

∫
Ωε

f

(
θεf (x, t)− θεf (x, t− h)

) (
Sε
f (x, t)− Sε

f (x, t− h)
)
dxdt

+

∫ T

h

∫
Ωε

m

(θεm(x, t)− θεm(x, t− h)) (Sε
m(x, t)− Sε

m(x, t− h)) dxdt]

= ϕmρw

∫ T

h

∫
Ω

(θε(x, t)− θε(x, t− h)) (Sε(x, t)− Sε(x, t− h)) dxdt.

(6.78)

Next, we estimate the right-hand side of (6.71) with the test function φε,h and taking

into account (6.2) as

|Iε3(φε,h) + Iε4(φ
ε,h) + Iε5(φ

ε,h)|

≤∥K
(
Λw(S

ε
f , P

ε
f )∇P ε

f − A(Sε
f , P

ε
f )∇θεf − λw(S

ε
f )ρ

2
wg
)
∥L2(Ωε,T

f ) · ∥∇φ
ε,h∥L2(Ωε,T

f )

+ε∥kε(Λw(S
ε
m, P

ε
m)∇P ε

m − A(Sε
m, P

ε
m)∇θεm − λw(S

ε
m)ρ

2
w

1

ε
g)∥L2(Ωε,T

m ) · ε∥∇φ
ε,h∥L2(Ωε,T

m ).

(6.79)

In a first step we use (A.1-d), (A.3) and (A.6), and apply the a priori estimates (6.33) and

(6.35) to obtain the estimates

∥K
(
Λw(S

ε
f , P

ε
f )∇P ε

f − A(Sε
f , P

ε
f )∇θεf − λw(S

ε
f )ρ

2
wg
)
∥L2(Ωε,T

f )

≤ C1∥∇P ε
f ∥L2(Ωε,T

f ) + C2∥∇θεf∥L2(Ωε,T
f ) + C3 ≤ C4, (6.80)

ε∥kε(Λw(S
ε
m, P

ε
m)∇P ε

m − A(Sε
m, P

ε
m)∇θεm − λw(S

ε
m)ρ

2
w

1

ε
g)∥L2(Ωε,T

m )

≤ C1ε∥∇P ε
m∥2L2(Ωε,T

m )
+ C2ε∥∇θεm∥2L2(Ωε,T

m )
+ C3 ≤ C5, (6.81)

where C1 = kMλMρM , C2 =
kMλMρ2M
λmρm

and C3 = kMλMρ
2
M |g|T 1/2|Ω|1/2. From (6.79) by

using (6.80), (6.81), (6.74) and (6.75) we have

|Iε3(φε,h) + Iε4(φ
ε,h) + Iε5(φ

ε,h)| ≤Ch. (6.82)

Next, we can estimate by using (A.7) and the estimate (6.73):

|Iε6(φε,h)| ≤ ∥Fw∥L2(Q) · ∥φε,h∥L2(Q) ≤ Ch. (6.83)
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Finally, from (6.71), by taking into account (6.78), (6.82) and (6.83), and by using

the monotonicity of S 7→ β(S) we obtain for sufficiently small h > 0 the following estimate:∫ T

h

∫
Ω

(
θε(x, t)− θε(x, t− h)

)(
Sε(x, t)− Sε(x, t− h)

)
dxdt ≤ Ch. (6.84)

Remark 16 The estimate (6.84) can obviously be rewritten into the following estimates

for the individual subdomains of Ω:∫ T

h

∫
Ωε

f

(
θεf (x, t)− θεf (x, t− h)

)(
Sε
f (x, t)− Sε

f (x, t− h)
)
dxdt ≤ Ch, (6.85)∫ T

h

∫
Ωε

m

(
θεm(x, t)− θεm(x, t− h)

)(
Sε
m(x, t)− Sε

m(x, t− h)
)
dxdt ≤ Ch. (6.86)

Step 2.

From the definition of the function β it follows for a.e. (x, t) ∈ Ωε
f×]h, T [ by using (4.12)

in (A.4)

|θεf (x, t)− θεf (x, t− h)| = |
∫ Sε

f (x,t)

Sε
f (x,t−h)

√
λw(s)λg(s)P

′
c(s)ds ≤M |Sε

f (x, t)− Sε
f (x, t− h)|,

which along with (6.85) yields the estimate∫ T

h

∫
Ωε

f

|θεf (x, t)− θεf (x, t− h)|2dxdt ≤ Ch. (6.87)

Remark 17 It is easy to see that the following estimate can be established from (6.86)

analogously: ∫ T

h

∫
Ωε

m

|θεm(x, t)− θεm(x, t− h)|2dxdt ≤ Ch, (6.88)

so we have also on the whole Ω,∫ T

h

∫
Ω

|θε(x, t)− θε(x, t− h)|2dxdt ≤ Ch. (6.89)

Step 3.

Using the fact that the extension operator Πε from the fracture domain to the whole domain
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is defined by reflection (see [1]), the consequences of (6.84) and (6.87) are the estimates∫ T

h

∫
Ω

(
θ̃εf (x, t)− θ̃εf (x, t− h)

)(
S̃ε
f (x, t)− S̃ε

f (x, t− h)
)
dxdt ≤ Ch (6.90)

and ∫ T

h

∫
Ω

|θ̃εf (x, t)− θ̃εf (x, t− h)|2dxdt ≤ Ch, (6.91)

respectively.

Step 4.

Now we focus our attention to the sequence (θ̃εf )ε. Its space derivatives are bounded by

(6.51). On the other hand, regarding the time variable we have obtained the modulus of

continuity (6.91). Now we apply the result of [95, Theorem 3] to conclude that {θ̃εf : ε > 0}
is a relatively compact set in L2(Q). It follows that there exists θ ∈ L2(Q) such that,

possibly along a subsequence,

θ̃εf → θ strongly in L2(Q) and a.e. in Q. (6.92)

Now we define

S := S(θ). (6.93)

Due to the Hölder continuity of S given in (4.18) and the definition (6.93) we have

∥S̃ε
f − S∥L2(Q) ≤ C∥θ̃εf − θ∥τL2(Q)

and therefore with (6.92) we obtain, up to a subsequence,

S̃ε
f → S strongly in L2(Q) and a.e. in Q, (6.94)

which is the assertion of Proposition 6.

2

At this point we establish the additional two estimates that will be needed in the

subsequent Subsection.
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Corollary 2 For ε > 0 and for a sufficiently small h > 0, it holds∫ T

h

∫
Ω

|S̃ε
f (x, t)− S̃ε

f (x, t− h)|2dxdt ≤ Chτ , (6.95)

∫ T

h

∫
Ω

|Sε(x, t)− Sε(x, t− h)|2dxdt ≤ Chτ . (6.96)

The constant C is independent of ε and h, and τ is given by (A.5).

Proof. Concerning (6.96), we use the Hölder continuity of S = β−1 in (4.18) as well as the

Hölder inequality to get

|Sε(x, t)− Sε(x, t− h)| ≤ C|θε(x, t)− θε(x, t− h)|τ ,

and hence from (6.89) we conclude that∫ T

h

∫
Ω

|Sε(x, t)− Sε(x, t− h)|2dxdt ≤C
∫ T

h

∫
Ω

|θε(x, t)− θε(x, t− h)|2τdxdt

≤C
(∫ T

h

∫
Ω

|θε(x, t)− θε(x, t− h)|2dxdt
)τ

≤Chτ . (6.97)

The same argument can be applied by using (6.91) instead of (6.89) to establish

(6.95). Note that (6.95) and (6.96) represent the modula of continuity for the functions S̃ε
f

and Sε, respectively.

2

6.6.2 The compactness of Ṽ ε
f

The present Subsection is devoted to the proof of the following Proposition.

Proposition 7 Suppose (A.1-d) - (A.2-d), (A.3) - (A.7) and (A.8-d). Let the sequence

(Ṽ ε
f )ε be defined by (6.32), and let the function S be given in (6.93). There exists a function

P ∈ L2(0, T ;V ) such that, possibly along a subsequence,

Ṽ ε
f → ρg(S, P )S strongly in L2(Q) as ε→ 0. (6.98)

Proof.
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Following [14], we decompose the function V ε
f = V ε

f (S
ε
f , P

ε
f ) = ρg(S

ε
f , P

ε
f )S

ε
f as

V ε
f = W (P ε

f ) + U1(S
ε
f , P

ε
f ) + U2(S

ε
f , P

ε
f ), (6.99)

where it is denoted

W (P ε
f ) = ρg(S, P

ε
f )S,

U1(S
ε
f , P

ε
f ) = (Sε

f − S)ρg(S
ε
f , P

ε
f ),

U2(S
ε
f , P

ε
f ) = S

(
ρg(S

ε
f , P

ε
f )− ρg(S, P

ε
f )
)
,

with S ∈ L2(Q) given by (6.93) and (6.94). Then we can also write

Ṽ ε
f = W (P̃ ε

f ) + U1(S̃
ε
f , P̃

ε
f ) + U2(S̃

ε
f , P̃

ε
f ). (6.100)

The convergence result (6.98) will be established in four steps. First we show that the

second and the third summand in the representation (6.100) tend strongly to 0. Thereby

we are left with the task of proving the strong convergence of W (P̃ ε
f ) to the desired limit

ρg(S, P )S. This will be accomplished in further three steps. Namely, we begin by obtaining

the modulus of continuity for the sequence W (P ε
f ), and then we utilize the properties of

the extension operator in order to pass to the analogous conclusion for the family W (P̃ ε
f ).

Finally, a result from [5] is used to show the required compactness for the sequenceW (P̃ ε
f ).

Step 0.

