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Abstract. In this paper we consider a three dimensional model of ferromagnetic material. We
deal with the static domain wall configuration calculated by Walker. We prove the stability of this
configuration for the Landau-Lifschitz equation with a simplified expression of the demagnetizing
field.

Résumé. Dans cet article, on considère un modèle tridimensionnel de matériau ferromagnétique.
On étudie les profils de murs statiques calculés initialement par Walker. On démontre la sta-
bilité de ces profils pour l’équation de Landau-Lifschitz avec un modèle simplifié pour le champ
démagnétisant.
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1 Introduction and main results

The formation and the dynamics of domain walls are among the most studied topics in micromag-
netism. In his pioneering works [29], Walker performed the exact integration of the equations of
motion for a planar wall (see [26]). In this paper, we tackle the problem of the stability of these
exact solutions for the Landau-Lifschitz equation in a simplified 3-dimensional model.
Let us recall the general framework of the ferromagnetism (see [5], [17] and [27]). We consider an
infinite homogeneous ferromagnetic medium. We denote by m the magnetization:

m : IR+ × IR3 → IR3

(t, x, y, z) 7→ m(t, x, y, z).

The magnetic moment m links the magnetic induction B and the magnetic field H by the relation
B = m +H . In addition, we assume that the material is saturated so that the magnitude of m is
constant. After renormalization we assume that

|m| = 1 at any point. (1.1)

The evolution of m is described by the Landau-Lifschitz equation:

∂tm = −m×Heff −m× (m×Heff ). (1.2)

The effective field Heff = −∇E is derived from the micromagnetism energy E given by

E = Eexch + Edem + Eanis,

where

• the exchange energy Eexch writes

Eexch =
1

2

∫

IR3

|∇m|2,
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• the anisotropy energy reflects the existence of a preferential axis of magnetization:

Eanis =
1

2

∫

IR3

(1 − |m3|2), m = (m1,m2,m3).

• Edem is the demagnetizing energy:

Edem =
1

2

∫

IR3

|hd(m)|2.

The demagnetizing field hd(m) is characterized by







curl hd(m) = 0,

div (hd(m) +m) = 0.
(1.3)

Therefore we obtain that
Heff = ∆m+m3e3 + hd(m),

where e3 is the third vector of the canonical basis (e1, e2, e3) of IR3.

Existence results for the Landau-Lifschitz equation can be found in [2], [6], [14], [16], [20] and [28]
for the weak solutions, and in [7], [8] and [9] for the strong solutions. Numerical simulations are
performed in [3], [4], [21], [22] and [23].

In case of a magnetic moment only depending on the x variable, the demagnetizing field obtained
by integrating (1.3) reads hd(m) = −m1e1. With this expression of the demagnetizing field, Walker
calculated in [26] the following static solution to the Landau-Lifschitz equation:

M0(x, y, z) = M0(x) =





0
1/chx
−thx



 . (1.4)

The profile M0 modelizes a domain wall connecting the domain {x → −∞} in which m ∼ e3 with
the domain {x→ +∞} in which m ∼ −e3.
In our paper we simplify the model assimilating hd to −m1e1 even for perturbations of M0. So we
deal with the following system:

∂tm = −m×Heff −m× (m×Heff ),

Heff = ∆m+m3e3 −m1e1,
(1.5)

and we adress the stability of the static solution M0 for the system (1.5). Our main result is the
following:

Theorem 1.1. Let ε > 0. There exists δ > 0 such that for all m0 ∈ H2(IR3; IR3), if m0 satisfies
the saturation constraint |m0| = 1 and verifies ‖m0 −M0‖H2(IR3) ≤ δ, then the solution m of the
Landau-Lifschitz equation (1.5) together with the initial data m(0, x, y, z) = m0(x, y, z) satisfies

∀ t ≥ 0, ‖m(t, ).−M0‖H2(IR3) ≤ ε.

