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1 Introduction

Domain walls formation and propagation in ferromagnetic nanowires are intensively studied. Indeed,
their possible applications for data recording (see [19]) or in nano-electronics (see [1]) are very
promising. Such devices are modeled by a 1d-Landau-Lifschitz equation, and existence and stability
of one-wall profiles are established (see [10, 11, 12, 21] and the references therein).
In [24], the authors propose to use ferromagnetic nanotubes instead of ferromagnetic nanowires or
nano strips in order to deal with domain wall motion in the Walker regime, which is stabler and more
reliable for applications. In the present work we exhibit a 2d-model for ferromagnetic nanotubes
and we study domain wall dynamics in this model for a small applied magnetic field.

Let us recall the 3-dimensional model for a ferromagnetic sample O ⊂ IR3. We denote by (u · v) the
canonical scalar product of u by v in IR3 and by |.| the associated norm. The canonical basis of IR3

is denoted by (e1, e2, e3) and × is the usual cross product.

Ferromagnetic materials are characterized by a spontaneous magnetization described by the magnetic
moment M defined on IR+ ×O and satisfying the saturation constraint

|M(t, x)| = Ms a.e., (1.1)

where Ms is constant. The magnetic moment satisfies the Landau-Lifschitz equation

∂M

∂t
= −γM ×He −

αγ

Ms
M × (M ×He), (1.2)

in which γ > 0 is the gyromagnetic ratio, α > 0 is the damping coefficient, He is the effective field
given by:

He =
A

µ0M2
s

∆M +Hd(M) +Happ. (1.3)

Here, A > 0 is the exchange coefficient, µ0 is the permeability of the vacuum, Happ is the applied
magnetic field, and Hd(M) is the demagnetizing field generated by the magnetization M . In the
quasi-stationary model, the operator Hd is given by{

div (Hd(M) +M) = 0,
curl Hd(M) = 0,

(1.4)

where M is the extension of M by zero outside O.
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The energy associated to a configuration M is given by:

E(M) =
A

2M2
s

∫
O
|∇M |2dx+

µ0

2

∫
IR3

|Hd(M)|2 dx− µ0

∫
O
Ha ·M dx,

and we have He = − 1
µ0
∂ME .

Existence of weak or strong solutions for (1.2) is addressed in several papers (see [2, 6, 7, 8, 13, 15,
18, 22]).

We focus now on the case of a thin nanotube of axis IRe1 with circular section. The nanotube is
assimilated to the cylinder IR× ρS1 =

{
(x, y, z) ∈ IR3, y2 + z2 = ρ2

}
. We assume that a magnetic

field Happ is applied in the direction of the tube axis: Happ = Hae1, Ha ∈ IR. We use the two-
dimensional model of ferromagnetic thin film obtained in [5] and [14], in which the demagnetizing
field reduces to an anisotropic local term forcing M to be tangent to the thin domain. In the case
of our nanotube the demagnetizing field is described by the term −(M · n)n, derived from the limit

demagnetizing energy
µ0

4

∫
IR×S1

|M ·n|2dσ, where n is the unit normal vector to the cylinder surface.

In cylindrical coordinates, we write y = ρ cos y and z = ρ sin y, and we obtain the following 2d model:

M : (t, x, y)→ S2, 2π-periodic in the variable y,

∂M

∂t
= −γM × h(M)− αγ

Ms
M × (M × h(M)),

h(M) =
A

µ0M2
s

∂2M

∂x2
+

A

µ0M2
s ρ

2

∂2M

∂y2
− (M · n(y))n(y) +Hae1,

(1.5)

where the unit normal vector n is given by n(y) =

 0
cos y
sin y

.

We denote n⊥(y) =

 0
− sin y
cos y

. By the rescaling t = γAt
µ0Msρ2

and x = x
ρ , we describe M in the frame

(e1,n(y),n⊥(y)) writing:

M(t, x, y) = Ms

(
m1

(
γAt

µ0Msρ2
,

x

ρ
, y

)
e1 + m2

(
γAt

µ0Msρ2
,

x

ρ
, y

)
n(y) + m3

(
γAt

µ0Msρ2
,

x

ρ
, y

)
n⊥(y)

)
.

We obtain that M satisfies (1.5) if and only if m =

m1

m2

m3

 satisfies



m : (t, x, y)→ S2, 2π-periodic in the variable y,

∂m

∂t
= −m× h(m)− αm× (m× h(m)),

h(m) = ∂xxm + ∂yym + 2e1 × ∂ym + m1e1 − κm3e3 + hae1,

(1.6)

where κ =
µ0M

2
s ρ

2

A
and ha =

µ0Msρ
2

A
Ha.

Remark 1.1. In our model of ferromagnetic thin layer, the demagnetizing field behaves like the
planar anisotropy term −κm3e3. The curvature of the tube induces another anisotropic effect since
the tube axis IRe1 becomes an easy axis of magnetization modeled by the term +m1e1 in the resulting
effective field h(m).
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We deal with domain wall profiles in the Walker regime as in [24]. For a vanishing applied field
(ha = 0), we observe the formation of domains in which the magnetization is along the tube axis.
One-wall configuration separating a −e1 domain and a +e1 domain is described by the steady state
solution M0 given by

M0(x) =

 tanhx
1/ coshx

0

 . (1.7)

Furthermore, a small applied field in the e1-direction induces wall motion. This situation is described
in our model by the solution:

Mha(t, x, y) = Rθ

(
M0(

x− ct
δ

)

)
, (1.8)

where we denote by Rθ the rotation matrix:

Rθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , (1.9)

and where c, θ and δ depend on ha as follows:

ha = ακ sin θ cos θ,
c

δ
= −αha − κ cos θ sin θ,

1

δ2
= 1 + κ sin2 θ. (1.10)

This solution is only defined for |ha| ≤
ακ

2
, since ha =

ακ

2
sin 2θ.

Remark 1.2. This kind of solution only depending on the x-variable is also observed in 1d-models
of nanowires with elliptical sections (see [20] and [21]) and in Walker’s 3d-model in [23].

In this paper we establish that the solution Mha is stable in the Lyapunov sense. We also prove
that Mha is asymptotically stable modulo translations in the x-variable.

We use the following notations:

• Ω = IR×]0, 2π[,

• L2
p is the space of the measurable functions u : (x, y)→ IRl (l = 1, 2 or 3) which are 2π-periodic

in y, and such that u ∈ L2(Ω; IRl). We denote by 〈 | 〉 the associated inner product

〈u | v〉 =

∫
Ω

(u(x, y) · v(x, y))dxdy,

and by ‖ · ‖L2
p

the associated norm.

• Hk
p is the space of the measurable functions u : (x, y) → IRl (l = 1, 2 or 3) which are 2π-

periodic in y and such that u belongs to the Sobolev space Hk(Ω; IRp). The associated norm
is denoted by ‖ · ‖Hk

p
.

Our main result is the following stability theorem:

Theorem 1. There exists hmax, 0 < hmax <
ακ

2
, such that if |ha| ≤ hmax, then for all ε > 0, there

exists η > 0 such that if m satisfies (1.6) with ‖m(0, ·)−Mha(0, ·)‖H2
p
≤ η, then:

• for all t > 0, ‖m(t, ·)−Mha(t, ·)‖H2
p
≤ ε (stability),

• there exists σ∞ ∈ IR such that ‖m(t, ·) −Mha(t, · − σ∞)‖H2
p

tends to 0 when t tends to +∞
(asymptotic stability modulo translations).
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To our knowledge, this work is the first one dealing with the stability of moving walls structures in
dimension strictly greater than 1. In the 3d-model of [4], only static walls are studied. In addition,
the model in [4] is not complete since the demagnetizing field is unduly simplified in 3d. Here,
the model is more convincing since the 2d-model for the demagnetizing field can be justified by
asymptotic arguments (see [5] and [14]).

Roughly speaking, in the proof of Theorem 1, we use the techniques developed in [4] and [10]. We
have to address several difficulties, some of them being specific to the nanotube case.

The first one comes from the saturation constraint (1.1), since we must consider only perturbations
satisfying this constraint. To overcome this problem we use a moving frame technique as in [10] (see
Section 2).