By using the boundedness of the gas density in (A.6) we obtain

∥U1(S̃
ε
f , P̃

ε
f )∥L2(Q) ≤ ρM∥S̃ε

f − S∥L2(Q)

and hence, due to (6.94),

U1(S̃
ε
f , P̃

ε
f ) → 0 strongly in L2(Q). (6.101)

Next, (A.6) and the relations (2.23) and (2.24) give the estimate

|U2(S̃
ε
f , P̃

ε
f )| ≤max

p∈R
ρ′g(p)S|Pg(S̃

ε
f , P̃

ε
f )− Pg(S, P̃

ε
f )| ≤ ρMS|

∫ S̃ε
f

S

fw(s, P̃
ε
f )P

′
c(s)ds|.
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Now we employ Lemma 16 to conclude that

|U2(S̃
ε
f , P̃

ε
f )| ≤ C|S̃ε

f − S|δ a.e. in Q,

which means that, using (6.94),

U2(S̃
ε
f , P̃

ε
f ) → 0 strongly in L2(Q). (6.102)

Step 1.

As announced, our next step is to prove the following.

Lemma 18 (Modulus of continuity for W (P ε
f ))

There is a constant C independent of ε and h such that for ε > 0 and for a sufficiently

small h > 0, it holds∫ T

h

∫
Ωε

f

(
W (P ε

f (x, t))−W (P ε
f (x, t− h))

) (
P ε
f (x, t)− P ε

f (x, t− h)
)
dxdt ≤ Ch

δτ
2 , (6.103)

where τ and 0 < δ ≤ 1 are given by (A.5) and Lemma 16, respectively.

Proof of Lemma 18.

We consider the variational equation (6.10). Taking into account (6.1) and the de-

composition (6.99) we rewrite (6.10) as follows: for all ψ ∈ L2(0, T ;V )∫
Ωε,T

f

Φ
∂W (P ε

f )

∂t
ψdxdt+

∫
Ωε,T

f

Φ
∂
(
U1(S

ε
f , P

ε
f ) + U2(S

ε
f , P

ε
f )
)

∂t
ψdxdt+

∫
Ωε,T

m

ϕε∂V
ε
m

∂t
ψdxdt

=−
∫
Q

Λg(S
ε, P ε)Kε∇P ε · ∇ψdxdt−

∫
Q

A(Sε, P ε)Kε∇θε · ∇ψdxdt

+

∫
Q

λg(S
ε)ρg(S

ε, P ε)2Kεgε · ∇ψdxdt+
∫
Q

Fgψdxdt.

(6.104)

Denote the integral terms in the equality (6.71) by Jε
1(ψ), · · · , Jε

7(ψ), respectively.

Similarly as in Subsection 6.6.1, for ε > 0 and sufficiently small h > 0 we insert as a test

function in (6.104) the following function [14,103]:

ψε,h(x, t) =

∫ min(t+h,T )

max(t,h)

h∂−hP ε(x, τ)dτ. (6.105)

Remark 18 By repeating the arguments of the proof of Lemma 17, for ε > 0 and for
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h > 0 small enough one can obtain the uniform estimate

∥ψε,h∥L2(Q) + ∥∇ψε,h∥L2(Ωε,T
f ) + ε∥∇ψε,h∥L2(Ωε,T

m ) ≤Ch, (6.106)

where C is a constant independent of ε and h. In particular, ψε,h is a valid test function

for such ε and h by considering the boundary condition (6.6).

With the chosen test function we first have by applying Lemma 15

Jε
1(ψ

ε,h) =

∫ T

0

∫
Ωε

f

Φ
∂W (P ε

f )

∂t

(∫ min(t+h,T )

max(t,h)

h∂−hP ε
f (x, τ)dτ

)
dxdt

=

∫ T

h

∫
Ωε

f

Φh∂−hP ε
f (x, t)

(∫ t

t−h

∂(W (P ε
f ))

∂τ
dτ

)
dxdt

=

∫ T

h

∫
Ωε

f

Φ
[
P ε
f (x, t)− P ε

f (x, t− h)
] [

(W (P ε
f ))(x, t)− (W (P ε

f ))(x, t− h)
]
dxdt.

Further, the following decomposition is easily seen to hold a.e. in Ωε
f×]h, T [ (the x variable

is omitted in writing in this paragraph):

(W (P ε
f ))(t)− (W (P ε

f ))(t− h) =S(t)
[
ρg(S(t), P

ε
f (t))− ρg(S(t), P

ε
f (t− h))

]
+S(t)

[
ρg(S(t), P

ε
f (t− h))− ρg(S(t− h), P ε

f (t− h))
]

+ [S(t)− S(t− h)] ρg(S(t− h), P ε
f (t− h)).

We denote the summands in this decomposition by aε,h1 (x, t), aε,h2 (x, t) and aε,h3 (x, t), re-

spectively. It follows that

Jε
1(ψ

ε,h) = Aε,h
1 + Aε,h

2 + Aε,h
3 , (6.107)

where it is denoted for i ∈ {1, 2, 3}

Aε,h
i =

∫ T

h

∫
Ωε

f

Φ
[
P ε
f (x, t)− P ε

f (x, t− h)
]
aε,hi (x, t)dxdt.

We note that the first term in (6.107) appears, up to the function Φ, as the integral

term in (6.103):

Aε,h
1 =

∫ T

h

∫
Ωε

f

Φ
[
P ε
f (x, t)− P ε

f (x, t− h)
] [
W (P ε

f (x, t))−W (P ε
f (x, t− h))

]
dxdt. (6.108)
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Regarding the second term in (6.107), the following bound is valid a.e. in Ωε
f×]h, T [:

|aε,h2 (x, t)| ≤ ρM |S(x, t)||
∫ S(x,t)

S(x,t−h)

fw(s, P
ε
f (x, t− h))P ′

c(s)ds|.

From Lemma 16 we obtain

|aε,h2 (x, t)| ≤ C|S(x, t)− S(x, t− h)|δ

and this can be further estimated as

|aε,h2 (x, t)| ≤ C
(
|S(x, t)− S̃ε

f (x, t)|δ + |S̃ε
f (x, t)− S̃ε

f (x, t− h)|δ + |S̃ε
f (x, t− h)− S(x, t− h)|δ

)
.

This way we have

∥aε,h2 (x, t)∥2L2(h,T ;L2(Ωε
f ))

≤C
(
∥S(x, t)− S̃ε

f (x, t)∥2δL2(h,T ;L2(Ωε
f ))

+∥S̃ε
f (x, t)− S̃ε

f (x, t− h)∥2δL2(h,T ;L2(Ωε
f ))
+∥S̃ε

f (x, t− h)− S(x, t− h)∥2δL2(h,T ;L2(Ωε
f ))

)
.
(6.109)

The first and the third term in (6.109) tend to zero as ε → 0 (uniformly in h) because of

(6.94). For the second term in (6.109) we utilize the estimate (6.95), which is uniform in ε.

Hence we have for sufficiently small h and for ε < ε(h) (where ε(h) tends to 0 as h tends

to 0):

∥aε,h2 (x, t)∥L2(h,T ;L2(Ωε
f ))

≤ Ch
δτ
2 .

Now it holds for sufficiently small h and for ε < ε(h), taking into account (6.33)

|Aε,h
2 | ≤ϕM∥P ε

f (x, t)− P ε
f (x, t− h)∥L2(h,T ;L2(Ωε

f ))
· ∥aε,h2 (x, t)∥L2(h,T ;L2(Ωε

f ))

≤2ϕM∥P ε
f ∥L2(Ωε,T

f )Ch
δτ
2 ≤ Ch

δτ
2 , (6.110)

where C does not depend on ε neither on h.

The term Aε,h
3 is treated in a similar way. In fact, we have a.e. in Ωε

f×]h, T [:

|aε,h3 (x, t)| ≤ ρM |S(x, t)− S(x, t− h)|δ,

so it is

|Aε,h
3 | ≤ϕM∥P ε

f (x, t)− P ε
f (x, t− h)∥L2(h,T ;L2(Ωε

f ))
· ∥aε,h3 (x, t)∥L2(h,T ;L2(Ωε

f ))

≤2ϕM∥P ε
f ∥L2(Ωε,T

f )∥S(x, t)− S(x, t− h)∥δL2(h,T ;L2(Ωε
f ))
.



6.6 A compactness result for the fracture solutions 115

With the uniform estimates (6.33) and (6.96) we conclude that

|Aε,h
3 | ≤ Ch

δτ
2 , (6.111)

for any ε > 0 and for h small enough. Now we take into account (6.110) and (6.111) to

finally obtain from (6.107) for h small enough, and for ε < ε(h):

Jε
1(ψ

ε,h) = Aε,h
1 +O(h

δτ
2 ), as h→ 0. (6.112)

Next we consider the term Jε
2(ψ

ε,h). To this aim we apply the following decomposition

which is easy to verify:

U1(S
ε
f , P

ε
f ) + U2(S

ε
f , P

ε
f ) = Sε

f

(
ρg(S

ε
f , P

ε
f )− ρg(S, P

ε
f )
)
+ ρg(S, P

ε
f )
(
Sε
f − S

)
.

Let us denote the terms on the right-hand side of this equality by Bε
1(S

ε
f , P

ε
f ) and

Bε
2(S

ε
f , P

ε
f ), respectively. By using Lemma 15 we can write

Jε
2(ψ

ε,h) =

∫ T

h

∫
Ωε

f

Φ
[
P ε
f (x, t)− P ε

f (x, t− h)
]
·
[
Bε

1(S
ε
f , P

ε
f )(x, t)−Bε

1(S
ε
f , P

ε
f )(x, t− h)

]
dxdt

+

∫ T

h

∫
Ωε

f

Φ
[
P ε
f (x, t)− P ε

f (x, t− h)
]
·
[
Bε

2(S
ε
f , P

ε
f )(x, t)−Bε

2(S
ε
f , P

ε
f )(x, t− h)

]
dxdt.