In [10], we proved the same kind of stability result for a one dimensional model of ferromagnetic
nanowire. We extended this result in [11] by proving the controllability of the wall position for this
1-d model. In the present paper, we deal with the 3-d model (1.5). The proof of the stability result
somewhat follows that presented in [10]. The first two steps are formally similar.
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At the begining we must consider perturbationsm of the profileM0 satisfying the physical constraint
|m| = 1. In order to do that, we describe m in the mobile frame (M0(x),M1(x),M2) where

M1(x) =







0
thx
1

chx






and M2 =





1
0
0



 ,

writing

m(t, x, y, z) = r1(t, x, y, z)M1(x) + r2(t, x, y, z)M2 +
(

1 − (r1(t, x, y, z))
2 − (r2(t, x, y, z))

2
)

1

2 M0(x).

The new unknown r = (r1, r2) takes its values in the flat space IR2. Then we rewrite the Landau-
Lifschitz equation with the unknown r, and we obtain in Section 2 that the Landau-Lifschitz equation
is equivalent to a nonlinear equation on r, and the stability of M0 is equivalent to the stability of 0
for this new equation.

Now the problem is that the linearized of the new equation around zero admits 0 as a simple
eigenvalue. This is due to the invariance of the Landau-Lifschitz equation (1.5) by translation in the
x-variable (see Section 3). Following the method developped in [30], [15], [18] and [19] (for travelling
waves solutions to semilinear parabolic equations), we decompose the perturbations into a spacial
translation component (the ”front”) and a normal component. The front satisfies a quasilinear
parabolic equation the linearized of which behaves like the heat flow in IR2. The normal component
is shown to satisfy a very dissipative quasilinear parabolic equation (see Section 4).

Section 5 is devoted to variational estimates to prove the stability. The situation in the present paper
is much more complicated than the one dimensional case, because in 1-d, the front part satisfies
an ordinary differential equation. In addition, here the equations are quasilinear, and Kapitula’s
method with semigroup estimates for the heat flow cannot be applied (see [18] for example).

Our method is the one used to prove a global existence with small data result. In the variational
estimates, the good sign terms induced by the linear part enable us to absorb the nonlinear terms.
In our case, the L2 norm of the front does not appear as an absorbing term. It’s the same thing for
the heat flow in the whole space. This dissipation defect for the front is compensated by a careful
study of the nonlinear part. The key point is that we can control this nonlinear part by the gradient
of the front (see Section 6).

Remark 1.1. When a constant magnetic field is applied in the x-direction on the ferromagnetic
material, it is observed that the domain wall is translated in the x-direction. In [26] such solutions
are calculated. They are described as travelling waves of a profile obtained from M0 by rotation and
dilation. The stability of these moving walls remains an open problem and our method does not
work in that case. In the same way, the stability of walls with the non simplified demagnetizing field
remains unproved (see Remark 4.1 below).

Remark 1.2. In the static case, the formation of domain walls is explained by asymptotic methods.
We refer the interested reader to [1], [12], [13] and [25].

2 Mobile frame

We consider the mobile frame (M0(x),M1(x),M2) given by:

∀x ∈ IR, M0(x) =





0
1/chx
−thx



 , M1(x) =





0
thx

1/chx



 , M2 =





1
0
0



 .

Let us introduce the smooth map ν : B(0, 1) → IR defined for ξ = (ξ1, ξ2) by

ν(ξ) =
√

1 − (ξ1)2 − (ξ2)2 − 1,
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where B(0, 1) = {(ξ1, ξ2), (ξ1)
2 + (ξ2)

2 < 1} is the unit ball of IR2.

We write the perturbations of M0 as:

m(t, x, y, z) = M0(x) + r1(t, x, y, z)M1(x) + r2(t, x, y, z)M2(x) + ν(r(t, x, y, z))M0(x),

so that the constraint |m| = 1 is satisfied.

We will work with the unknown r(t, x, y, z) =

(

r1(t, x, y, z)
r2(t, x, y, z)

)

.

We remark that we have r1(t, x, y, z) = m(t, x, y, z) ·M1(x) and r2(t, x, y, z) = m(t, x, y, z) ·M2.