In Section 3, we prove a linear stability result. We prove that the linearization around the studied
solution is non negative outside its kernel. This kernel is one-dimensional and relates to the invariance
by translation of the Landau-Lifschitz type equation (1.6). The coercivity proof is specific to our 2d
case and is quite tricky because of the term e1 × ∂ym in the effective field in (1.6).

Theorem 1 is established in Section 4. The zero eigenvalue due to the translation invariance is
responsible for a drift of the perturbation. As in [16, 17] and the references therein, we split the
perturbations of Mha as a translation of Mha plus a residual term. The linear estimates of Section
3 and variational estimates yield that this remainder term tends exponentially to zero when t tends
to +∞.

For the convenience of the reader, we postpone the technical estimates of the nonlinear terms to
Section 5.

2 Moving Frame Technique

The magnetic applied field ha being fixed, we introduce c, δ and θ given by (1.10). Then we write
the solution m of (1.6) on the form:

m(t, x, y) = Rθv(t,
x− ct
δ

, y),

where v =

v1

v2

v3

 satisfies the saturation constraint |v| = 1, so that m satisfies (1.6) if and only if

v satisfies
∂tv −

c

δ
∂xv = −v ×H(v)− αv × (v ×H(v)), (2.11)

where

H(v) =
1

δ2
∂xxv + ∂yyv + 2e1 × ∂yv + v1e1 − κ(sin θv2 + cos θv3)(sin θe2 + cos θe3) + hae1.

In addition, Mha is stable for (1.6) if and only if M0 is stable for (2.11).
Therefore in order to establish Theorem 1, we aim to prove that if ‖v(0, ·)−M0(·)‖H2

p
is small enough,

then ‖v(t, ·)−M0(·)‖H2
p

remains small for all t and there exists σ∞ such that ‖v(t, ·)−M0(·−σ∞)‖H2
p

tends to zero when t tends to +∞.

In order to deal with perturbations v of M0 satisfying the saturation constraint |v| = 1, we use the
mobile frame technique developed in [10]. We introduce M1 and M2 defined by

M1(x) =

−1/ coshx
tanhx

0

 and M2 =

0
0
1

 ,

and we write v on the form

v(t, x, y) = M0(x) + r1(t, x, y)M1(x) + r2(t, x, y)M2 + µ(r(t, x, y))M0(x),

4



where the new unknown r : (t, x, y) 7→
(
r1(t, x, y)
r2(t, x, y)

)
∈ IR2 is 2π-periodic in the y-variable and where

µ is chosen so that the saturation constraint in always satisfied:

µ(ξ) =
√

1− (ξ1)2 − (ξ2)2 − 1.

Plugging this formulation in (2.11) and taking the scalar product with M1 and M2, we obtain that
v satisfies (2.11) if and only if r satisfies:

∂r

∂t
=

(
−α −1
1 −α

)
Mr − haLr + F(r), (2.12)

where the linear operators M and L are defined by

M =


1
δ2L− ∂yy 2 tanhx ∂y

−2 tanhx ∂y
1
δ2L− ∂yy + κ cos 2θ

 , with L = −∂xx + (2 tanh2−1), (2.13)

and

Lr =

(
α+

1

α

)
`r + 2 tanhx r2

 1

− 1

α

 , with ` = ∂x + tanhx, (2.14)

and where the term F : H2
p → L2

p is the non linear contribution (that is ∂rF(0) = 0). For the
convenience of the reader, the expression of F is postponed to Section 5.

3 Linear Stability

In this part, we study the stability of the zero solution for the linearization of (2.12):

∂v

∂t
=

(
−α −1
1 −α

)
Mv − haLv. (3.15)

The linear operator L in (2.13) appears in several stability proofs concerning one-dimensional models
of nanowires (see [9, 10, 11, 12]). It also appears in [4] for the 3d case. We recall the properties of
this operator (see [12] for the proofs):

• L is self-adjoint with domain H2(IR),

• we can factorize L on the form L = `∗ ◦ ` with ` = ∂x + tanhx, so that L is positive. In
addition, ∫

IR

u · Lu = ‖L 1
2u‖2L2(IR) = ‖`u‖2L2(IR),

• Ker L = IR
1

coshx
, and the essential spectrum of L is [1,+∞[,

• 0 in the only eigenvalue of L,

• on (Ker L)⊥, L ≥ 1, so that if

∫
IR

u(x)

coshx
dx = 0, then

‖u‖L2(IR) ≤ ‖`u‖L2(IR) ≤ ‖Lu‖L2(IR). (3.16)

We introduce the following notations:
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• L2,⊥
p =

{
w =

(
w1

w2

)
∈ L2

p, such that

∫
IR×]0,2π[

w1(t, x, y)
1

coshx
dx dy = 0

}
,

• Hk,⊥
p = Hk

p ∩ L2,⊥
p .

The properties of M are summarized in the following:

Proposition 3.1. For all θ ∈]− π
4 ,

π
4 [,M is a self-adjoint positive operator for the L2

p inner product

with domain D(M) = H2
p, and Ker M = IR 1

cosh x

(
1
0

)
.

In addition, M is non negative on (Ker M)⊥ = H2,⊥
p , and for all fixed θmax ∈ [0, π4 [, there exist

constants α1 > 0, α2 > 0 and α3 > 0 (depending on θmax) such that for all θ ∈]− θmax, θmax[,

• for k ∈ {1, 2}, for all w ∈ Hk+1,⊥
p , α1‖M

k
2w‖L2

p
≤ ‖M

k+1
2 w‖L2

p
,

• for k ∈ {1, 2, 3}, for all w ∈ Hk,⊥
p , α2‖w‖Hk

p
≤ ‖M k

2w‖L2
p
≤ α3‖w‖Hk

p
.

As a corollary of Proposition 3.1, we obtain the following Theorem:

Theorem 2. There exists hlmax with 0 < hlmax <
ακ

2
, such that for all ha with |ha| ≤ hlmax, the

zero solution is stable for Equation (3.15). More precisely, for all ε > 0, there exists η > 0 such that
for all v0 ∈ H1

p, if ‖v0‖H1
p
≤ η, then the solution v of (3.15) with initial data v0 satisfies

∀ t > 0, ‖v(t, ·)‖H1
p
≤ ε.

In addition, when t tends to +∞, v(t, ·) tends in H1
p to a limit of the form

σ∞
coshx

(
1
0

)
, where

σ∞ ∈ IR.

Remark 3.1. We prove the linear stability in H1
p. We could also prove the same result in H2

p. For
the nonlinear stability, we need H2

p estimates to control the nonlinear terms. Theorem 2 is proved
in Section 3.2

3.1 Proof of Proposition 3.1

We first establish the following Lemma:

Lemma 3.1. There exists c1 > 0 and c2 > 0 such that for all w ∈ H1,⊥
p ,

c1‖w‖H1
p
≤
(
‖`w1‖2L2

p
+ ‖∂yw1‖2L2

p
+ ‖`w2‖2L2

p
+ ‖∂yw2‖2L2

p
+ ‖w2‖2L2

p

) 1
2 ≤ c2‖w‖H1

p
.

Proof. We recall that ` = ∂x + tanhx, so that the existence of c2 is straightforward.
We have

‖∂xw2‖L2
p
≤ ‖`w2 − tanhxw2‖L2

p
≤ ‖`w2‖L2

p
+ ‖ tanhxw2‖L2

p
,

thus there exists K such that

‖w2‖H1
p
≤ K

(
‖`w2‖L2

p
+ ‖∂yw2‖L2

p
+ ‖w2‖L2

p

)
. (3.17)

Concerning w1, we first recall that for all u ∈ H1(IR), we have∫
IR

u(x)
1

coshx
dx = 0 =⇒ ‖u‖L2(IR) ≤ ‖`u‖L2(IR) (see (3.16)).

We define τ by

τ(y) =

∫
x∈IR

1

2 coshx
w1(x, y)dx.
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We split w1 as:

w1(x, y) = W1(x, y) +
τ(y)

coshx
with ∀ y ∈ IR,

∫
x∈IR

W1(x, y)
1

coshx
dx = 0. (3.18)

For a fixed y, x 7→W1(x, y) is in ( 1
cosh x )⊥ (for the L2(IR)-inner product), so

‖W1(·, y)‖L2(IR) ≤ ‖`W1(·, y)‖L2(IR),

and by integration in the variable y ∈ [0, 2π], using that ` 1
cosh x = 0, we obtain that

‖W1‖L2
p
≤ ‖`w1‖L2

p
.

