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Abstract.We address the problem of control of the magnetic moment in a ferromag-
netic nanowire by means of a magnetic field. Based on theoretical results for the 1D
Landau-Lifschitz equation, we show a robust controllability result.

1. Model and control result. The magnetic moment u of a ferromagnetic ma-
terial is usually modeled as a unitary vector field, solution of the Landau-Lifschitz
equation

0
a—?:—u/\He—u/\(u/\He), (1)
where H, = Au+ hq(u) + Hg,, hqa(u) is called the demagnetizing field h4(u) and is

solution of the magnetostatic equations
div B=div (H 4+ u) =0 and curl H =0,

where H, is an applied magnetic field, and B is the magnetic induction B (see
[3, 12, 17, 22] for more details on the modelization). Existence results have been
established for the Landau-Lifschitz equation in [4, 5, 13, 21], numerical aspects
have been investigated in [11, 15, 16], and asymptotic properties have been proved
in [1, 6, 10, 18, 20]; control issues were addressed in [9].

We restrict here ourselves to a one dimensional model the equation, i.e., we
consider a ferromagnetic nanowire, submitted to an external magnetic field applied
along the axis of the wire and which is our control. The model then writes (see [20])
% = —uAhs(u) —uA (uA hs(u)), (2)
where hs(u) = g% — ugeq — uges + deq. Here, (e1,e9,€3) is the canonical basis of,
and the nanowire is the axis IRe;. The magnetic field is written §(¢)e;, where the
function 6(+) is our control. Setting h(u) = Uz, — uses — uges, this yields

ug=—uAh(u) —uA(wAh(u) —6(uie +un (uier)). (3)
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When 6 = 0, stationary solutions do exist, of the form

thz

cha

and are called Bloch walls. Their stability properties were studied in [7].
When §(-) = § is constant, the solution writes

u®(t,z) = Rs; Mo(z + 6t), (5)
where
1 0 0
Ry = 0 cosf@ —sin0

0 sinf cosf
is the rotation of angle # around the axis IRe;. It corresponds to a rotation plus
translation of the above wall along the nanowire.

Notice the invariance of (3) through translations x — x — o and rotations Ry
around the axis e;. This generates a three-parameters family of particular solutions
defined by

w7 (t, x) = Mpu’(t, z) = Rsyp9Mo(x + 0t — o) (6)
called travelling wall profiles.

Controlling these walls (position plus speed) might be relevant for coding and
transporting some information. This is our aim here to derive a controllability re-
sult, with an eye on possible applications such as rapid recording. In [9], control
properties were proven with piecewise constant controls. However, practical appli-
cations require the control to be smooth. Recall that the control here is an external
magnetic field applied along the nanowire. The main result of [9] strongly uses the
fact that the control is a piecewise constant function and our aim is here to extend
this result to the case of smooth controls, hence closer to practical issues.

Theorem 1. There exist eg > 0 and §g > 0 such that, for all 01,92 € IR satisfying
|0;] < do, i =1,2, for all 01,09 € R, for every e € (0,&¢), there exist T > 0 and a
control function §(-) € C*(IR, R) such that, for every solution u of (3) associated
with the control §(-) and satisfying

361 € R | [[u(0,-) — u 71 (0, )| > <, (7)
there exists a real number 0o such that
||U(T,) _u52,92,02(T,.)HH2 <e. (8)

Moreover, there exists real numbers 0 and ob, with |0y — 0| + |ob — 02| < &, such
that

lu(t, ) — u?20272(t, )| g2 — 0. (9)

t——+oo
In the proof of the main result, we shall choose control laws 4(-) so that

& if t <0,
o) = { Op + 522 ift > T, (10)

where T' > 0 is large, djjp,7] is a smooth function such that té remains small, and
the function § is smooth overall IR.
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Notice that this control shares robustness properties in H? norm. The time T is
required to be large enough. It follows from this result that the family of travelling
wall profiles (6) is approximately controllable in H? norm, locally in ¢ and globally
in o, in time sufficiently large.

2. Proof of Theorem 1. Similarly as in [7, 8, 9], it is relevant to first reexpress
the Landau-Lifschitz equation in adapted coordinates.