After a rather long algebraic calculation, we obtain that if m satisfies (1.5) then r verifies:

∂tr = Λr + F (x, r,∇r,∆r), (2.6)

where

Λr =

(

−1 −1
1 −1

)(

Lr1
Lr2 + r2

)

,

with L = −∆ + f , f(x) = 2th 2x− 1.
The nonlinear part F : IR×B(0, 1) × IR4 × IR2 → IR2 is defined by:

F (x, r,∇r,∆r) = A(r)∆r +
3
∑

i=1

B(r)(∂ir, ∂ir) + C(x, r)(∂xr) +D(x, r),

with the following notations:

• A ∈ C∞(B(0, 1);M2(IR)) (M2(IR) is the set of the real 2 × 2 matrices):

A(r) =





−(r1)
2 ν(r) − r1r2

ν(r) − r1r2 −(r2)
2



+





−r2 − (1 + ν(r))r1

r1 − (1 + ν(r))r2



 ν′(r),

• B ∈ C∞(B(0, 1);L2(IR
2)) (L2(IR

2; IR2) is the set of the bilinear functions defined on IR2 × IR2

with values in IR2):

B(r)(ξ, ξ) =





−r2 − r1 − r1ν(r)

r1 − r2 − r2ν(r)



 ν′′(r)(ξ, ξ),

• ∂1r = ∂xr =
∂r

∂x
, ∂2r =

∂r

∂y
, ∂3r =

∂r

∂z
,

• C ∈ C∞(IR ×B(0, 1);M2(IR)):

C(x, r)(ξ) =
2

chx





−r2 − r1 − r1ν(r)

r1 − r2 − r2ν(r)



 ξ1 +
2

chx





−1 + (r1)
2

1 + ν(r) + r1r2



 ν′(r)(ξ),

• D ∈ C∞(IR ×B(0, 1); IR2): D(x, r) =

(

D1

D2

)

with

D1 = −
(

r2 + r2f + 2fr1 + fr1ν(r)
)

ν(r) + (r2)
2r1 +

2shx

ch 2x
r1 (r2 + r1 + r1ν(r)) ,

D2 =
(

fr1 − 2fr2 − fr2ν(r) − 2r2 − r2ν(r)
)

ν(r) − r2(r1)
2 − 2shx

ch 2x
r1 (r1 − r2 − r2ν(r)) .
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In fact, both forms of the Landau-Lifschitz equation are equivalent as it is stated in the following
proposition:

Proposition 2.1. Let m ∈ C1(0, T ;H2(IR3; IR3)) such that |m| = 1 and satisfying

∀ t ∈ [0, T [, ∀ (x, y, z) ∈ IR3, |m(t, x, y, z) −M0(x)| <
√

2. (2.7)

We introduce r = (r1, r2) ∈ C1(0, T ;H2(IR2; IR2)) defined by

m(t, x, y, z) = M0(x) + r1(t, x, y, z)M1(x) + r2(t, x, y, z)M2(x) + ν(r(t, x, y, z))M0(x)

(Assumption (2.7) implies that r(t, x, y, z) ∈ B(0, 1) for all (t, x, y, z)).
Then m is solution to the Landau-Lifschitz equation (1.5) if and only if r is solution to (2.6) and
M0 is stable for (1.5) if and only if 0 is stable for (2.6).

Sketch of the proof. By projection on M1 and M2, it is clear that if m satisfies the Landau-
Lifschitz equation (1.5) then m satisfies (2.6). The converse is proved in [10] using the fact that if
|m| = 1 and if m satisfies the projection of (1.5) onto IRM1 and IRM2, then it satisfies (1.5).

Let us estimate the nonlinear functions appearing in (2.6). Since ν(ξ) = O(|ξ|2), by straightforward
calculations, we obtain the following proposition:

Proposition 2.2. There exists a constant K such that for r ∈ B(0, 1/2) and for x ∈ IR,

• |A(r)| ≤ K|r|2 and |A′(r)| ≤ K|r|,

• |B(r)| ≤ K|r| and |B′(r)| ≤ K,

• |C(x, r)| ≤ K

chx
|r| and |∂rC(x, r)| ≤ K

chx
,

• |D(x, r)| ≤ K|r|3 +
K

ch x
|r|2 and |∂rD(x, r)| ≤ K|r|2 +

K

chx
|r|.

3 Linear properties

We denote by L the linear operator acting on H2(IR3) defined by

Lu = −∆u+ fu,

with f(x, y, z) = 2th 2x− 1.
We denote by L1 the reduced operator acting on H2(IR) given by

L1 = −∂xx + f.

Proposition 3.1. The operator L1 is positive symmetric. Its spectrum is {0}∪ [1,+∞[, where 0 is
the unique eigenvalue, and [1,+∞[ is the essential spectrum. In addition, 0 is simple.