By the orthogonality condition in (3.18) we remark that
〈
W1 | 1

cosh x

〉
= 0 so

‖w1‖2L2
p

= ‖W1‖2L2
p

+ ‖ τ(y)

coshx
‖2L2

p
.

We have:

‖ τ(y)

coshx
‖2L2

p
=

∫
x∈IR

∫
y∈]0,2π[

|τ(y)|2 1

cosh2 x
dxdy = 2‖τ‖2L2([0,2π]).

Since w ∈ H1,⊥
p , we have

〈
w1 | 1

cosh x

〉
= 0 thus∫

]0,2π[

τ(y)dy = 0.

Hence by Poincaré-Wirtinger inequality, we have

‖τ‖L2(]0,2π[) ≤ ‖∂yτ‖L2(]0,2π[).

Therefore,

‖w1‖2L2
p
≤ ‖`w1‖2L2

p
+ 2

∫
]0,2π[

|∂yτ |2dy,

≤ ‖`w1‖2L2
p

+ 2

∫
]0,2π[

∣∣∣∣∫
IR

1

2 coshx
∂yw1(x, y)dx

∣∣∣∣2 dy,

≤ ‖`w1‖2L2
p

+ 2

∫
]0,2π[

(∫
IR

1

4 cosh2 x
dx

)(∫
IR

|∂yw1(x, y)|2dx

)
dy

by Cauchy-Schwarz inequality,

thus
‖w1‖2L2

p
≤ ‖`w1‖2L2

p
+ ‖∂yw1‖2L2

p
. (3.19)

Therefore
‖w1‖H1

p
= ‖w1‖L2

p
+ ‖∂xw1‖L2

p
+ ‖∂yw1‖L2

p
,

≤ ‖w1‖L2
p

+ ‖`w1‖L2
p

+ ‖ tanhx w1‖L2
p

+ ‖∂yw1‖L2
p
,

≤ 3
(
‖`w1‖L2

p
+ ‖∂yw1‖L2

p

)
using (3.19).

(3.20)

Coupling (3.17) and (3.20) we obtain the existence of c1. This concludes the proof of Lemma 3.1.

In order to establish that M is non negative, we prove the following:
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Lemma 3.2. There exists c > 0 such that for all θ ∈]− π/4, π/4[, for all w ∈ H2,⊥
p , we have

〈Mw | w〉 ≥ c cos 2θ‖w‖2H1
p
.

Proof. We recall that we denote Ω = IR× [0, 2π]. We have

〈Mw | w〉 =
1

δ2
〈Lw1 | w1〉+ ‖∂yw1‖2L2

p
+

1

δ2
〈Lw2 | w2〉+ ‖∂yw2‖L2

p

+κ cos 2θ‖w2‖2L2
p
− 2

∫
Ω

tanhxw2∂yw1 + 2

∫
Ω

tanhxw1∂yw2.

(3.21)

We estimate the last two integrals. Let ν, 0 < ν ≤ 1. We have:

−2

∫
Ω

tanhxw2∂yw1 +2

∫
Ω

tanhxw1∂yw2 = −4ν

∫
Ω

tanhxw2∂yw1

−2(1− ν)

∫
Ω

tanhxw2∂yw1 + 2(1− ν)

∫
Ω

tanhxw1∂yw2.

Since

∫
Ω

∂xw2∂yw1 −
∫

Ω

∂xw1∂yw2 = 0, we have

−
∫

Ω

tanhxw2∂yw1 +

∫
Ω

tanhx w1∂yw2 = −
∫

Ω

`w2∂yw1 +

∫
Ω

`w1∂yw2

(we recall that `wi = ∂xwi + tanhxwi). Therefore

−2

∫
Ω

tanhxw2∂yw1 + 2

∫
Ω

tanhxw1∂yw2 = −4ν

∫
Ω

tanhxw2∂yw1

−2(1− ν)

∫
Ω

(`w2∂yw1 − `w1∂yw2) .

Hence ∣∣∣∣−2

∫
Ω

tanhxw2∂yw1 +2

∫
Ω

tanhxw1∂yw2

∣∣∣∣ ≤ 4ν‖∂yw1‖L2
p
‖w2‖L2

p

+2(1− ν)‖`w1‖L2
p
‖∂yw2‖L2

p
+ 2(1− ν)‖`w2‖L2

p
‖∂yw1‖L2

p
,

≤ ν

2
‖∂yw1‖2L2

p
+ 8ν‖w2‖2L2

p
+ (1− ν)‖`w1‖2L2

p
+ (1− ν)‖∂yw2‖2L2

p

+(1− ν)‖`w2‖2L2
p

+ (1− ν)‖∂yw1‖2L2
p
,

≤ (1− ν)‖`w1‖2L2
p

+ (1− ν

2
)‖∂yw1‖2L2

p
+ (1− ν)‖∂yw2‖2L2

p

+(1− ν)‖`w2‖2L2
p

+ 8ν‖w2‖2L2
p
.

So, using this estimate in (3.21), since 〈Lwi | wi〉 = ‖`wi‖2L2
p
, since 1

δ2 − 1 = κ sin2 θ, we have

〈Mw | w〉 ≥ (κ sin2 θ + ν)‖`w1‖2L2
p

+
ν

2
‖∂yw1‖2L2

p
+ (κ sin2 θ + ν)‖`w2‖2L2

p

+ν‖∂yw2‖2L2
p

+ (κ cos 2θ − 8ν)‖w2‖2L2
p
.
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We take ν = ν(θ) := inf

{
1,
κ cos 2θ

16

}
and we obtain that

〈Mw | w〉 ≥ ν(θ)

2

(
‖`w1‖2L2

p
+ ‖∂yw1‖2L2

p
+ ‖`w2‖2L2

p
+ ‖∂yw2‖2L2

p
+ ‖w2‖2L2

p

)
.

Using Lemma 3.1 we obtain:

〈Mw | w〉 ≥ (c1)2

2
ν(θ)‖w‖2H1

p
.

We remark now that there exists c > 0 such that for all θ ∈]− π/4, π/4[,

(c1)2

2
ν(θ) ≥ c cos 2θ.

This concludes the proof of Lemma 3.2.

Proof of Proposition 3.1. For all θ ∈]− θmax, θmax[, cos 2θ ≥ cos 2θmax. We set

α1 = (c cos 2θmax)
1
2

(see Lemma 3.2) and we have, by density of H2,⊥
p in H1,⊥

p , that

∀w ∈ H1,⊥, α1‖w‖H1
p
≤ ‖M 1

2w‖L2
p
, (3.22)

thus
∀w ∈ H1,⊥, α1‖w‖L2

p
≤ ‖M 1

2w‖L2
p
. (3.23)

In addition,

α1‖M
1
2w‖2L2

p
= α1 〈w | Mw〉 ≤ α3‖w‖L2

p
‖Mw‖L2

p
≤ ‖M 1

2w‖L2
p
‖Mw‖L2

p
.

We obtain then that
α1‖M

1
2w‖L2

p
≤ ‖Mw‖L2

p
.

If w ∈ H3,⊥
p , then Mw ∈ H1,⊥

p . Therefore, applying (3.23) replacing w by Mw, we obtain that for

w ∈ H3,⊥
p ,

α1‖Mw‖L2
p
≤ ‖M 1

2w‖L2
p
. (3.24)

The existence of α3 is straightforward, since M is an order-two operator.

Concerning α2, we first remark that from Proposition 3.2 we have:

α1‖w‖H1
p
≤ ‖M 1

2w‖L2
p
.

In addition, writing ∆δ = 1
δ2 ∂xx + ∂yy, we have

Mw = −∆δw +A(w),

where A(w) = 2 tanhx

(
∂yw2

−∂yw1

)
+ 1

δ2 (1− 2 tanh2 x)w + κ cos 2θ

(
0
w2

)
.