2.1. Preliminaries. The following formulas, easy to establish, will be useful next:

0 0 0

. d%Rg =0 —sinf —cosb | =Ryrz — erel = Rz Ry — erel;
0 cosf® —sinf

e vAe = fR%v+vlel;

e Rou A Rygv = Ry(u Av);

e aA(bAc)=bla.c)— c(ad);

e Ry(IRey) = IRe;.
It is clear from Equation (2) that the solution u has a constant norm. Up to
normalizing, assume this norm is equal to 1. Set v(t,z) = R_sq:(u(t,x — 0(t)t));
then, v has a constant norm too, equal to 1. Using the above formulas, computations
lead to

vy = —vAh(V) —vA (VA RWL) = 6(vg + V10 — e1) — t6(vy — vzeg + vges),  (11)

where we recall that h(v) = vy, — voea — vzes. Define
1

—_ 0
Mi(z) = d(l)x and My = |1
—tha 0

In the frame (My(x), My (x), My), the solution v : Rt x R — S? C IR® writes in
the form

o(t,z) = \/1 —r1(t,x)? — ro(t, x)2Mo(z) + r1(t, ) My () + ra(t, z) Ms.
Note that:

1 1 shz 1
M/ :7M M/ :—7M M” = —— _ M
* Mo(w) chz 1(1x), 1() chz 01(33) ch2x 1(@) ch2z "
) elzthx ]\4()—|—7_Z\4-1(.’£),6221\4'27 63:7M0_thx ]\41(:1;)7
chzx chzx

2
* h(Mo) = — g Mo
[ ] Mo/\Mleg, Mo/\MQZ—Ml,Ml/\MQZMo;

Then, easy but lengthy computations, not reported here, show that v is solution of

(11) if and only if r = (::1) satisfies
2

ry = Ar + R(t, 9, 5, Ty Ty Ty T ), (12)

where

¢ 0
0 ¢

+ P(x,r) — 6B(x,r) — t5C(x7T),

R(t, 0, 5, Xy Ty Ty Tg) = — 0 ( > r 4+ G(r)ree + Hi(x,r)ry + Ha(r)(re, rs)

(13)

and
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e A= _LL é with L = 0, + (1 — 2th 22)Id;
e /=0, +thald;

e (G(r) is the matrix defined by

r17r2 7’% +
_ 2 _ 2
Gr) = V=T Hrl VI=Trl

™7Tr
v AR VST

1—{lr] -

e Hy(z,r) is the matrix defined by
9 roy/1 —||r]|2 — 173 —ry + 11}
— 172 ;
VISIEde A ey TP+
e Hy(r) is the quadratic form on IR* defined by

_ 2
(1= IrP)XTX + ("xp2 (VI

Hy(z,r) =

H?(r)(X7 X) = ;
ORI ERRE A
P(z,r)
o P(z,r) = , with
P?(x,7)

1 shx 9 1
P(z,r) =2ry(\/1—||r||2 — 1)ch2x — 27"17“2@ — 27 |||l T
sha
A e

i (L= V1= [r]?) + 3,

and

1 shx 1
2 _ 2 2
P(a,r) = = 2n (VT TP = D) + 205 = ol o
shx
— 2r17r9y/1 — ||r||2ch2
1 T _ 7 _ 2
e B(x,r) = (814—'61’1.13)7’4—@ ( L= 1ir] 1+T1> +tha (/1 —|r||? = 1)r;

rir2
— 1 —r]?
o Clx,r) = (690 +tha ((1) 01)> r+ TN (11> :
It is clear that there holds
G(r) = O(|Ir[),
Hy(z,r) = O(|Ir),
Hy(r) = O([7]]),
P(z,r) = O(||r|]*),
B(z,r) = O([Ir[| + lIr=[),
Clz,r) =O(Irl + lir=1),

uniformly with respect to the variable z € IR. Then, we infer that there exists a
constant C' > 0 such that, if ||r[|%,. = |[r[|* < 5 and |§] < 1, then, for all p,q € IR?,
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for all x,t,c € IR,
|R(t, 6,6, 2,7,p,q)| R < C(I5H|7“||JR2 + [0]llpll w2 + tlel + tlell[pll e

+ Il llallme + Irllme ol me + 17 g2l + H?"||3R2)~
(14)

From this a priori estimate, one might consider R(, 9, 8, 2,7, 1y, Tzz) @s a remainder
term in Equation (12). The proof uses stability properties established for the linear
operator A, so as to establish. We next follow the same lines as in [9].