In order to make use of the convergence result (6.94), we consider first the term

J̃ε
2(ψ

ε,h) :=

∫ T

h

∫
Ω

Φ
[
P̃ ε
f (x, t)− P̃ ε

f (x, t− h)
]
·
[
Bε

1(S̃
ε
f , P̃

ε
f )(x, t)−Bε

1(S̃
ε
f , P̃

ε
f )(x, t− h)

]
dxdt

+

∫ T

h

∫
Ω

Φ
[
P̃ ε
f (x, t)− P̃ ε

f (x, t− h)
]
·
[
Bε

2(S̃
ε
f , P̃

ε
f )(x, t)−Bε

2(S̃
ε
f , P̃

ε
f )(x, t− h)

]
dxdt

which can be estimated as

|J̃ε
2(ψ

ε,h)| ≤ 4ϕM∥P̃ ε
f ∥L2(Q)

(
∥Bε

1(S̃
ε
f , P̃

ε
f )∥L2(Q) + ∥Bε

2(S̃
ε
f , P̃

ε
f )∥L2(Q)

)
.

Now we notice that

Bε
1(S̃

ε
f , P̃

ε
f ) → 0 strongly in L2(Q),

Bε
2(S̃

ε
f , P̃

ε
f ) → 0 strongly in L2(Q),
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due to (A.6), (6.94) and Lemma 16 (as in (6.102)). Taking into account (6.51), this means

that, uniformly in h,

J̃ε
2(ψ

ε,h) → 0 as ε→ 0.

Since the extension is by reflection, we obtain

Jε
2(ψ

ε,h) → 0 as ε→ 0, uniformly in h. (6.113)

Next we look at the term Jε
3(ψ

ε,h). It can be handled in much the same way as

Jε
1(ψ

ε,h). Namely, upon applying Lemma 15, we can write

Jε
3(ψ

ε,h) =

∫ T

h

∫
Ωε

m

ϕε [P ε
m(x, t)− P ε

m(x, t− h)] [V ε
m(x, t)− V ε

m(x, t− h)] dxdt.

As before, now we decompose the function V ε
m a.e. in Ωε

m×]h, T [ as

V ε
m(t)− V ε

m(t− h) =Sε
m(t) [ρg(S

ε
m(t), P

ε
m(t))− ρg(S

ε
m(t), P

ε
m(t− h))]

+Sε
m(t) [ρg(S

ε
m(t), P

ε
m(t− h))− ρg(S

ε
m(t− h), P ε

m(t− h))]

+ [Sε
m(t)− Sε

m(t− h)] ρg(S
ε
m(t− h), P ε

m(t− h)).

With the summands in this decomposition denoted by eε,h1 (x, t), eε,h2 (x, t) and eε,h3 (x, t),

respectively, it holds

Jε
3(ψ

ε,h) = Eε,h
1 + Eε,h

2 + Eε,h
3 , (6.114)

where we set for i ∈ {1, 2, 3}

Eε,h
i =

∫ T

h

∫
Ωε

m

ϕε [P ε
m(x, t)− P ε

m(x, t− h)] eε,hi (x, t)dxdt.

Note that P 7→ ρg(S
ε
m, P ) is an increasing function by (A.6), the definition of the

function ω and (4.17). This yields

Eε,h
1 ≥ 0. (6.115)

Next, in the same manner as with the term Aε,h
2 , we have a.e. Ωε

m×]h, T [:

|eε,h2 (x, t)| ≤ ρM |Sε
m(x, t)| · |

∫ Sε
m(x,t)

Sε
m(x,t−h)

fw(s, P
ε
m(x, t− h))P ′

c(s)ds|,
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and then by using Lemma 16 one obtains

|eε,h2 (x, t)| ≤ C|Sε
m(x, t)− Sε

m(x, t− h)|δ.

Therefore we have for sufficiently small h:

|Eε,h
2 | ≤ϕM∥P ε

m(x, t)− P ε
m(x, t− h)∥L2(h,T ;L2(Ωε

m)) · ∥eε,h2 (x, t)∥L2(h,T ;L2(Ωε
m))

≤2ϕM∥P ε
m∥L2(Ωε,T

m ) · ∥S
ε
m(x, t)− Sε

m(x, t− h)∥δL2(h,T ;L2(Ωε
m)) (6.116)

≤Ch
δτ
2 , (6.117)

where the estimates (6.34) and (6.96) have been employed, and C is independent of ε and

h.

Lastly, let us consider the term Eε,h
3 which can be treated by the same arguments as

Aε,h
3 . Namely, we have a.e. in Ωε

m×]h, T [:

|eε,h3 (x, t)| ≤ ρM |Sε
m(x, t)− Sε

m(x, t− h)|δ,

so it is

|Aε,h
3 | ≤ϕM∥P ε

m(x, t)− P ε
m(x, t− h)∥L2(h,T ;L2(Ωε

m)) · ∥eε,h3 (x, t)∥L2(h,T ;L2(Ωε
m))

≤2ϕM∥P ε
m∥L2(Ωε,T

m ) · ∥S
ε
m(x, t)− Sε

m(x, t− h)∥δL2(h,T ;L2(Ωε
m)).

With the uniform estimates (6.34) and (6.96) we conclude that for h small enough,

|Eε,h
3 | ≤ Ch

δτ
2 . (6.118)

Now we take into account (6.115), (6.117) and (6.118) to finally obtain from (6.114) for h

small enough:

Jε
3(ψ

ε,h) = Eε,h
1 +O(h

δτ
2 ), as h→ 0. (6.119)

Lastly we consider the terms on the right-hand side of the equation (6.104). By

arguing as in the derivation of the estimates (6.82) and (6.83), we use (A.1-d), (A.3), (A.6)

and (A.7), the a priori estimates (6.33) and (6.35), as well as Remark 18 to establish the
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following estimates:

|Jε
4(ψ

ε,h) + Jε
5(ψ

ε,h) + Jε
6(ψ

ε,h)|

≤|
∫
Q

Kε
(
Λg(S

ε, P ε)∇P ε · ∇+ A(Sε, P ε)∇θε − λg(S
ε)ρg(S

ε, P ε)2gε
)
· ∇ψε,hdxdt|

≤∥K
(
Λg(S

ε
f , P

ε
f )∇P ε

f + A(Sε
f , P

ε
f )∇θεf − λg(S

ε
f )ρg(S

ε, P ε)2g
)
∥L2(Ωε,T

f ) · ∥∇ψ
ε,h∥L2(Ωε,T

f )

+ε∥kε(Λg(S
ε
m, P

ε
m)∇P ε

m + A(Sε
m, P

ε
m)∇θεm − λg(S

ε
m)ρg(S

ε, P ε)2
1

ε
g)∥L2(Ωε,T

m ) · ε∥∇ψ
ε,h∥L2(Ωε,T

m )

≤Ch, (6.120)

and

|Jε
7(ψ

ε,h)| = |
∫
Q

Fgψ
ε,hdxdt| ≤ ∥Fg∥L2(Q) · ∥ψε,h∥L2(Q) ≤ Ch. (6.121)

Now we collect the estimates for the integral terms in the equation (6.104), with the

test function (6.105). Namely, by taking into account (6.107), (6.114), (6.108), (6.110),

(6.111), (6.115), (6.117), (6.118), (6.120) and (6.121) we obtain for any sufficiently small

h > 0 and for ε < ε(h)∫ T

h

∫
Ωε

f

Φ
[
P ε
f (x, t)− P ε

f (x, t− h)
] [
W (P ε

f (x, t))−W (P ε
f (x, t− h))

]
dxdt ≤ Ch

δτ
2 .

Finally we note that the function P 7→ W (P ) = ρg(S, P )S is strictly increasing in {(x, t) ∈
Q;S(x, t) > 0} so we have by using (A.1-d) the estimate∫ T

h

∫
Ωε

f

[
P ε
f (x, t)− P ε

f (x, t− h)
] [
W (P ε

f (x, t))−W (P ε
f (x, t− h))

]
dxdt ≤ Ch

δτ
2 ,

as claimed. This completes the proof of Lemma 18.

2

Proof of Proposition 7 continued.

Step 2.

Remark 19 (Modulus of continuity for W (P̃ ε
f ))

Since the extension is by reflection [1], from (6.103) we conclude that there is a constant

C independent of ε and h, and 0 < τ < 1, 0 < δ ≤ 1 such that for sufficiently small ε > 0
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and h > 0, it holds∫ T

h

∫
Ω

(
W (P̃ ε

f (x, t))−W (P̃ ε
f (x, t− h))

)(
P̃ ε
f (x, t)− P̃ ε

f (x, t− h)
)
dxdt ≤ Ch

δτ
2 . (6.122)

Step 3. In order to prove the compactness for the sequenceW (P̃ ε
f ) we rely on the following

modification of [5, Lemma 1.9] (see also [14]).

Lemma 19 Suppose that the sequence (uε)ε converges weakly to u in L2(0, T ;H1(Ω)). Let

F = F (z, x, t) be a function defined by

F (z, x, t) = F1(z + b(z, x, t))F2(x, t),

where F1 is a continuous, monotone and bounded function in R, b ∈ L∞(R × Q), and

F2 ∈ L∞(Q), F2 ≥ 0 a.e. in Q. Assume that∫ T

h

∫
Ω

(
F (uε(x, t), x, t)− F (uε(x, t− h), x, t))

)(
uε(x, t)− uε(x, t− h)

)
dxdt ≤ Chα

for some α > 0 and with a constant C independent of h and ε. Then F (uε, x, t) converges

to F (u, x, t) strongly in L2(Q).

Proof.

One can follow similar arguments as in the proof of [5, Lemma 1.9] (see [5, Re-

mark 1.10]), to conclude that F (uε, x, t) converges to F (u, x, t) strongly in L1(Q). Since

in addition the sequence F (uε, x, t) is uniformly bounded in L∞(Q), by the interpolation

inequality for Lp-spaces we conclude that convergence is valid in L2(Q). 2

From the uniform estimate for the global pressure in (6.51) we conclude that there

exists a function P ∈ L2(0, T ;V ) such that, along a subsequence,

P̃ ε
f ⇀ P weakly in L2(0, T ;V ).