So
‖∆δw‖L2

p
≤ ‖Mw‖L2

p
+ ‖Aw‖L2

p
,

≤ ‖Mw‖L2
p

+ c‖w‖H1
p

since A is an order-one operator,

≤ ‖Mw‖L2
p

+
c

α1
‖M 1

2w‖L2
p

with (3.22),

≤ (1 +
c

(α1)2
)‖Mw‖L2

p
.
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Since ‖∆δw‖2L2
p

=
1

δ4
‖∂xxw‖2L2

p
+ 2

1

δ2
‖∂xyw‖2L2

p
+ ‖∂yyw‖2L2

p
with 1 ≤ 1

δ2
≤ 2, we obtain that there

exists a constant k independent of θ and w such that

‖∂xxw‖L2
p

+ ‖∂xyw‖L2
p

+ ‖∂yyw‖L2
p
≤ k‖Mw‖L2

p
.

Since we already know that ‖w‖H1
p
≤ 1

α1
‖M 1

2w‖L2
p
≤ 1

(α1)2
‖Mw‖L2

p
, we obtain that there exists a

constant a2 such that:

∀ θ ∈ [−θmax, θmax], ∀w ∈ H2,⊥
p , a2‖w‖H2

p
≤ ‖Mw‖L2

p
.

Concerning the H3 estimate, we remark that

‖M 3
2w‖2L2

p
=

〈
M2w | Mw

〉
,

=
〈
∆2
δw | ∆δw

〉
+
〈
∆δw | ∆δAw +A∆δw +A2w

〉
.

So

1

δ2
‖∂x∆δw‖2L2

p
+ ‖∂y∆δw‖2L2

p
≤ ‖M 3

2w‖2L2
p

+ |
〈
∆δw | ∆δAw +A∆δw +A2w

〉
|,

≤ ‖M 3
2w‖2L2

p
+ ‖∆δw‖L2

p
‖∆δAw +A∆δw +A2w‖L2

p
,

≤ ‖M 3
2w‖2L2

p
+ c‖w‖H2

p
‖w‖H3

p
.

We remark that there exists k1 > 0 such that

‖w‖H3
p
≤ k1

(
1

δ2
‖∂x∆δw‖2L2

p
+ ‖∂y∆δw‖2L2

p

) 1
2

+ ‖w‖H2
p
, (3.25)

so

1

δ2
‖∂x∆δw‖2L2

p
+ ‖∂y∆δw‖2L2

p
≤ ‖M 3

2w‖2L2
p

+ c k1‖w‖H2
p

(
1

δ2
‖∂x∆δw‖2L2

p
+ ‖∂y∆δw‖2L2

p

) 1
2

+c‖w‖2H2
p
,

≤ (c+
c2(k1)2

2
)‖w‖2H2

p
+ ‖M 3

2w‖2L2
p

+
1

2

(
1

δ2
‖∂x∆δw‖2L2

p
+ ‖∂y∆δw‖2L2

p

)
by Young inequality.

Therefore we obtain that

1

δ2
‖∂x∆δw‖2L2

p
+ ‖∂y∆δw‖2L2

p
≤ 2‖M 3

2w‖2L2
p

+ 2(c+
c2(k1)2

2
)‖w‖2H2

p
.

Using (3.25), (3.24) and the previous H2-estimates, we obtain that there exists a3 > 0 such that

a3‖w‖H3
p
≤ ‖M 3

2w‖L2
p
.

Taking α2 = min(α1, a2, a3), we conclude the proof of Proposition 3.1.
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3.2 Proof of Theorem 2

We fix hmaxa , with 0 < hmaxa <
ακ

2
, and θmax =

1

2
arcsin(

2hmaxa

ακ
). We introduce the constants α1,

α2, and α3 given by Proposition 3.1.

We consider v a solution of (3.15). We define σ(t) by

σ(t) =
1

4π

∫
Ω

v(t, x, y)

coshx
dx dy,

so that we can split v as

v(t, x, y) = w(t, x, y) +
σ(t)

coshx

(
1
0

)
, where w(t, ·) ∈ H1,⊥

p . (3.26)

We plug (3.26) in (3.15). Since M
(

1
cosh x

0

)
= `

(
1

cosh x
0

)
= 0, we have:

∂w

∂t
+

1

coshx

dσ

dt

(
1
0

)
=

(
−α −1
1 −α

)
Mw − haLw. (3.27)

We take the L2-inner product of (3.27) with
1

4π coshx

(
1
0

)
. We remark that

•
〈
w1 |

1

coshx

〉
= 0 for all t, so

〈
∂tw1 |

1

coshx

〉
= 0,

•
〈
∂yywi |

1

coshx

〉
=

〈
tanhx∂ywi |

1

coshx

〉
= 0, by integration of parts in y and 2π-periodicity,

• L is self-adjoint so that

〈
Lwi |

1

coshx

〉
=

〈
wi | L(

1

coshx
)

〉
= 0,

•
〈

1

coshx
| 1

4π coshx

〉
= 1.

Therefore we obtain:

dσ

dt
= Kw, (3.28)

with Kw =

〈
1

4π coshx
| − κ cos 2θ w2 − ha(α+

1

α
)`w1 + 2ha tanhxw2

〉
. By subtraction, we ob-

tain that
∂w

∂t
=

(
−α −1
1 −α

)
Mw − haLw −

1

coshx

(
1
0

)
Kw. (3.29)

We take the inner product of (3.29) with Mw. Since L is self adjoint, since L( 1
cosh x ) = 0, and by

integration by parts in the y variable, we remark that〈
1

coshx
| (Mw)1

〉
=

〈
1

coshx
| 1

δ2
Lw1 − ∂yyw1 − 2 tanhx ∂yw2

〉
= 0.

Therefore, we obtain that

1

2

d

dt
‖M 1

2w‖2L2
p

+ α‖Mw‖2L2
p

= −ha 〈Lw | Mw〉 .

Since L is an order one operator, there exists K such that:

‖Lw‖L2
p
≤ K‖w‖H1

p
≤ K‖w‖H2

p
. (3.30)
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The equivalence of norms in Proposition 3.1 yields:

1

2

d

dt
‖M 1

2w‖2L2
p

+ α‖Mw‖2L2
p
≤ |ha|

K

α2
‖Mw‖2L2

p
.

We set hlmax = inf
{
hmaxa ,

αα2

2K

}
, and we get that if |ha| ≤ hlmax, then for all t,

1

2

d

dt
‖M 1

2w‖2L2
p

+
α

2
‖Mw‖2L2

p
≤ 0.

Using again Proposition 3.1, we obtain that

d

dt
‖M 1

2w‖2L2
p

+ α(α1)2‖M 1
2w‖2L2

p
≤ 0,

so

∀ t ≥ 0, ‖M 1
2w‖L2

p
≤ ‖M 1

2w(0)‖L2
p
e−

α(α1)2

2 t.

This implies that:

∀ t ≥ 0, ‖w(t)‖H1
p
≤ α3

α2
‖w(0)‖H1

p
e−

α(α1)2

2 t.

In addition, using that |Kw(t)| ≤ K‖w(t)‖H1
p

and Equation (3.28), we obtain that
dσ

dt
is integrable

on IR+, so σ(t) tends to a limit σ∞ when t tends to +∞. This concludes the proof of Theorem 2.

4 Proof of the nonlinear stability

4.1 New unknowns

We remark that our model (2.11) is invariant by translation in the x-variable so that x 7→M0(x−σ)
is a static solution for (2.11) for all σ ∈ IR. By projection on the mobile frame (M1,M2), this
induces the existence of a one-parameter family of static solutions for (2.12) given by

R(σ)(x) =

(
ρ(σ)(x)

0

)
, (4.31)

where ρ(s)(x) = (M0(x− σ) ·M1(x)) = − tanh(x− s)
coshx

+
tanhx

cosh(x− s)
.

The existence of this one-parameter family of solutions induces that 0 is in the spectrum of the
operator arising in the linearization of (2.12), as observed in Section 3 (see also [4, 10, 11]).

Remark 4.1. In [9, 10, 11, 12], in the case of wires with circular cross section, the model is also
invariant by rotation around the wire axis, so that 0 is an eigenvalue of multiplicity two of the
linearization

In order to take into account this null eigenvalue, we rewrite r in the following new system of
coordinates:

r(t, x, y) = R(σ(t))(x) + w(t, x, y), (4.32)

where for all t, w(t, ·) ∈ H2,⊥
p , i.e. its first component w1 satisfies:

∀ t ≥ 0,

∫
Ω

w1(t, x, y)
1

coshx
dxdy = 0. (4.33)

The validity of this system of coordinates is claimed in the following:
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Proposition 4.1. There exists ξ0 > 0 such that for all r ∈ L2
p with ‖r‖L2

p
≤ ξ0, then there exists

one and only one couple (σ,w) ∈ IR× L2,⊥
p such that

r(x, y) = R(σ)(x) + w(x, y).