2.2. Change of coordinates. The operator L is a selfadjoint operator on L?(IR),
of domain H2(IR), and L = —¢*{ with £ = 3, +thzId (one has £* = -9, +thxz1d).
It follows that L is nonpositive, and that ker L = ker/ is the one dimensional
subspace of L?(IR) generated by ﬁ In particular, the operator L, restricted to
the subspace E = (ker L), is negative.

Remark 1. On the subspace E:
e the norms ||(—L)Y2f| 12y and || f||m () are equivalent;
e the norms ||Lf||2(r) and || f| g2(r) are equivalent;
e the norms |[(—=L)3/%f||12(r) and || f||gs(m) are equivalent.

Writing A = JL, with
1 1
7= (4)

it is clear that the kernel of A is ker A = ker L X ker L; it is the two dimensional
space of L?(IR?) generated by

ai(x) = (EZ) and ax(z) = (%:)

Moreover, combining the facts that L, ) is negative and that Spec J = {1 +
i,1 — i}, it follows that the operator A, restricted to the subspace & = (ker A)*, is
negative.

In what follows, solutions r of (12) are written as the sum of an element of
ker A and of an element of £. Since Equation (11) is invariant with respect to
translations in z and rotations around the axis ey, for every A = (0,0) € IR?
M (x) = RgMo(x — o) is solution of (11). Define

(M (z), My (x))
Ra(x) = < (]\1\41\(:1:)7M2 )

> ’
the coordinates of M (x) in the mobile frame (M (x), Mz (z)).
The mapping

U:R*xE — H*R)
(A W) +— r(z) = Ra(z) + W(x)

is a diffeomorphism from a neighborhood U of zero in IR* x £ into a neighborhood
V of zero in H?(IR). Indeed, if r = Ry + W with W € &, then, by definition,

(riay)r2 = (Rp,a1)r2 and  (r,as)r2 = (Ra,a2) 2. (15)

Conversely, if A € IR? satisfies ((15)), then W = r — Ry € £. The mapping
h: IR?* — IR?, defined by h(A) = ((Ra,a1) 12, (Ra,a2)12) is smooth and satisfies
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dh(0) = —21d, thus is a local diffeomorphism at (0,0). It follows easily that ¥ is a
local diffeomorphism at zero.

Therefore, every solution 7 of (12), as long as it stays' in the neighborhood V,
can be written as

T(ta ) = RA(t)() + W(ta ')7 (16)

where W (t,-) € £ and A(t) € IR?, for every t >0, and (A(t), W (t,-)) € U. In these
new coordinates?, Equation (12) leads to (see [7] for the details of computations)

Wilt,2) = AW (£, 2) + R(L, 6,2, A(t), 2, W (t, 2), Wa(t, ), Waa (£, 7)),
A/(t) = M(A(t)a W(t7 ')7 Ww(tv ))7

where R : IR x IR x IR x IR* x IR x (HQ(B))2 X (Hl(lR))2 X (LQ(R))2 — & and
M : R? x (Hl(lR))2 x (L2 (JR))2 — IR? are nonlinear mappings, for which there
exist constants K > 0 and 1 > 0 such that

||R(t7 6757Aa ) VV) Wxa WJ,I)H(Hl(R))Q

(17)

(18)
< K (1Al + 18]+ tlel + Wl a2 myye ) IW llars e + Kl

IMA, W, W,)| < K (HAHR2 + ||WH(H1(R))2) Wl (e (w2 (19)

for every W € £, every 6 € IR, every t > 0, and every A € IR? satisfying ||A| g2 < 7.
Note that, since L is selfadjoint, it follows that AW € &, for every W € £, and thus
(17) makes sense.

Wy

2.3. Asymptotic estimates. Denoting W = (W >, define on (HQ(]R))2 x IR?
2
the function
2
C1[{L 0 1 ) 1 )
von =3[ (6 D)) L, = S el 0

Remark 2. It follows from Remark 1 that, on the subspace £ = (ker A)+, /V(W)
is a norm, which is equivalent to the norm ||W||?H2(R2)).