Now we apply Lemma 19 to P̃ ε
f and W (P̃ ε

f ). To that aim, the conditions on the functions

F1(p) = ρg(p) and b(z, x, t) = Pc(0) +
∫ S(x,t)

0
fw(s, z)P

′
c(s)ds are verified by using our

assumptions on the coefficients. Eventually this yields

W (P̃ ε
f ) → ρg(S, P )S strongly in L2(Q). (6.123)
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Taking into account (6.100) and combining (6.123) with the convergence results (6.101)

and (6.102) completes the proof of Proposition 7.

2

6.7 Proof of the homogenization result

6.7.1 Passage to the limit

Now we formulate the convergence results for the sequences of solutions of the micro-

scopic problem parametrized by ε. This will enable us to pass to the limit as ε→ 0 in the

weak equations (6.9)-(6.10). More precisely, similarly as in Chapter 5, the results on the

two-scale convergence cited in Subsection 3.2.1 are now going to be applied to the uniform

a priori estimates for the functions P ε, θε, Sε, V ε and for the corresponding extensions

of the solutions in the fractures, which were established in Section 6.4. Furthermore, we

employ the compactness results from the Section 6.6.

Accordingly, the a priori estimate (6.51) and Theorem 2 imply that there exist P, θ ∈
L2(0, T ;V ) and P1(x, t, y), θ1(x, t, y) ∈ L2(Q;H) such that as ε→ 0, up to a subsequence,

P̃ ε
f ⇀ P weakly in L2(0, T ;V ) and P̃ ε

f
2s
⇀ P, (6.124)

θ̃εf ⇀ θ weakly in L2(0, T ;V ) and θ̃εf
2s
⇀ θ, (6.125)

∇P̃ ε
f

2s
⇀ ∇P +∇yP1(x, t, y), (6.126)

∇θ̃εf
2s
⇀ ∇θ +∇yθ1(x, t, y). (6.127)

The limit θ is identified as θ = β(S) by using (6.92) and (6.93).

Regarding the microscopic solutions in the matrix, from the a priori estimates (6.34)

and the boundedness of the saturation and ρg by using Theorem 1 we obtain

χε
mP

ε
m

2s
⇀ p(x, t, y), (6.128)

χε
mθ

ε
m

2s
⇀ ϑ(x, t, y), (6.129)

χε
mS

ε
m

2s
⇀ s(x, t, y), (6.130)

χε
mV

ε
m

2s
⇀ v(x, t, y), (6.131)

for some p, ϑ, s, v ∈ L2(Q;L2
p(Ym)). Moreover, the uniform estimates (6.34) and (6.35)
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along with Theorem 2 imply that p, ϑ ∈ L2(Q;H1
p (Ym)) and

εχε
m∇P ε

m
2s
⇀ ∇yp(x, t, y), (6.132)

εχε
m∇θεm

2s
⇀ ∇yϑ(x, t, y). (6.133)

Remark 20 It is easy to see that

χε
r(x) = χr(

x

ε
)

2s
⇀ χr(y), r ∈ {f,m}.

Our next step is to pass to the limit in the variational formulation (6.9)-(6.10). First

the equation (6.9) is treated. We choose suitable test function following [2]. Namely, the

test function in the equation (6.9) is taken in the form

φw(x,
x

ε
, t) = φ(x, t) + εζ(x,

x

ε
, t) = φ(x, t) + εζ1(x, t)ζ2(

x

ε
),

for some φ ∈ D(Q), ζ1 ∈ D(Q) and ζ2 ∈ C∞
p (Y ). In this way one obtains

ρw

∫
Q

Φχε
f S̃

ε
f

[
∂tφ(x, t) + ε∂tζ(x,

x

ε
, t)
]
dxdt

+ρw

∫
Q

ϕ(
x

ε
)χε

mS
ε
m

[
∂tφ(x, t) + ε∂tζ(x,

x

ε
, t)
]
dxdt

+

∫
Q

χε
fK
[
Λw(S̃

ε
f , P̃

ε
f )∇P̃ ε

f − A(S̃ε
f , P̃

ε
f )∇θ̃εf − λw(S̃

ε
f )ρ

2
wg
]
· [∇φ+ ε∇xζ +∇yζ] dxdt

+ε

∫
Ωε,T

m

k(
x

ε
)

[
Λw(S

ε
m, P

ε
m)k(

x

ε
)ε∇P ε

m − A(Sε
m, P

ε
m)ε∇θεm − λw(S

ε
m)ρ

2
wε

1

ε
g

]
· [∇φ+ ε∇xζ +∇yζ] dxdt

=

∫
Q

Fw

[
φ(x, t) + εζ(x,

x

ε
, t)
]
dxdt.

(6.134)

We denote the integral terms in the expression (6.134) by Iw1 , · · · , Iw5 , respectively.
The passage to the limit as ε → 0 in Iw1 and Iw2 is done using the strong convergence in

Proposition 6, the boundedness of the porosity and the saturation, Remark 20 and the

two-scale convergence result (6.130). On the other hand, the terms Iw3 , I
w
4 and Iw5 are

treated by employing the a priori estimates (6.51) and (6.35), the two-scale convergence

results (6.126) and (6.127), and the Lebesgue theorem. Regarding the latter result, let us

remark that the almost everywhere convergence of the global pressure function P̃ ε
f can be

established only on a subset of Q where S > 0, as already noted in Chapter 4. Nevertheless,
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due to the continuity and the boundedness of the coefficients, the strong convergence result

from Proposition 6 and the weak convergence in (6.124), we can apply Lemma 7 which

assures the pointwise convergence of all nonlinear functions of S̃ε
f and P̃ ε

f and accordingly

the Lebesgue theorem can be applied.

After taking the two-scale limit in the equation (6.134) one gets

ρw|Yf |
∫
Q

Φ(x)S∂tφ(x, t)dxdt+ ρw

∫
Q

∫
Ym

ϕ(y)s(x, y, t)∂tφ(x, t)dydxdt

+

∫
Q

∫
Yf

Λw(S, P )K(x)(∇P +∇yP1(x, y, t)) · [∇φ(x, t) +∇yζ(x, y, t)]dydxdt

−
∫
Q

∫
Yf

A(S, P )K(x)(∇θ +∇yθ1(x, y, t)) · [∇φ(x, t) +∇yζ(x, y, t)]dydxdt

−
∫
Q

∫
Yf

λw(S)ρ
2
wK(x)g · [∇φ+∇yζ]dydxdt =

∫
Q

Fwφ(x, t)dxdt.

(6.135)

Now we handle the equation (6.10) in much the same way, with corresponding application of

the Proposition 7 and the two-scale convergence result (6.131). Accordingly, upon inserting

the appropriate test function and passing to the limit when ε→ 0 in (6.10), we obtain

− |Yf |
∫
Q

Φ(x)Sρg(S, P )∂tφ(x, t)dxdt−
∫
Q

∫
Ym

ϕ(y)v(x, y, t)∂tφ(x, t)dydxdt

+

∫
Q

∫
Yf

Λg(S, P )K(x)(∇P +∇yP1(x, y, t)) · [∇φ(x, t) +∇yζ(x, y, t)]dydxdt

+

∫
Q

∫
Yf

A(S, P )K(x)(∇θ +∇yθ1(x, y, t)) · [∇φ(x, t) +∇yζ(x, y, t)]dydxdt

−
∫
Q

∫
Yf

λg(S)ρg(S, P )
2K(x)g · [∇φ+∇yζ]dydxdt =

∫
Q

Fgφ(x, t)dxdt.

(6.136)

In our next step we aim to identify the functions P1 and θ1. To this end, we set φ ≡ 0

in the equations (6.135) and (6.136) and sum the two equations. This yields∫
Yf

K(x)(∇P (x, t)−B(S, P )g) ·∇yζ2(y)dy = −
∫
Yf

K(x)∇yP1(x, y, t) ·∇yζ2(y)dy, (6.137)

where the coefficient B is given by (6.66). From this equation we obtain P1 in a form given

by (6.64).
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Finally, by setting φ ≡ 0 in (6.135) and by taking into account (6.66) we get

(
Λw(S, P )B(S, P )− λw(S)ρ

2
w

) ∫
Yf

K(x)g · ∇yζ2(y)dy

= A(S, P )

(∫
Yf

K(x)∇θ(x, t) · ∇yζ2(y)dy +

∫
Yf

K(x)∇yθ1(x, y, t) · ∇yζ2(y)dy

)
.

Denoting Λ(S, P ) = Λw(S, P ) + Λg(S, P ) and using the fact that

Λw(S, P )B(S, P )− λw(S)ρ
2
w =

Λw(S, P )Λg(S, P )

ω(S, P )Λ(S, P )
(ρg(S, P )− ρw)

and the expression (6.67), we can write∫
Yf

K(x)(∇θ(x, t)− E(S, P )g) · ∇yζ2(y)dy = −
∫
Yf

K(x)∇yθ1(x, y, t) · ∇yζ2(y)dy.

This equation leads to the form of the function θ1 given by the formula (6.65).

In our final step towards establishing the homogenized fracture flow equations, we

choose ζ2 ≡ 0 in (6.135) and (6.136), take into account the representations (6.64) and

(6.65) and use the definition of the homogenized tensor KH given by (6.16) and (6.17). In

this way, for all φ ∈ D(Q) we obtain

− ρw

∫
Q

ΦH(x)∂tSφ(x, t)dxdt+

∫
Q

Λw(S, P )KH∇P (x, t) · ∇φ(x, t)dxdt

−
∫
Q

A(S, P )KH∇θ(x, t) · ∇φ(x, t)dxdt−
∫
Q

λw(S)ρ
2
wKHg · ∇φ(x, t)dxdt

= ρw

∫
Q

∫
Ym

ϕ(y)∂ts(x, y, t)φ(x, t)dydxdt+

∫
Q

Fwφ(x, t)dxdt

(6.138)

and∫
Q

ΦH(x)∂t(ρg(S, P )S)φ(x, t)dxdt+

∫
Q

Λg(S, P )KH∇P (x, t) · ∇φ(x, t)dxdt

+

∫
Q

A(S, P )KH∇θ(x, t) · ∇φ(x, t)dxdt−
∫
Q

λg(S)ρg(S, P )
2KHg · ∇φ(x, t)dxdt

= −
∫
Q

∫
Ym

ϕ(y)∂tv(x, y, t)φ(x, t)dydxdt+

∫
Q

Fgφ(x, t)dxdt.