In addition, if r ∈ Hk
p then w ∈ Hk,⊥

p .

Proof. Proceeding as in [4] we define ψ : IR→ IR by

ψ(s) =

∫
IR×]0,2π[

ρ(s)(x)
1

coshx
dx = 2π

∫
x∈IR

(
− tanh(x− s)

cosh2 x
+

tanhx

cosh(x− s) coshx

)
dx.

We remark that if r admits a decomposition on the form r(x, y) = R(σ)(x) +w(x, y) with w ∈ L2,⊥
p

then ∫
IR×]0,2π[

r1(x, y)
1

coshx
dxdy = ψ(σ).

Since ψ(0) = 0 and ψ′(0) = 4π 6= 0, ψ is a C∞-diffeomorphism in a neighborhood of zero, so that
for r small enough, σ is characterized by:

σ = ψ−1

(∫
IR×]0,2π[

r1(x, y)
1

coshx
dxdy

)
.

By subtraction we obtain then that w is characterized by w = r − R(σ) which is automatically in
L2,⊥
p .

The Hk
p-regularity is a straightforward consequence of the previous decomposition since R(σ) is

smooth.

We aim to establish the equivalent formulation for Equation (2.12) in the new variables (σ,w).

For a fixed σ̄ ∈ IR, R(σ̄) is a static solution for (2.12), so for all t we have(
−α −1
1 −α

)
MR(σ(t))− haLR(σ(t)) + F(R(σ(t))) = 0.

Therefore plugging (4.32) in (2.11) we obtain

∂sR(σ)
dσ

dt
+ ∂tw =

(
−1 −1
1 −1

)
Mw − haLw + G, (4.34)

where G = F(R(σ) + w) − F(R(σ)). We take the L2
p-inner product of (4.34) with

1

4π coshx

(
1
0

)
,

and using the same arguments as in Section 3.2, we obtain:

g(σ)
dσ

dt
= −haKw + G̃,

where

• g(s) =

∫
x∈IR

1

2 coshx
∂sρ(s)(x)dx = 1 +O(s), so that g(s) ≥ 1

2 for σ small enough,

• Kw =

∫
Ω

1

4π coshx

(
−κ cos 2θ w2 − ha(α+

1

α
)`w1 + 2ha tanhxw2

)
dx dy,

• G̃ =

∫
Ω

1

4π coshx
G1dxdy where G1 is the first component of G.
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Therefore we get
dσ

dt
= Kσw +G (4.35)

where Kσw =
Kw
g(σ)

and G =
G̃

g(σ)
.

Writing in (4.34) that ∂sρ(σ) =
1

coshx
+ a(x, σ) where a(x, σ) = O(σ), using (4.35), we obtain by

subtraction that :

∂tw =

(
−1 −1
1 −1

)
Mw − haLw −

1

coshx

(
1
0

)
Kσw +H (4.36)

where

H = G − a(x, σ)

(
Kσw

0

)
−
(
∂sρ(σ)G

0

)
. (4.37)

In order to avoid the singularity of µ, we have to assume that ‖r‖L∞ ≤ 1
2 . In addition, we must

assume that ‖r‖L2
p
≤ ξ0 to use Proposition 4.1, and that |σ| small enough to be sure that g(σ) ≥ 1

2 .

Therefore, using the Sobolev embedding of H2
p into L∞(IR2), we introduce η0 > 0 such that under

the assumption:
|σ| ≤ η0 and ‖w‖H2

p
≤ η0, (4.38)

then we have:

‖R(σ) + w‖L∞ ≤ 1

2
, ‖R(σ) + w‖L2

p
≤ 1

2
, and g(σ) ≥ 1

2
. (4.39)

4.2 Nonlinear Stability

We fix an a priori bound on ha: let hmaxa satisfying 0 < hmaxa < ακ
2 and let θmax related to hmaxa

by (1.10):

θmax =
1

2
arcsin(

2hmaxa

κ
).

We introduce the constants α1, α2 and α3 given by Proposition 3.1 with this θmax, so that the norms
equivalences in Proposition 3.1 are valid for all θ with |θ| ≤ θmax, i.e. for all ha with |ha| ≤ hmaxa .

We aim to perform variational estimates on System (4.35)-(4.36). The right-hand side nonlinear
terms are estimated in the following Proposition:

Proposition 4.2. There exists a constant K such that for all ha satisfying |ha| ≤ hmaxa , for all
σ ∈ IR satisfying |σ| ≤ η0, for all w ∈ H3

p such that ‖w‖H2
p
≤ η0, then

|Kσ(w)| ≤ K‖w‖H2
p
, |G| ≤ K‖w‖H2

p
, ‖H‖L2

p
≤ K

(
|σ|+ ‖w‖H2

p

)
‖w‖H2

p
,

and ‖H‖H1
p
≤ K

(
|σ|+ ‖w‖H2

p

)
‖w‖H3

p
.

For the convenience of the reader the proof of this proposition is postponed to Section 5.

First step: H1 estimates. Taking the inner product of (4.36) withMw, since the first component

of Mw is orthogonal to
1

coshx
, we obtain:

1

2

d

dt
〈w | Mw〉+ α‖Mw‖2L2

p
= −ha 〈Lw | Mw〉+ 〈H | Mw〉 .

By Proposition 4.2 and by the norms equivalences established in Proposition 3.1, we obtain that
there exists K1 such that while |σ| ≤ η0 and ‖w‖H2

p
≤ η0, then

‖Lw‖L2
p
≤ K1‖Mw‖L2

p
and ‖H‖L2

p
≤ K1

(
|σ|+ ‖Mw‖L2

p

)
‖Mw‖L2

p
.
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So
1

2

d

dt
〈w | Mw〉+ α‖Mw‖2L2

p
≤ K1

(
ha + |σ|+ ‖Mw‖L2

p

)
‖Mw‖2L2

p
. (4.40)

Second step: H2 estimates. We will take the inner product of (4.36) with M2w. Denoting by
Y1 and Y2 the coordinates of Mw, we have on the one hand:〈(

−α −1
1 −α

)
Mw | M2w

〉
=

〈(
−αY1 − Y2

Y1 − αY2

)
| MY

〉
,

= −α 〈Y | MY 〉 − 〈Y2 | (MY )1〉+ 〈Y1 | (MY )2〉 .

Now,

−〈Y2 | (MY )1〉 = −
〈
Y2 | (

1

δ2
L− ∂yy)Y1 + 2 tanhx ∂yY2

〉
,

= −
〈

(
1

δ2
L− ∂yy)Y2 | Y1

〉
,

since
1

δ2
L− ∂yy is self-adjoint and by 2π-periodicity of Y2, so that 〈Y2 | tanhx ∂yY2〉 = 0.

In addition, with the same arguments,

〈Y1 | (MY )2〉 =

〈
Y1 | (

1

δ2
L− ∂yy)Y2 + κ cos 2θY2 − 2 tanhx∂yY1

〉

=

〈
Y1 | (

1

δ2
L− ∂yy)Y2

〉
+ κ cos 2θ 〈Y1 | Y2〉 .

Hence 〈(
−α −1
1 −α

)
Mw | M2w

〉
= −α‖M 1

2Y ‖2L2
p

+ κ cos 2θ 〈Y1 | Y2〉 .

On the other hand,〈
1

coshx
| (MY )1

〉
=

〈
1

coshx
| 1

δ2
LY1 − ∂yyY1 + 2 tanhx ∂yY2

〉
= 0.

Therefore by taking the inner product of (4.36) with M2w, we obtain:

1

2

d

dt
‖Mw‖2L2

p
+ α‖M 3

2w‖2L2
p

=κ cos 2θ 〈(Mw)1 | (Mw)2〉 − ha
〈
Lw | M2w

〉
+
〈
H | M2w

〉
≤ κ‖Mw‖2L2

p
− ha

〈
M 1

2Lw | M 3
2w
〉

+
〈
M 1

2H | M 3
2w
〉
.