Consider a solution (W, A) of (17), such that W(0,-) = Wy(-) and A(0) = Ao.
Since L is selfadjoint, one has

d L2W,
—V(W(t,-) = <AW7 ( 2 )>
dt LW2) [ ey

(=L)'/? 0 ) ((—L)3/2W1>>
+ R(t, 6, e, A, -, W, W, Way), .
<< 0 (_L)l/Q ( ‘ xx) (_L)3/2W2 (L2(IR))2
(21)
Concerning the first term of the right-hand side of (21), one computes

L2W1)> 2 2
AW,( 2 = —(=L)** Wil (z2my2 — I(=L)**Wall (12 (my2»
< LW, (L2(R2))? (L2 (IR)) (L2(IR))

IThis a priori estimate will be a consequence of the stability property derived next.

2This decomposition is actually quite standard and has been used e.g. in [14] to establish
stability properties of static solutions of semilinear parabolic equations, and in [2, 19] to prove
stability of travelling waves.
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and, using Remark 1, there exists a constant C; > 0 such that

LW, )
<AW (L2W2)> ey VG e

(22)

Concerning the second term of the right-hand side of (21), one deduces from the

Cauchy-Schwarz inequality, from Remark 1, and from the estimate (18), that

COR , (L)W,

IR, 6, e, A, -, W, Wo, Wao )| (HY(R)) 2 |[W| (H3(IR))?
K (1182 +18] + el + 1W l sragamyye ) IW gy + HellW s

IN A

IN

1 52
<||A||1R2 18]+ el 1W gy + 5 ) W2 e + 267,

where, to get the last line, we used the inequality

2
HellWll sy < St7€” + TSQIIWII(Hz
here, £ denotes some real number to be chosen later.
One infers from (21), (22) and (23) that
d

dtV( )

52

Fix € > 0; then, under the a priori estimates

IA®lLga + 16+ 861+ 1 sy + 5 < 976
and
§t252 <
there holds
LV (1,9) < = CIW g s +
< = WP s +

< —CV(W (1, ) +e.

(23)

25'2.

The existence of a constant Cy > 0 follows from Remark 2. Therefore, choos-
ing £ > 0 large enough there exist constants C's > 0 and Cy > 0 such that, if

WO, )2 (my)2 < &L if the a priori estimate

C
< =
max [|A(s)]lme < 7

holds, and if the control function 4(+) is chosen so that

5]+ H15(0)] <
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and
£26(t)* < 2¢/€2 (26)
for every t > 0, then
IW (s, )| (r2(myy> < Cae™ W (0, ) (a2 (my)2 + Cse, (27)

for every s € [0,T], and moreover, one deduces from (17), (19), and (27) that, if
the a priori estimate (24) holds, then

C1Cy E o,
MOl < 18O+ WO, e | <O

t
+KC’§HW(O’)H?H2(IR))2/ e72C48d8 (28)
0

<A C1C3 KC’§ )
< 1A+ T2 IW O, sy + K g 10, ) ey

From the above a priori estimates, we infer that, if [[A(0)[| g2 + [[W (0, )|l 2y
is small enough, and if the control function 4 fits the conditions (25) and (26), then

[A(t)|z: remains small, for every ¢ > 0, and [[W(t,-)||(g2(ry)> is exponentially
decreasing to 0.

Finally we must choose a smooth control function such that u(¢,z) is close to
w991 (¢, x) at initial time, and close to u%2:%2:72 (¢, z) for large times. Hence, we
can choose the function § such that §(t) = §; for ¢ < 0. Then, with the reasoning
above, we enforce v(t,x) to remain close to My(x), that is, the solution u(t,x)
follows the profile u®®):01:1(¢ ). At times t > T, we require u(t, ) to be close to
u%2:02:92(¢ 1) for some fo; one must have, for t > T,

—01 + (5(t)t = —092 + (52t,

and hence,
oL —o0
3(t) =0y + ——2.
To conclude, observe that it is possible to choose a function § and a time T > 0
large enough, such that § is smooth on IR and satisfies the above requirements and
the estimates (25) and (26).
The first part of the theorem, on the interval [0, T], then follows from the above
considerations.
For the second part, we use a stronger version of the estimate (27), namely,

W (s, M mzmy < Cae™“4*||W (0, Mmz(my? + E170(t)°.

Since #2§(t)? is integrable, it follows from the above estimate, and from (17) and
(19), that ||A’(t)|| g2 is integrable on [0, +-00). Hence, A(t) has a limit in R?, denoted
Ao = (00, 000), as t tends to +00. The theorem follows with 6, = 2 + 0 and
0h =09+ Oco.
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