(6.139)

As explained in Section 3.3, in a double porosity model the transport of fluids occurs

primarily through the fractures. The effective flow in fractures for our model is described by

the system (6.138)-(6.139), with the corresponding boundary and initial conditions (6.18)-
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(6.20). This system is coupled to the matrix through locally defined macroscopic matrix

source terms, appearing as the first terms on right-hand sides of the equations (6.138) and

(6.139), that represent matrix-to-fracture flow; at this point, the corresponding term in

(6.139) contains a non-identified two-scale limit v, defined by (6.131). Furthermore, as

announced in Section 6.5, at the macroscopic level a set of equations arises to describe the

flow within each matrix block.

What is left in the proof of Theorem 10 is to derive the effective matrix system

(6.21) - (6.24) which is satisfied by the two-scale limits of matrix solutions p, ϑ, s and v,

given by (6.128)-(6.133); in addition, one needs to identify the functions ϑ and v. Both are

accomplished in the following Subsection. Then the proof of Theorem 10 will be completed.

6.7.2 The identification of the limit term

Due to the nonlinearities and to the strong coupling of the system, the notion of the

two-scale convergence does not provide an explicit form for the source-like term generated

by the flow in the matrix which models the influence of the matrix flow on the flow in the

fractures at the macroscopic level. To overcome this difficulty, we make use of the appro-

priate dilation operator presented in Subsection 3.3.1, and the corresponding definitions

and results cited therein. Namely, as in [14, 25, 39, 54, 103], the weak matrix solutions of

the microscopic system are transformed using the dilation operator and the asymptotic

behavior of the dilated solutions is deduced. Finally, after passing to the limit as ε→ 0 in

the system for the dilated functions, the effective matrix equations are established.

The outline of the process is the following. First we find the equations satisfied by

the dilated functions pεm, ϑ
ε
m, s

ε
m, v

ε
m in Ω × Ym×]0, T [. The uniform a priori estimates

ensure the weak convergence of the dilations as ε→ 0. By applying Lemma 2, these weak

limits are recognized as the two-scale limits of matrix solutions: p, ϑ, s, v, respectively. On

the other hand, we note that for any ε the restrictions of the dilated functions to a fixed

translation of εY are independent of x. Thus, for ε > 0 and for each fixed x0 ∈ Ω, we

define the corresponding functions pεm,x0
, ϑε

m,x0
, sεm,x0

, vεm,x0
of variables y and t. For each

fixed x0 ∈ Ω, we establish enough compactness results to find the equations satisfied by

their limits. Lastly, the equations for the limits p, ϑ, s, v are deduced and the limits ϑ and

v are identified.

Accordingly, the dilated functions (see Definition 2) will be denoted by

pεm := DεP ε
m, ϑ

ε
m := Dεθεm, s

ε
m := DεSε

m, v
ε
m := DεV ε

m. (6.140)

Obviously it holds ϑε
m = β(sεm) and v

ε
m = ρg(s

ε
m, p

ε
m)s

ε
m.
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Lemma 20 Let ε > 0. The dilated functions defined by (6.140) satisfy the problem

−ρwϕ(y)
∂sεm
∂t

− divy
(
k(y)

[
Λw(s

ε
m, p

ε
m)∇pεm − A(sεm, p

ε
m)∇ϑε

m − λw(s
ε
m)ρ

2
wg
])

= DεFw,

(6.141)

ϕ(y)
∂vεm
∂t

− divy
(
k(y)

[
Λg(s

ε
m, p

ε
m)∇pεm + A(sεm, p

ε
m)∇ϑε

m − λg(s
ε
m)ρg(s

ε
m, p

ε
m)

2g
])

= DεFg

(6.142)

in L2(0, T ;H−1(Ym)) for a.e. x ∈ Ω.

Proof. Let us fix x̂ ∈ Ω and set cε(x̂) = εj, j ∈ Zd. For x ∈ Rd and t ∈]0, T [ we define

ζε1(x̂, x, t) =

ζ(
x−cε(x̂)

ε
, t) for x ∈ εYm + cε(x̂),

0 otherwise ,

where ζ ∈ H1(0, T ;L2(Ym))∩L2(0, T ;C∞
c (Ym)). Now we consider the weak equation (6.9)

with a test function in the form

φε(x, t) = ζε1(x̂, x, t).

By using the definitions (6.1) and (6.2), the equation (6.9) hence becomes

−ρw
∫ T

0

∫
ε(Ym+j)

ϕε(x)∂tS
ε
mφ

ε(x, t)dxdt

+ε2
∫ T

0

∫
ε(Ym+j)

kε(x)

[
Λw(S

ε
m, P

ε
m)∇P ε

m − A(Sε
m, P

ε
m)∇θεm − λw(S

ε
m)ρ

2
w

1

ε
g

]
· ∇φε(x, t)dxdt

=

∫ T

0

∫
ε(Ym+j)

Fwφ
ε(x, t)dxdt.

(6.143)

Upon performing a change of variables x = εy + cε(x̂) = ε(y + j), from (6.143) we obtain

−ρw
∫ T

0

∫
Ym

ϕ(y)∂ts
ε
mζ(y, t)dydt

+

∫ T

0

∫
Ym

k(y)
[
Λw(s

ε
m, p

ε
m)∇pεm − A(sεm, p

ε
m)∇ϑε

m − λw(s
ε
m)ρ

2
wg
]
· ∇yζ(y, t)dydt

=

∫ T

0

∫
Ym

DεFw(x̂, y, t)ζ(y, t)dydt,
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where the periodicity of the functions ϕε and kε has been used and Lemma 1 has been

applied. Therefore, we have established (6.141). The equation (6.142) can be derived

analogously, which completes the proof.

2

Remark 21 The boundary and initial conditions for the system (6.141)-(6.142) are as

follows [14,39,54,103]:

pεm(x, y, t) =D
εP̃ ε

f (x, y, t), ϑε
m(x, y, t) = Dεθ̃εf (x, y, t)

in H1/2(Γfm) for (x, t) ∈ Q,
(6.144)

pεm(x, y, 0) = Dεp0(x, y), ϑε
m(x, y, 0) = Dεθ0(x, y) in Ω× Ym. (6.145)

It will cause no confusion that in (6.145) we use again the notation Dε, this time for

the dilation operator defined for L2(Ω)-functions which maps them to the functions in

L2(Ω× Ym) by the formula

(Dεφ)(x, y) = φ(εy + cε(x)).

We note that the problem (6.141)-(6.142) with the non-homogenous Dirichlet boundary

conditions (6.144)-(6.145) has at least one weak solution due to Theorem 5. The sys-

tem (6.141)-(6.142), (6.144)-(6.145) corresponds to a family of problems in Ym×]0, T [,

parametrized by x and depending on x through the source terms on the right-hand side

of the equations (6.141) and (6.142) as well as through the boundary data in (6.144) and

the initial data in (6.145).

The following Lemma contains the uniform a priori estimates for the dilated solutions.

Lemma 21 Let (pεm, ϑ
ε
m)ε be the sequence of solutions to (6.141)-(6.142), (6.144)-(6.145).

There exists a constant C independent of ε such that

∥pεm∥L2(Q;H1
p(Ym)) + ∥ϑε

m∥L2(Q;H1
p(Ym)) ≤ C, (6.146)

∥∂t(ϕsεm)∥L2(Q;H−1
p (Ym)) + ∥∂t(ϕvεm)∥L2(Q;H−1

p (Ym)) ≤ C. (6.147)

Moreover, 0 ≤ sεm ≤ 1 a.e. in Q× Ym.

Proof. The estimate (6.146) follows immediately from the estimates (6.34) and (6.35) by

applying Lemma 1. On the other hand, by choosing a test function φ ∈ L2(0, T ;H1
0 (Ω

ε
m))

extended by zero outside the matrix part in the weak formulation (6.9), the estimates
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(6.34) and (6.35) yield the uniform bound

∥∂t(ϕεSε
m)∥L2(0,T ;H−1(Ωε

m)) + ∥∂t(ϕεV ε
m)∥L2(0,T ;H−1(Ωε

m)) ≤ C

by arguing as in the proof of Proposition 5. Now (6.147) can be obtained by employing

Lemma 1. This finishes the proof of Lemma 21.

2

By combining the uniform estimate (6.146) with the two-scale convergence results

(6.128) and (6.129) through Lemma 2 for the functions pεm and ϑε
m, and analogously by

using the boundedness of the saturation and of the gas density along with the convergence

results (6.130) and (6.131) and Lemma 2 for sεm and vεm, the following results on the

convergence of the dilated solutions can be established.

Corollary 3 Let (pεm, ϑ
ε
m)ε be the sequence of solutions to (6.141)-(6.142), (6.144)-(6.145)

and let the functions p, ϑ, s, v be defined by (6.128)-(6.131). Then it holds as ε→ 0, up to

a subsequence,

pεm ⇀ p weakly in L2(Q;H1(Ym)), (6.148)

ϑε
m ⇀ ϑ weakly in L2(Q;H1(Ym)), (6.149)

sεm ⇀ s weakly in L2(Q;L2(Ym)), (6.150)

vεm ⇀ v weakly in L2(Q;L2(Ym)). (6.151)

Hence the limit behavior of the dilated functions is known by Corollary 3. Still, the

established weak convergence does not suffice to pass to the limit in the equations for the

dilated functions (6.141)-(6.142) neither to identify the limits ϑ and v.