Using Propositions 3.1 and 4.2, while |σ| ≤ η0 and ‖w‖H2
p
≤ η0, there exists K2 such that

‖M 1
2Lw‖L2

p
≤ K2‖M

3
2w‖L2

p

and
‖M 1

2H‖L2
p
≤ K2

(
|σ|+ ‖Mw‖L2

p

)
‖M 3

2w‖L2
p
.

Therefore we obtain that while |σ| ≤ η0 and ‖w‖H2
p
≤ η0,

1

2

d

dt
‖Mw‖2L2

p
+ α‖M 3

2w‖2L2
p
≤ κ‖Mw‖2L2

p
+K2

(
ha + |σ|+ ‖Mw‖L2

p

)
‖M 3

2w‖2L2
p
. (4.41)
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Adding up 2κ×(4.40) and α×(4.41) (so that the right-hand side term κ‖Mw‖2L2
p

in (4.41) is absorbed

by the left-hand side of (4.40)), we obtain that while |σ| ≤ η0 and ‖w‖H2
p
≤ η0,

1

2

d

dt

(
2κ 〈w | Mw〉+ α‖Mw‖2L2

p

)
+ ακ‖Mw‖2L2

p
+ α2‖M 3

2w‖2L2
p

≤ 2κK1

(
ha + |σ|+ ‖Mw‖L2

p

)
‖Mw‖2L2

p
+ αK2

(
ha + |σ|+ ‖Mw‖L2

p

)
‖M 3

2w‖2L2
p
,

that is

1

2

d

dt

(
2κ 〈w | Mw〉+ α‖Mw‖2L2

p

)
+ κ

(
α− 2K1ha − 2K1|σ| − 2K1‖Mw‖L2

p

)
‖Mw‖2L2

p

+α
(
α−K2ha −K2|σ| −K2‖Mw‖L2

p

)
‖M 3

2w‖2L2
p
≤ 0.

We fix hmax by:

hmax = min

{
hmaxa ,

α

4K1
,
α

2K2

}
.

From now on, we assume that
|ha| ≤ hmax.

We obtain that while |σ| ≤ η0 and ‖w‖H2
p
≤ η0:

1

2

d

dt

(
2κ 〈w | Mw〉+ α‖Mw‖2L2

p

)
+ κ

(α
2
− 2K1|σ| − 2K1‖Mw‖L2

p

)
‖Mw‖2L2

p

+α
(α

2
−K2|σ| −K2‖Mw‖L2

p

)
‖M 3

2w‖2L2
p
≤ 0.

Third step: joint estimates for w and σ. We fix η1 = min

{
η0,

α

16K1
,
α

8K2

}
. While |σ| ≤ η1

and ‖Mw‖L2
p
≤ η1 then:

1

2

d

dt

(
2κ 〈w | Mw〉+ α‖Mw‖2L2

p

)
+
ακ

4
‖Mw‖2L2

p
+
α2

4
‖M 3

2w‖2L2
p
≤ 0.

Therefore, using Proposition 3.1, we obtain that while |σ| ≤ η1 and ‖Mw‖L2
p
≤ η1 then:

1

2

d

dt

(
2κ‖M 1

2w‖2L2
p

+ α‖Mw‖2L2
p

)
+
α(α1)2

8

(
2κ‖M 1

2w‖2L2
p

+ α‖Mw‖2L2
p

)
≤ 0,

so that, by comparison lemma, while |σ| ≤ η1 and ‖Mw‖L2
p
≤ η1 then:(

2κ‖M 1
2w(t)‖2L2

p
+ α‖Mw(t)‖2L2

p

)
≤
(

2κ‖M 1
2w(0)‖2L2

p
+ α‖Mw(0)‖2L2

p

)
e−

α(α1)2

4 t. (4.42)

From (4.35) we have:

|dσ
dt
| ≤ |Kσw|+ |G|, (4.43)

hence, using Propositions 3.1 and 4.2, there exists a constant K3 such that:

|dσ
dt
| ≤ K3‖Mw‖L2

p
.

Therefore, while |σ| ≤ η1 and ‖Mw‖L2
p
≤ η1, then

|dσ
dt
| ≤ K3

(
2κ‖M 1

2w(0)‖2L2
p

+ α‖Mw(0)‖2L2
p

) 1
2

exp(−α(α1)2

8
t), (4.44)
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so, by integration,

|σ(t)| ≤ |σ(0)|+ 8K3

α(α1)2

(
2κ‖M 1

2w(0)‖2L2
p

+ α‖Mw(0)‖2L2
p

) 1
2

. (4.45)

End of the proof. Using Proposition 3.1, we introduce η2 > 0 such that for any w, if ‖w(0)‖H2
p
≤

η2, then (
1 +

8K3

α(α1)2

)(
2κ‖M 1

2w(0)‖2L2
p

+ α‖Mw(0)‖2L2
p

) 1
2 ≤ η1

4
.

We assume that |σ(0)| ≤ η1
4 and that ‖w(0)‖H2

p
≤ η2. Let us prove that for all t ≥ 0, we have:

|σ(t)| < η and ‖M(w(t))‖L2
p
< η1.

If not, since this property is obviously satisfied at t = 0, we introduce t1 > 0 the first time in which
this property fails. In particular, we have either |σ(t1)| = η1 or ‖M(w(t1))‖L2

p
= η1.

For all t < t1, we have |σ(t)| ≤ η1 and ‖Mw(t)‖L2
p
≤ η1, so that Estimates (4.42) and (4.45) are

valid on this interval. In particular, at t = t1, by continuity we have:

‖Mw(t1)‖L2
p
≤
(

2κ‖M 1
2w(0)‖2L2

p
+ α‖Mw(0)‖2L2

p

) 1
2 ≤ η1

4
,

and
|σ(t1)| ≤ |σ(0)|+ η1

4
≤ η1

2
,

and this leads to a contradiction.

Therefore, if σ(0) ≤ η1
4 and ‖w(0)‖H2

p
≤ η2, then for all t ≥ 0, (4.42) and (4.43) remain valid so that

• ‖w‖H2
p

remains small for all times,

• w tends to zero in H2
p when t tends to +∞,

• σ remains small for all times,

• since
dσ

dt
is integrable on IR+ by (4.44), σ tends to a limit σ∞ when t tends to +∞.

This concludes the proof of Theorem 1.

5 Estimate of the nonlinear terms

The aim of this part is to estimate the right-hand side terms of (4.35) and to obtain L2 and H1

estimates for the nonlinear terms in (4.36).

First we give the exact expression of F(r), the nonlinear term arising in Equation (2.12):

F = F1(r)(∂xxr) + F2(r)(∂yyr) + F3(r)(∂xr, ∂xr) + F4(r)(∂yr, ∂yr) + F5(x, r)(∂xr)

+F6(x, r)(∂yr) + F7(x, r),
(5.46)

with
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• F1(r)(∂xxr) =
1

δ2

(
−αr2

1 µ(r)− αr1r2

−µ(r)− αr1r2 −αr2
2

)
∂xxr −

1

δ2

(
r2 + αr1 + αµ(r)r1

αr2 − r1 + αµ(r)r2

)
dµ(r)(∂xxr),

• F2(r)(∂yyr) =

(
−αr2

1 µ(r)− αr1r2

−µ(r)− αr1r2 −αr2
2

)
∂yyr −

(
r2 + αr1 + αµ(r)r1

αr2 − r1 + αµ(r)r2

)
dµ(r)(∂yyr),

• F3(r)(∂xr, ∂xr) = − 1

δ2

(
r2 + αr1 + αµ(r)r1

αr2 − r1 + αµ(r)r2

)
d2µ(r)(∂xr, ∂xr),

• F4(r)(∂yr, ∂yr) = −
(
r2 + αr1 + αµ(r)r1

αr2 − r1 + αµ(r)r2

)
d2µ(r)(∂yr, ∂yr),

• F5(x, r)(∂xr)= − 2

δ2 coshx

(
r2 + αr1 + αµ(r)r1

αr2 − r1 + αµ(r)r2

)
∂xr1 +

2

δ2 coshx

(
−α+ αr2

1

µ(r) + αr1r2 + 1

)
dµ(r)(∂xr),

• F6(x, r)(∂yr) = 2 tanhx

(
µ(r)− αr1r2 α r2

1

−αr2
2 µ(r) + αr1r2

)
∂yr +

2

coshx

(
r2 + αr1 + αµ(r)r1

αr2 − r1 + αµ(r)r2

)
∂yr2

+
2

coshx

(
1 + µ(r)− αr1r2

α− αr2
2

)
dµ(r)(∂yr),

• F7(x, r) =

(
2

δ2

tanhx

coshx
r1 +

ha
α

1

coshx
r2 − µ(r)(1− 2

cosh2 x

1

δ2
)

)(
r2 + αr1 + αµ(r)r1

−r1 + αr2 + αµ(r)r2

)

−α
(

1− 2

cosh2 x

1

δ2
+ ha tanhx

)
rµ(r) +

ha
coshx

(
α
−1

)
µ(r)

+

(
ha

1

coshx
+ κ sin2 θr1 +

ha
α

tanhx r2

)(
αr2

1

µ(r) + αr1r2

)

+

(
ha
α

1

coshx
+ κ cos2 θr2 +

ha
α

tanhx r1 +
ha
α

1

coshx
µ(r)

)(
αr1r2 − µ(r)

αr2
2

)
.