In order to resolve this holdback, we modify the idea of [14, 54] (see also [39]) which

is based on the observation that for any ε the dilated functions are constant in x on a

fixed block of an ε-reservoir. Namely, for a fixed x0 ∈ Ω and for ε > 0 we write Cε(x0) for

an ε-cell containing x0 and we set Cε
m(x0) = Cε(x0) ∩ Ωε

m. The construction of ε-reservoir

assures that Cε(x0) is well defined a.e. in Ω. We denote by k(x0, ε) ∈ Zd such that

Cε(x0) = ε(Y + k(x0, ε)). Now for fixed x0 ∈ Ω and ε > 0, we consider the restrictions of

the dilated functions to the ε-cell Cε(x0). More precisely, we define for y ∈ Ym, t ∈]0, T [:

f ε
m,x0

(y, t) = f ε
m(x, y, t), for x ∈ Cε(x0), (6.152)

where f stands for p, ϑ, s and v. Since the dilated functions are constant in x in Cε(x0), as
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noted before, the definition (6.152) does not depend on the choice of x. Moreover, we have

f ε
m,x0

(y, t) = f ε
m(x0, y, t) for all ε > 0. The key feature of the newly introduced functions is

that they possess more compactness than the dilated functions introduced by (6.140), as

will be established in what follows.

First, from the definition of the functions pεm,x0
, ϑε

m,x0
it is clear that they solve the

problem (6.141)-(6.142), (6.144)-(6.145) in the space L2(0, T ;H−1(Ym)).

Remark 22 For a fixed x0 ∈ Ω, the boundary and initial conditions (6.144)-(6.145) applied

to the system satisfied by pεm,x0
, ϑε

m,x0
become (see Remark 21)

pεm,x0
(y, t) = DεP̃ ε

f (x0, y, t), ϑε
m,x0

(y, t) = Dεθ̃εf (x0, y, t)

in H1/2(Γfm) for t ∈]0, T [,
(6.153)

pεm,x0
(y, 0) = Dεp0(x0, y), ϑε

m,x0
(y, 0) = Dεθ0(x0, y) in Ym, (6.154)

with Dε in (6.154) denoting the dilation operator acting on the functions defined in Q.

Consequently, one can obtain the following uniform estimates.

Lemma 22 For x0 ∈ Ω and ε > 0 there is a constant C(x0) which does not depend on ε

such that

∥pεm,x0
∥L2(0,T ;H1

p(Ym)) + ∥ϑε
m,x0

∥L2(0,T ;H1
p(Ym)) ≤ C(x0), (6.155)

∥∂t(ϕsεm,x0
)∥L2(0,T ;H−1

p (Ym)) + ∥∂t(ϕvεm,x0
)∥L2(0,T ;H−1

p (Ym)) ≤ C(x0). (6.156)

In addition, 0 ≤ sεm,x0
≤ 1 a.e. in Ym×]0, T [.

Proof. We are dealing with the matrix problem (6.141)-(6.142), (6.144)-(6.145) with the

non-homogenous Dirichlet boundary data and hence we use the same technique as in

Proposition 2. This yields an estimate analogous to (4.65), involving for a.e. x ∈ Ω the

corresponding norms of the dilatations of the extended fracture solutions, in variables y

and t. First we note that (A.7) and the a priori estimate (6.51), by applying Lemma 1,

guarantee the following bounds for a.e. x ∈ Ω, uniform in ε:

∥DεFw(x, ·, ·)∥L2(Ym×]0,T [) + ∥DεFg(x, ·, ·)∥L2(Ym×]0,T [) ≤ C(x);

∥DεP̃ ε
f (x, ·, ·)∥L2(0,T ;H1(Ym)) ≤ C(x).

At this point we need to pose the additional uniform regularity conditions on the fracture

solutions as follows: we assume that there exists a constant C which does not depend on
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ε such that

∥Pc(S̃
ε
f )∥L2(0,T ;H1(Ω)) ≤ C, (6.157)

∥∂tP̃ ε
f ∥L2(Q) + ∥∂t(Pc(S̃

ε
f ))∥L2(Q) ≤ C, (6.158)

∥P̃ ε
f ∥L∞(0,T ;L2(Q)) + ∥Pc(S̃

ε
f )∥L∞(0,T ;L2(Q)) ≤ C. (6.159)

The assumptions (6.157)-(6.159) yield the following uniform estimates for a.e. x:

∥DεP̃ ε
gf (x, ·, ·)∥L2(0,T ;H1(Ym)) + ∥DεP̃ ε

wf (x, ·, ·)∥L2(0,T ;H1(Ym)) ≤ C(x),

∥∂tDεP̃ ε
gf (x, ·, ·)∥L1(Ym×]0,T [) + ∥∂tDεP̃ ε

wf (x, ·, ·)∥L1(Ym×]0,T [) ≤ C(x),

∥DεP̃ ε
gf (x, ·, ·)∥L∞(0,T ;L1(Ym)) + ∥DεP̃ ε

wf (x, ·, ·)∥L∞(0,T ;L1(Ym)) ≤ C(x).

As argued in Remarks 5 and 8, these estimates plugged into the inequality of the type

(4.65) enable us to establish the uniform bounds (6.155) and (6.156). 2

The a priori estimates (6.155) and (6.156) yield the corresponding weak convergence

results. Besides, the following compactness result is established by virtue of Lemma 14,

that is, by [6, Lemma 4.2].

Lemma 23 Under the assumptions (A.1-d) - (A.2-d), (A.3) - (A.7) and (A.8-d), for a.e.

x0 ∈ Ω the sets {sm,x0 : ε > 0} and {vm,x0 : ε > 0} are compact in L2(Ym×]0, T [).

Proof. We follow the lines of the proof of Lemma 13. Namely, by arguing as in the proof

of Lemma 12, one first gets the Hölder continuity of sm,x0 and vm,x0 in terms of pm,x0 and

ϑm,x0 . Then the uniform a priori estimate (6.155) is taken into account to validate the

condition 2. of Lemma 14. Finally, the estimate (6.156) shows directly the third condition

in Lemma 14 so this Lemma can be applied to the sequences sm,x0 and vm,x0 , which gives

the desired conclusion. 2

Finally, in next Lemma we compile the convergence results for the functions

pεm,x0
, ϑε

m,x0
, sεm,x0

and vεm,x0
which follow from Lemmata 22 and 23.

Lemma 24 Let x0 ∈ Ω. The following convergence results hold true as ε → 0, up to a
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subsequence (which depends on x0):

pεm,x0
⇀ px0 weakly in L2(0, T ;H1

p (Ym)), (6.160)

ϑε
m,x0

⇀ ϑx0 weakly in L2(0, T ;H1
p (Ym)) and strongly in L2(Ym×]0, T [), (6.161)

sεm,x0
→ sx0 strongly in L2(Ym×]0, T [), (6.162)

vεm,x0
→ vx0 strongly in L2(Ym×]0, T [), (6.163)

∂t(ϕs
ε
m,x0

)⇀ ∂t(ϕsx0) weakly in L2(0, T ;H−1(Ym)), (6.164)

∂t(ϕv
ε
m,x0

)⇀ ∂t(ϕvx0) weakly in L2(0, T ;H−1(Ym)), (6.165)

where ϑx0 = β(sx0) and vx0 = ρg(sx0 , px0)sx0.

Let us note that the identification of vx0 in Lemma 24 is achieved by employing the con-

vergences (6.160) and (6.162) and the boundedness and continuity of the coefficients, and

by applying Lemma 5.

The convergence results of Lemma 24 allow for a fixed x0 ∈ Ω the passage to the

limit as ε→ 0 in the equations (6.141)-(6.142). As in Chapter 4, the terms which contain

the nonlinear functions of sm,x0 , pm,x0 are treated by applying Lemma 7. One passes to

the limit in the source term by employing the result (3.5). The passage to the limit in the

boundary conditions (6.153) is performed by the following result.

Lemma 25 Up to a subsequence, for a.e. x ∈ Ω it holds

Dεθ̃εf (x, y, t) → θ(x, t) in L2(0, T ;H1(Ym)), (6.166)

DεP̃ ε
f (x, y, t)⇀ P (x, t) in L2(0, T ;H1(Ym)), (6.167)

where the functions P and θ are defined by (6.124) and (6.125).

Proof. Let us write

Dεθ̃εf (x, y, t)− θ(x, t) =
(
Dεθ̃εf (x, y, t)−Dεθ(x, y, t)

)
+
(
Dεθ(x, y, t)− θ(x, t)

)
, (6.168)

DεP̃ ε
f (x, y, t)− P (x, t) =

(
DεP̃ ε

f (x, y, t)−DεP (x, y, t)
)
+
(
DεP (x, y, t)− P (x, t)

)
.

(6.169)

By using Lemma 1 it holds

∥Dεθ̃εf (x, y, t)−Dεθ(x, y, t)∥L2(Ω×Ym×]0,T [) = ∥θ̃εf (x, t)− θ(x, t)∥L2(Ωε,T
m ),

so due to the convergence result (6.54), the first summand in (6.168) converges strongly to
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0 in L2(Ω× Ym×]0, T [). The second term in (6.168) tends to zero in L2(Ω× Ym×]0, T [) by

(3.5). Further, we have from Lemma 1

∥∇yD
εθ̃εf (x, y, t)∥L2(Ω×Ym×]0,T [) = ε∥∇xθ̃

ε
f (x, t)∥L2(Ωε,T

m ) ≤ ε∥∇xθ̃
ε
f (x, t)∥L2(Q)

and hence, due to the uniform a priori estimates, it follows that ∇yD
εθ̃εf (x, y, t) →

0 = ∇yθ(x, t) in L2(Ω × Ym×]0, T [). Together, we have obtained Dεθ̃εf (x, y, t) →
θ(x, t) in L2(Q;H1(Ym)). Then we conclude that, along a subsequence, Dεθ̃εf (x, y, t) →
θ(x, t) for a.e. x ∈ Ω, strongly in L2(0, T ;H1(Ym)). Hence (6.166) is established.

Now we consider the global pressure term. Assuming that the limit S of the fracture

saturations defined by (6.93) is strictly positive a.e. in Q, we can obtain the a.e. in Q

convergence of P̃ ε
f to P by using the convergence results (6.94), (6.98) and (6.124) (as in

the proof of Lemma 5). Therefore the same arguments can be applied to P̃ ε
f as we have

done with θ̃εf . In this way we prove (6.167) and finish the proof of Lemma 25.

2

After passing to the limit as ε → 0 in the matrix problem (6.141)-(6.142),

(6.153)-(6.154) for fixed x0 ∈ Ω, the following system is obtained which is satisfied in

L2(0, T ;H−1(Ym)) :

−ρwϕ(y)∂tsx0 − divy
(
k(y)

[
Λw(sx0 , px0)∇ypx0 − A(sx0 , px0)∇yϑx0 − λw(sx0)ρ

2
wg
])

= Fw,

(6.170)

ϕ(y)∂tvx0 − divy
(
k(y)

[
Λg(sx0 , px0)∇ypx0 + A(sx0 , px0)∇yϑx0 − λg(sx0)ρg(sx0 , px0)

2g
])

= Fg,

(6.171)

which is complemented by the boundary and initial conditions

px0(y, t) = P (x0, t), ϑx0(y, t) = θ(x0, t) in H
1/2(Γfm) for t ∈]0, T [,

px0(y, 0) = p0(x0), ϑx0(y, 0) = θ0(x0) in Ym.

Moreover, one has the identification ϑx0 = β(sx0) and vx0 = ρg(sx0 , px0)sx0 (Lemma 24).

The only point remaining is to relate the functions px0 , ϑx0 , sx0 , vx0 to the correspond-

ing weak limits p, ϑ, s, v given by (6.148)-(6.151). To that aim, at this point we set the

assumption that the problem (4.5)-(4.6) with the boundary and initial conditions (4.7)-

(4.10) has a unique weak solution. In this case the convergence results (6.160)-(6.163)

hold for the whole corresponding sequences, as ε → 0. By taking into account the def-

inition (6.152) and by considering the test functions φ(x, y, t) ∈ L2(Ω × Ym×]0, T [) in a
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separated form φ(x, y, t) = φ1(x, t)φ2(y) with φ1 ∈ L2(Q), φ2 ∈ L2(Ym), we can conclude

that this weak convergence is in fact in L2(Ω×Ym×]0, T [). Due to the convergence results

(6.148)-(6.151), we can identify the weak limits. Thereby from the system (6.170)-(6.171)

we conclude that the following equations are satisfied for a.e. x ∈ Ω in L2(0, T ;H−1(Ym)):

−ρwϕ(y)∂ts− divy
(
k(y)

[
Λw(s, p)∇yp− A(s, p)∇yϑ− λw(s)ρ

2
wg
])

= Fw,

ϕ(y)∂tv − divy
(
k(y)

[
Λg(s, p)∇yp+ A(s, p)∇yϑ− λg(s)ρg(s, p)

2g
])

= Fg,

with the boundary and initial conditions (6.23)-(6.24), where the functions p, ϑ, s and v

are defined by (6.148)-(6.151); moreover, ϑ = β(s) and v = ρg(s, p)s a.e. in Ω× Ym×]0, T [

(see Lemma 24). Therefore Theorem 10 is proved.

2



Chapter 7

Conclusion and perspectives

The purpose of this dissertation is to investigate three standard problems for the new

formulation of the immiscible compressible two-phase flow, fully equivalent to the original

one, which is derived by using the notion of the global pressure in [8,11]. First, we extend

the existence results for two compressible fluids of [12] to the case of water-gas flow. In

this work we permit the realistic case of an unbounded capillary pressure function and its

derivatives at both ends S = 0, 1. Compared to the corresponding assumptions on the

data made in [12], in our case the restrictions on the capillary pressure are less strong.

More precisely, they are set only at S = 0, which is a consequence of incompressibility

of the wetting phase. Our requirements on the sign of the boundary and source data,

Fw ≥ 0 and Gw ≤ 0, are needed only if the capillary pressure curve is unbounded at

S = Sg = 1. In such case the said restrictions correspond to not allowing extraction of the

wetting phase from the domain, which is expected since otherwise we can not control the

decay of the wetting phase pressure to −∞. While we follow the strategy used in [12], the

incompressibility of one phase causes additional difficulties in obtaining a priori estimates

and passage to the limit, and makes the proof essentially more involved. Namely, in contrast

to the case of strictly increasing mass densities, the characteristic change of variables

(S, P ) 7→ (ρw(S, P )(1 − S), ρg(S, P )S) is not a diffeomorfism in our situation. By taking

advantage of the global pressure we are able to derive the uniform a priori estimates

for the global pressure, which is not the case with the phase pressures in a usual phase

form of the flow equations due to the vanishing of the phase relative permeabilities in the

zones without one of the fluids. However, due to that vanishing property of the relative

permeabilities one could still not obtain the uniform L2 bounds for the gradient of the

saturation, which motivates the induction of the saturation potential θ = β(S), as in [12].

Despite both transformations, the degeneracy of the equations is still present through the

diffusion term A(S, P ) which is equal to zero for the saturation values S = 0 and S = 1.

133
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The integrability problems caused by the singularity of the capillary pressure as well as the

diffusion degeneracy are overcame by an appropriate regularization, as in [12]. Another

difficulty is vanishing of the pressure time derivative term, which is treated with the aid of

an adjusted compactness result of [12]. Let us note that the assumption (A.8) in Chapter 4

on the boundary data is the sufficient condition to obtain the uniform a priori estimates,

which arises from the particular choice of the test functions (suggested by [68]).

Furthermore, in this work the homogenization result for the single rock-type het-

erogenous porous medium has been established for the case of two compressible phases,

but the extension of all the results to an incompressible wetting and a compressible non-

wetting phases is possible quite straightforward. This can be seen by bringing together the

a priori estimates established as in Subsection 5.4, and the almost everywhere convergence

for the saturation and the global pressure which may be established by the arguments of

Chapter 4. Moreover, one can use the existence result of Chapter 4 to consider in this

manner the homogenization of a water-gas flow subject to the non-homogenous conditions

on the boundary.

In the double porosity model for the flow of gas and water presented in this thesis

with the matrix permeability being scaled by ε2, the gravitational term is additionally

compensated by ε−1 since otherwise the macroscopic model would contain no gravitational

terms in the matrix equations, which can be observed from the limiting process as well as

from the formal asymptotic expansion which is not included in this work. The derivation

of the compactness result for the extensions of the fracture solutions Sε
f and ρg(S

ε
f , P

ε
f )S

ε
f

to the whole domain is complicated by the fact that one has no uniform estimates for their

time derivatives in a fractured medium. The suitable test functions are hence employed to

establish the uniform bounds for the time translations which enables the use of standard

compactness results of [5] and [95]. The essential part of the fluid flow in a fractured

reservoir is the microscopic flow from matrix to the fissures which is captured at the global

level by the source-like terms that contain the local scale. Their identification is the most

involved part of the homogenization process and it relies on the dilation operator of [26].

In order to identify the non-explicit limit terms and derive the effective matrix equations

we pose certain assumptions on the regularity and the uniqueness for the model problem.

Our future work will include the elimination of such conditions.

The results of the research presented in this work can be continued in several direc-

tions. It would be interesting to extend the existence results presented in this thesis to the

porous media with several rock types. In such setting the capillary pressure and relative

permeability functions are different in each type of porous media and the continuity of

the physical quantities at the separating interfaces between different media gives rise to
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the nonlinear transmission conditions. Our future study will include also the extension of

the homogenization results obtained in this thesis to the case of multiple rock type porous

media, where the upscaling process becomes more involved. A suggestion for further work

concerns also the derivation of a double porosity model for the fractured reservoir in the

case of the two strictly compressible phases. To our knowledge, there have been no re-

sults for this problem yet. The proof of the compactness for the microscopic solutions

may be more demanding in this situation. Another direction of suggested future research

is the study of the existence and the homogenization for the partially miscible compress-

ible two-phase flow, such as hydrogen dissolving in water in a nuclear waste management

context.
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Summary

Mathematical modelling of multiphase flow in porous media is of great practical

importance in problems of petroleum and environmental engineering such as petroleum

reservoir and groundwater aquifer simulation, radioactive waste management and seques-

tration of CO2. The variations of the physical properties of the porous medium occur at

many distinct space scales and strongly affect the fluid flow and transport through the

heterogenous porous media.

In this thesis we study a model of the immiscible compressible two-phase flow in

porous media in a new formulation, which has been lately established in [8] and [11].

The usual equations describing such flow are the mass conservation law and the Darcy-

Muskat law for each of the phases, which make a system of coupled nonlinear evolutionary

partial differential equations. By using the notion of the global pressure, the original

system is transformed to a fully equivalent system of nonlinear parabolic equations for the

global pressure and the phase saturation, which is more convenient for the mathematical

analysis and numerical solving. The main difficulties in the analysis of this problem are

the nonlinearity, degeneracy and coupling of the equations.

Direct numerical and analytical methods for problems of flow in a porous medium

are impossible or inefficient due to its considerable inhomogeneity. Homogenization theory

aims to describe the macroscopic behavior of a highly heterogeneous system by replacing

it with a simpler homogenized or effective medium whose global characteristics are a good

approximation of the initial ones.

In this thesis we derive three new results on the existence and homogenization for the

new fully equivalent global pressure model of immiscible compressible flow in porous media.

The previous results for this type of flow were obtained for the phase formulation whereas

the notion of the global pressure as introduced in [21, 48] for incompressible immiscible

flows is employed to obtain the a priori estimates and compactness results. In comparison

to them, the common feature of our contributions is also that the hypotheses on the data

are significantly relieved, so that we make only the physically justified assumptions, as

the ones that appear in some realistic applications. In particular, our results include the
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case of an unbounded capillary pressure function as well as the discontinuous porosity and

absolute permeability tensor.