The term G arising in Equation (4.34) is defined by G = F(R(σ) + w)−F(R(σ)), so that we have:

G = G1 + ...+G7, (5.47)

with
G1 = F1(R(σ) + w)(∂xxw) + F̃1(R(σ), w)(w)(∂xxR(σ)),

G2 = F2(R(σ) + w)(∂yyw),

G3 = F3(R(σ) + w)(∂xw, ∂xw) + 2F3(R(σ) + w)(∂xR(σ), ∂xw)

+F̃3(R(σ), w)(w)(∂xR(σ), ∂xR(σ)),

G4 = F4(R(σ) + w)(∂yw, ∂yw),

G5 = F5(x,R(σ) + w)(∂xw) + F̃5(x,R(σ), w)(w)(∂xR(σ)),

G6 = F6(x,R(σ) + w)(∂yw),

G7 = F̃7(x,R(σ), w)(w).

18



Here,

F̃i (R(σ), w) =

∫ 1

0

drFi(R(σ) + sw)ds for i ∈ {1, 3},

and

F̃i (x,R(σ), w) =

∫ 1

0

∂rFi(x,R(σ) + sw)ds for i ∈ {5, 7}.

Remark 5.1. These terms are obtained by the Fundamental Theorem of Calculus writing for ex-
ample that

F1(R(σ) + w) = F1(R(σ)) +

∫ 1

0

dF1(R(σ) + sw)(w)ds = F1(R(σ)) + F̃1(R(σ), w)(w).

On the one hand we recall that

R(s)(x) =

(
ρ(s)(x)

0

)
with ρ(s)(x) = − tanh(x− s)

coshx
+

tanhx

cosh(x− s)
.

So by direct calculations and estimates, we obtain that there exists a constant K such that if |s| ≤ 1
then

∀x ∈ IR, |R(s)(x)|+ |∂xR(s)(x)|+ |∂xxR(s)(x)|+ |∂xxxR(s)(x)| ≤ K

coshx
|s|. (5.48)

On the other hand, since µ(r) =
√

1− (r1)2 − (r2)2 − 1, there exists a constant K such that if
|r| ≤ 1

2 then

|µ(r)| ≤ K|r|2, |dµ(r)| ≤ K|r| and |d2µ(r)|+ |d3µ(r)| ≤ K. (5.49)

Let us now estimate each term of G defined by (5.47). In what follows we recall that we assume
that |σ| ≤ η0 and ‖w‖H2

p
≤ η0, η0 > 0 being small enough to ensure that ‖R(σ) + w‖L∞ ≤ 1

2 .

• Estimate of G1

We recall that
G1 = F1(R(σ) + w)(∂xxw) + F̃1(R(σ), w)(w)(∂xxR(σ)).

Using (5.49) and the formulation of F1 in (5.46), there exists K such that if |r| ≤ 1
2 then

|F1(r)| ≤ K|r|2, |dF1(r)| ≤ K|r| and |d2F1(r)| ≤ K. (5.50)

Since F̃1(a, b) =

∫ 1

0

dF1(a+ sb)ds, we have also

|F̃1(a, b)| ≤ K(|a|+ |b|) and |dF̃1(a, b)| ≤ K. (5.51)

Therefore we have

|G1| ≤ |F1(R(σ) + w)| |∂xxw|+ |F̃1(R(σ), w)| |w| |∂xxR(σ)|,

≤ K|R(σ) + w|2|∂xxw|+K(|R(σ)|+ |w|)|w| |∂xxR(σ)|

using (5.50) and (5.51),

≤ K(|σ|+ |w|)(|∂xxw|+ |w|) using (5.48).

Thus we get:
‖G1‖L2

p
≤ K(|σ|+ ‖w‖L∞)‖w‖H2

p
.
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We estimate ∇G1 on the following way:

|∇G1| ≤ |dF1(R(σ) + w)|(|∂xR(σ)|+ |∇w|)|∂xxw|+ |F1(R(σ) + w)||∇∂xxw|

+|dF̃1(R(σ), w)|(|∂xR(σ)|+ |∇w|)|w||∂xxR(σ)|+ |F̃1(R(σ), w)||∇w||∂xxR(σ)|

+|F̃1(R(σ), w)||w||∂xxxR(σ)|,

so using (5.48), (5.50) and (5.51), we obtain

|∇G1| ≤ K(|σ|+ |w|)(|σ|+ |∇w|)|∂xxw|+K(|σ|+ |w|)|∇∂xxw|

+K(|σ|+ |∇w|)|w||σ|+K(|σ|+ |w|)|∇w||σ|.

Thus,

‖∇G1‖L2
p
≤ K(|σ|+ ‖w‖L∞)

(
‖w‖L2

p
+ ‖∇w‖L2

p
+ ‖∂xxw‖L2

p
+ ‖∇∂xxw‖L2

p

)
+K‖∇w‖L4‖∂xxw‖L4 .

We recall that in 2d, we have the following interpolation-type inequality:

‖v‖L4(IR×]0,2π[) ≤ C‖v‖
1
2

L2(IR×]0,2π[)‖v‖
1
2

H1(IR×]0,2π[). (5.52)

Using this inequality for the last term of the previous estimate of ‖∇G1‖L2
p
, we obtain that

‖∇G1‖L2
p
≤ K

(
|σ|+ ‖w‖H2

p

)
‖w‖H3

p
.

• Estimate of G2

We recall that G2 = F2(R(σ) + w)(∂yyw), with F2 = δ2F1 so with the same argument as for
G1 we obtain that there exists K such that if |σ| ≤ η0 and ‖w‖H2

p
≤ η0, then:

‖G2‖L2
p
≤ K(|σ|+ ‖w‖L∞)‖w‖H2

p
,

and
‖∇G2‖L2

p
≤ K

(
|σ|+ ‖w‖H2

p

)
‖w‖H3

p
.

• Estimate of G3

We have

G3=F3(R(σ)+w)(∂xw, ∂xw)+2F3(R(σ)+w)(∂xR(σ), ∂xw)+F̃3(R(σ), w)(w)(∂xR(σ), ∂xR(σ)).

Using (5.49) and the formulation of F3 in (5.46), there exists K such that if |r| ≤ 1
2 then

|F3(r)| ≤ K|r| and |dF3(r)|+ |d2F3| ≤ K. (5.53)

Since F̃3(a, b) =
∫ 1

0
dF3(a+ sb)ds, we have also

|F̃3(a, b)|+ |dF̃3(a, b)| ≤ K. (5.54)

Therefore we have, for |σ| ≤ η0 and ‖w‖H2
p
≤ η0,
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|G3| ≤ |F3(R(σ) + w)||∂xw|2 + 2|F3(R(σ) + w)||∂xR(σ)||∂xw|

+|F̃3(R(σ), w)||w||∂xR(σ)|2,

≤ K(|σ|+ |w|)
(
|∂xw|2 + |σ||∂xw|

)
+K|w||σ|2,

with (5.53) and (5.54). So,

‖G3‖L2
p
≤ K(|σ|+ ‖w‖L∞)

(
‖∂xw‖2L4 + |σ|‖∂xw‖L2

p

)
+K|σ|2‖w‖L2

p
,

≤ K
(
|σ|+ ‖w‖H2

p

)
‖w‖H2

p
.

Let us estimate now ∇G3:

|∇G3| ≤ |dF3(R(σ) + w)| (|∂xR(σ)|+ |∇w|) |∂xw|2 + 2|F3(R(σ) + w)||∇∂xw||∂xw|

+2|dF3(R(σ) + w)| (|∂xR(σ)|+ |∇w|) |∂xR(σ)||∂xw|

+2|F3(R(σ) + w)||∂xxR(σ)||∂xw|+ 2|F3(R(σ) + w)||∂xR(σ)||∇∂xw|

+|dF̃3(R(σ), w)| (|∂xR(σ)|+∇w|) |w||∂xR(σ)|2 + |F̃3(R(σ), w)||∇w||∂xR(σ)|2

+2|F̃3(R(σ), w)||w||∂xxR(σ)||∂xR(σ)|,

≤ K (|σ|+ |∇w|) |∂xw|2 +K(|σ|+ |w|)|∇∂xw||∂xw|+K (|σ|+ |∇w|) |σ||∂xw|

+K(|σ|+ |w|)|σ||∂xw|+K(|σ|+ |w|)|σ||∇∂xw|+K (|σ|+ |∇w|) |w||σ|2

+K|∇w||σ|2 +K(|σ|+ |w|)|w||σ|2 using (5.53) and (5.54).

So,

‖∇G3‖L2
p
≤ K|σ|‖∂xw‖2L4 +K‖∇w‖2L6 +K(|σ|+ ‖w‖L∞)‖∇∂xw‖L4‖∂xw‖L4

+K|σ|2‖∂xw‖L2 +K‖∇w‖2L4 |σ|+K(|σ|+ ‖w‖L∞)|σ|‖∂xw‖L2

+K(|σ|+ ‖w‖L∞)|σ|‖∇∂xw‖L2 +K|σ|3‖w‖L2
p

+K‖∇w‖L4‖w‖L2
p
|σ|2

+K‖∇w‖L2 |σ|2 +K(|σ|+ ‖w‖L∞)‖w‖L2 |σ|2,

≤ K
(
|σ|+ ‖w‖H2

p

)
‖w‖H3

p
using Estimate (5.52).

• Estimate of G4

We have G4 = F4(R(σ) + w)(∂yw, ∂yw), with F4 = δ2F3. So, this term is estimated as the
first term of G3 and we obtain that

‖G4‖L2
p
≤ K(|σ|+ ‖w‖H2

p
)‖w‖H2

p
and ‖∇G4‖L2

p
≤ K

(
|σ|+ ‖w‖H2

p

)
‖w‖H3

p
.

• Estimate of G5

This term writes

G5 = F5(x,R(σ) + w)(∂xw) + F̃5(x,R(σ), w)(w)(∂xR(σ)),
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where F5 and F̃5 satisfy that there exists K such that for |r| ≤ 1
2 , for x ∈ IR, we have:

|F5(x, r)|+ |∂xF5(x, r)| ≤ K|r|, |∂rF5(x, r)| ≤ K, (5.55)

and
|F̃5(x, a, b)|+ |∂xF̃5(x, a, b)|+ |∂rF̃5(x, a, b)| ≤ K. (5.56)

We have
|G5| ≤ |F5(x,R(σ) + w)||∂xw|+ |F̃5(x,R(σ), w)||w||∂xR(σ)|,

≤ K(|σ|+ |w|)|∂xw|+K|σ||w|,

thus
‖G5‖L2

p
≤ K(|σ|+ ‖w‖L∞)‖w‖H1

p
.

In addition,

|∇G5| ≤ |dF5(x,R(σ) + w)| (|∂xR(σ)|+ |∇w|) |∂xw|+ |F5(x,R(σ) + w)||∇∂xw|

+
(
|∂xF̃5(x,R(σ), w)|+ |∂aF̃5(x,R(σ), w)||∂xR(σ)|

)
|w||∂xR(σ)|

+|∂bF̃5(x,R(σ), w)||∇w||w||∂xR(σ)|

+|F̃5(x,R(σ), w)||∇w||∂xR(σ)|+ |F̃5(x,R(σ), w)||w||∂xxR(σ)|,

≤ K(|σ|+ |∇w|)|∂xw|+K(|σ|+ |w|)|∇∂xw|+K(1 + |σ|)|w||σ|

K|∇w||w||σ|+K|∇w||σ|+K|w||σ|.

So,

‖∇G5‖L2
p
≤ K(|σ|+ ‖w‖L∞)

(
‖w‖L2

p
+ ‖∇w‖L2

p
+ ‖∇∂xw‖L2

p

)
+ ‖∇w‖2L4 ,

≤ K(|σ|+ ‖w‖H2
p
)‖w‖H2

p
.

• Estimate of G6

We recall that
G6 = F6(x,R(σ) + w)(∂yw),

with
|F6(x, r)|+ |∂xF6(x, r)| ≤ K|r| and |∂rF6| ≤ K. (5.57)

Hence
‖G6‖L2

p
≤ ‖F6(x,R(σ) + w)‖L∞‖∂yw‖L2

p
≤ K(|σ|+ ‖w‖L∞)‖w‖H1

p
.

In addition,

|∇G6| ≤ |∂xF6(x,R(σ) + w)||∂yw|+ |∂rF6(x,R(σ) + w)| (|∂xR(σ)|+ |∇w|) |∂yw|

+|F6(x,R(σ) + w)||∇∂yw|,

≤ K(|σ|+ |∇w|)(|∂yw|+ |∇∂yw|) +K|∇w||∂yw|.

So
‖∇G6‖L2

p
≤ K(|σ|+ ‖w‖H2

p
)‖w‖H2

p
.
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• Estimate of G7

This last term is given by
G7 = F̃7(x,R(σ), w)(w),

where, for |a|+ |b| ≤ 1
2 ,

|F̃7(x, a, b)|+ |∂xF̃7(x, a, b)| ≤ K(|a|+ |b|) and |∂aF̃7(x, a, b)|+ |∂bF̃7(x, a, b)| ≤ K.

Therefore
‖G7‖L2

p
≤ ‖F̃7(x,R(σ), w)‖L∞‖w‖L2

p
≤ K(|σ|+ ‖w‖L∞)‖w‖L2

p
.

In addition,

|∇G7| ≤ |∂xF̃7(x,R(σ), w)||w|+ |∂aF̃7(x,R(σ), w)||∂xR(σ)||w|

+|∂bF̃7(x,R(σ), w)||∇w||w|+ |F̃7(x,R(σ), w)||∇w|

≤ K(|σ|+ |w|)|w|+K|σ||w|+K|∇w||w|+K(|σ|+ |w|)|∇w|.

So
‖∇G7‖L2

p
≤ K(|σ|+ ‖w‖L∞)‖w‖H1

p
.

Therefore we obtain that

‖G‖L2
p
≤ K

(
|σ|+ ‖w‖H2

p

)
‖w‖H2

p
and ‖G‖H1

p
≤ K

(
|σ|+ ‖w‖H2

p

)
‖w‖H3

p
. (5.58)

Since G̃ =

〈
G1 |

1

4π coshx

〉
, where G1 is the first component of G, we have

|G̃| ≤ 2π‖G‖L2
p
≤ K

(
|σ|+ ‖w‖H2

p

)
‖w‖H2

p
. (5.59)

So, using that g(σ) is bounded by below by 1
2 , we obtain that there exists K such that if |σ| ≤ η0

and ‖w‖H2
p
≤ η0,

|G| ≤ K
(
|σ|+ ‖w‖H2

p

)
‖w‖H2

p
. (5.60)

From the expression of Kσ(w) we have

|Kσ(w)| ≤ C
(
‖w2‖L2

p
+ ‖`w1‖L2

p

)
. (5.61)

Thus, as |a(x, σ)|+ |∂xa(x, σ)| ≤ K|σ|, using the previously-obtained estimates we obtain that

‖H‖L2
p
≤ K

(
|σ|+ ‖w‖H2

p

)
‖w‖H2

p
,

and
‖H‖H1

p
≤ K

(
|σ|+ ‖w‖H2

p

)
‖w‖H3

p
.

Concerning the right-hand side terms in Equation (4.35), from (5.61), we get:

|Kσ(w)| ≤ K‖w‖H2
p
,

and from (5.60), since |σ| ≤ η0 and ‖w‖H2
p
≤ η0, we obtain that there exists K such that

|G| ≤ K‖w‖H2
p
.

This concludes the proof of Proposition 4.2.
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