The first result of this thesis is an existence result for the immiscible flow of water

and gas. Our result extends the existence result in [12] which is valid for the two strictly

compressible phases. Other preceding results on the existence for immiscible compressible

flow [68–72,75–77] set much more restrictive assumptions on the data. Moreover, we cover

the case of the non homogenous Dirichlet and Neumann boundary data. The proof uses

an appropriate regularization and a time discretization. We use a modified compactness

result, as in [12,76,95], to pass to the limit in nonlinear terms.

The second contribution in the thesis is the rigorous justification of the homogeniza-

tion process for the immiscible flow of two compressible fluids in a strongly heterogeneous

porous medium of a single-rock type. So far the only homogenization result concerning this

type of problem for the compressible flow was [6], where the water-gas flow was studied

assuming the boundedness of the capillary pressure. On the microscopic level, the periodic

heterogenous porous medium is scaled by ε, 0 < ε ≪ 1 which represents the typical size

of the periodicity blocks with respect to the domain size, and the medium porosity and

the permeability are modeled as ε-periodic functions. Passage to the limit as ε → 0 in

the microscopic problem is performed by means of the two-scale convergence technique

of [2], with the aid of the compactness result from [6]. We obtain a nonlinear homogenized

problem with effective coefficients which are computed via a cell problem.

As a third result of this thesis, we establish the convergence of the homogenization

process for a double porosity model of the immiscible gas-water flow in a naturally frac-

tured reservoir. This type of porous media consists of a disconnected periodically spaced

system of blocks of usual porous media, matrix, which are separated by a net of thin frac-

tures. The matrix keeps most of the fluid while the flow in the fissures is much readier

due to their notably higher permeability. In the double porosity model the ratio of the

permeability of the matrix and the fractures is of order ε2, where ε is the periodicity pa-

rameter. Such scaling preserves the flow from the matrix to the fractures. We make use of

the classical compactness results of [95] and [5] to pass to the limit as ε→ 0, using the two-

scale convergence. This leads to the homogenized problem for the fracture flow where an

additional source-like term arises which depicts the matrix-fracture flow. Its non-explicit

form is caused by the nonlinearity and the coupling in the system. On the other hand, in

the limit as ε → 0 to each point of the reservoir corresponds a matrix block. The double

porosity model comprises the set of the equations for each matrix block, that capture the

flow at the medium-size scale. In order to obtain the effective matrix problem and identify

the fracture source term we use the notion of the dilation operator, introduced in [25].
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Our contribution presents an extension of the result of [14] to the fully equivalent global

pressure formulation.



Sažetak

Matematičko modeliranje vǐsefaznog toka kroz poroznu sredinu od velike je praktične

važnosti u problemima naftnog inženjerstva i zaštite okolǐsa, kao što su na primjer simulacije

nalazǐsta ugljikovodika i podzemnih voda, upravljanje odlagalǐstima radioaktivnog otpada

u dubokim geološkim slojevima te sekvestracija CO2. Varijacije fizičkih svojstava poroznog

medija se javljaju na puno različitih prostornih skala i značajno utječu na tok i transport

kroz heterogenu poroznu sredinu.

U ovoj disertaciji proučavamo novi model nemješivog dvofaznog toka kompresibilnih

fluida u poroznoj sredini koji je nedavno izveden u [8] i [11]. Jednadžbe koje opisuju takav

tok su zakon sačuvanja mase te Darcy-Muskatov zakon za svaku od faza, što daje sustav

vezanih nelinearnih evolucijskih parcijalnih diferencijalnih jednadžbi. Uvodenjem pojma

globalnog tlaka, osnovni sustav se transformira u potpuno ekvivalentni sustav nelinearnih

paraboličkih jednadžbi za globalni tlak i zasićenje jedne od faza. Ta je formulacija pogod-

nija za matematičku analizu i numeričko rješavanje problema. Glavne poteškoće pri analizi

ovog problema su nelinearnost, degeneracija i vezanost u jednadžbama.

Zbog nezanemarive heterogenosti porozne sredine, direktne numeričke metode te

metode matematičke analize za tok fluida kroz poroznu sredinu su vrlo neefikasne ili čak

nemoguće. Cilj teorije homogenizacije je opisati makroskopsko ponašanje snažno het-

erogenog sustava tako da ga se zamijeni jednostavnijim homogeniziranim ili efektivnim

medijem čije globalne karakteristike dobro aproksimiraju karakteristike polaznog medija.

U ovoj disertaciji izvodimo tri nova rezultata o postojanju rješenja i homogenizaciji

za spomenuti novi, potpuno ekvivalentni model nemješivog dvofaznog toka kompresibilnih

fluida kroz poroznu sredinu. Prethodni rezultati za ovakav tok su dobiveni za model u

faznoj formulaciji, a pri tome je koncept globalnog tlaka korǐsten u obliku u kojem je

izveden za nestlačivi nemješivi tok u [21, 48], te je upotrijebljen za dobivanje apriornih

ocjena i rezultata kompaktnosti. U usporedbi s tim rezultatima, rezultati ove radnje su

dobiveni uz znatno oslabljene ulazne pretpostavke koje su fizikalno opravdane, tako da

je dozvoljen slučaj neograničenog kapilarnog tlaka te diskontinuiteta poroznosti i tenzora

apsolutne permeabilnosti.



Prvi doprinos ove disertacije je rezultat postojanja slabih rješenja za nemješivi tok

vode i plina. Naš rezultat proširuje rezultat egzistencije za dva stlačiva fluida koji je dobiven

u [12]. Postoje i drugi rezultati egzistencije za nemješivi tok stlačivih fluida [68–72,75–77],

koji se odnose na aproksimacijske modele te kod kojih su pretpostavke na podatke (naročito

na funkciju kapilarnog tlaka) znatno restriktivnije. Rezultat koje je dokazan u ovoj radnji

uključuje nehomogene Dirichletove i Neumannove rubne podatke. Dokaz se temelji na

odgovarajućoj regularizaciji i vremenskoj diskretizaciji. Za prijelaz na limes u nelinearnim

članovima koristi se modificirani rezultat kompaktnosti, kao u [12,76,95].

Nadalje, u disertaciji je prikazano strogo opravdanje procesa homogenizacije za

nemješivi tok stlačivih fluida u jako heterogenoj poroznoj sredini koja se sastoji od jednog

tipa stijene. Jedini raniji rezultat homogenizacije za ovaj tip problema je [6], gdje je

razmatran tok vode i plina uz pretpostavku ograničenosti kapilarnog tlaka. Periodička

heterogena porozna sredina se na mikroskopskoj razini opisuje malim parametrom ε > 0

koji predstavlja odnos karakteristične veličine periodičkog bloka i veličine cijele domene.

Tada su poroznost i permeabilnost sredine predstavljene kao periodičke funkcije perioda

ε. Za prijelaz na limes kad ε→ 0 u mikroskopskom problemu koristi se tehnika dvoskalne

konvergencije razvijena u [2]. Pri tome se za nelinearne funkcije upotrebljava rezultat

kompaktnosti iz [6]. Na taj način uspostavlja se nelinearni homogenizirani problem te se

efektivni koeficijenti iskazuju kao rješenja odgovarajućih lokalnih problema.

Treći prilog ove radnje je dokaz konvergencije postupka homogenizacije za model

dvostruke poroznosti za nemješivi tok vode i plina u ležǐstu s pukotinama. Ovaj tip porozne

sredine sastoji se od matrice - nepovezanog sustava periodički rasporedenih blokova koji

funkcioniraju kao standarna porozna sredina, i mreže uskih pukotina koje okružuju ma-

tricu. Najveći dio fluida se nalazi u matrici, a s druge strane tok se većinom odvija u

pukotinama koje su znatno propusnije. U modelu dvostruke poroznosti se propusnost ma-

trice skalira s ε2 (gdje je ε parametar periodičnosti), što čuva tok iz matrice u pukotine od

degeneracije ili neograničenog rasta kad ε → 0. U dokazu se za prijelaz na limes koriste

klasični rezultati kompaktnosti [95], [5] te dvoskalna konvergencija. To daje homogenizirani

problem za tok u pukotinama u kojem se javlja član koji predstavlja izvor fluida iz matrice

na makroskopskoj razini. Zbog nelinearnosti i vezanosti u sustavu jednadžbi, ovaj član

nije u eksplicitnom obliku. S druge strane, kad ε → 0 za svaku točku domene se dobiva

po matrični blok te model dvostruke poroznosti uključuje i sustav jednadžbi za svaki od

tih blokova, kojima je sačuvana mikroskala u efektivnom problemu. Pomoću operatora

dilatacije koji je uveden u [25] izvode se efektivne matrične jednadžbe te se identificiraju

izvori u frakturama. Prikazani rezultat predstavlja proširenje rezultata [14] na potpuno

ekvivalentnu formulaciju pomoću globalnog tlaka.



Curriculum Vitae

Personal information

• born on November 11, 1980, Zagreb, Croatia

Education

• November 2006 – Ph.D. student in mathematics at the University of Za-

greb, Department of Mathematics, Croatia. Ph.D. thesis under the supervision

of prof. Mladen Jurak and prof. Brahim Amaziane

• September 1999 – October 2005 Mathematics graduate at the University of

Zagreb, Department of Mathematics, Croatia. Diploma-Thesis: Stokes paradox

under the supervision of prof. Eduard Marušić Paloka
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Javna izlaganja i posteri

• Homogenization of immiscible compressible two phase flow in porous media by

the concept of global pressure, Conference on applied mathematics and scientific

computing ApplMath11, Trogir, June 2009. (izlaganje)

• An existence result for a system modeling a water-gas flow in porous media in

a fully equivalent global pressure formulation, Workshop on ”Fluid Dynamics in

Porous Media”, Coimbra, Portugal, September 2011. (izlaganje)

• On existence for a system modeling water-gas flow in porous media in a fully

equivalent global pressure formulation, Workshop ”Young Women in PDEs”,

Bonn, Germany, May 2012. (poster)

Studijski boravci
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