Proof. On one hand, since f(x) = 2th 2x − 1, the essential spectrum is [1,+∞[ (see the Weyl
Theorem in [24]).
On the other hand, L1 = l∗ ◦ l where l = ∂x + th x. So L1 is positive. The kernel of L1 is directed

by
1

chx
:

Ker L1 = Ker l = IR
1

chx
.

Finally we have l ◦ l∗ = −∂xx + 1, so if v is an eigenvector associated to the eigenvalue λ, then

l ◦ l∗ ◦ lv = λlv,

that is, if v /∈ Ker l, then λ is an eigenvector for −∂xx + 1, which leads to a contradiction.
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Remark 3.1. As we remarked in [10] and [11], a direct consequence of Proposition 3.1 is the
following. Let E1 defined by

E1 = (KerL1)
⊥ =

{

v ∈ H2(IR),

∫

IR

v(x)
1

ch x
dx = 0

}

.

Then on E1, the H2-norm is equivalent to ‖L1u‖L2(IR) and the H3-norm is equivalent to ‖L
3

2

1 u‖L2(IR).

Proposition 3.2. The operator L = −∆ + f is a positive self-adjoint operator defined on H2(IR3).
Let us consider E defined by

E =

{

v ∈ H2(IR3), ∀ (y, z) ∈ IR2,

∫

x∈IR

v(x, y, z)
1

chx
dx = 0

}

.

There exists K such that
∀ v ∈ E , ‖v‖H2(IR3) ≤ K‖Lv‖L2(IR3),

∀ v ∈ H3(IR3) ∩ E , ‖v‖H3(IR3) ≤ K‖L 3

2 v‖L2(IR3).

Proof. From Proposition 3.1, there exists a constantK such that for u ∈ H2(IR), if

∫

IR

u(x)
1

chx
dx =

0, then
‖u‖2

L2(IR) + ‖∂xxu‖2
L2(IR) ≤ K‖L1u‖2

L2(IR).

Now for v ∈ E , we have for almost every (y, z) ∈ IR2:

∫

x∈IR

(

|v(x, y, z)|2 + |∂xxv(x, y, z)|2
)

dx ≤ K

∫

IR

|L1v(x, y, z)|2dx.

So integrating for (y, z) ∈ IR2 we obtain:

‖v‖2
L2[IR3) + ‖∂xxv‖2

L2(IR3) ≤ K‖L1v‖2
L2(IR3].

On the other hand,

∫

IR3

|Lv|2 =

∫

IR3

|L1v|2 +

∫

IR3

|∆Y v|2 − 2

∫

IR3

L1v∆Y v,

where ∆Y = ∂yy + ∂zz. The last term is positive:

−2

∫

IR3

L1v∆Y v = −2

∫

IR3

l∗ ◦ lv · ∆Y v = 2

∫

IR3

|∇lv|2,

by integrations by parts. So

∫

IR3

|Lv|2 ≥
∫

IR3

|L1v|2 +

∫

IR3

|∆Y v|2,

that is
‖v‖2

L2(IR3) + ‖∆v‖2
L2(IR3) ≤ K‖Lv‖2

L2(IR3).

The H3 estimate can be proved with the same kind of arguments using Remark 3.1.
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4 New coordinates

In the one dimensional case, i.e. for solutions depending only on the x-variable, we can construct a
one parameter family of static solutions to the Landau-Lifschitz equation (1.5) using translational
invariance. Indeed, for s ∈ IR, x 7→ M0(x− s) satisfies (1.5). On the mobile frame, we consider the
one parameter family (R(s))s∈IR of static solutions to (2.6) obtained from M0(x− s):

R(s)(x) =

(

M0(x − s) ·M1(x)
M0(x − s) ·M2

)

=

(

ρ(s)(x)
0

)

,

where ρ(s)(x) =
thx

ch (x− s)
− th (x− s)

chx
.

Following Kapitula [18], for r in a neighbourhood of 0, it would be desirable to use the coordinate
system given by (σ, ϕ,W ) with perturbations of zero being given by:

r(t, x, y, z) = R(σ(t, y, z))(x) +

(

0
1

chx

)

ϕ(t, y, z) +W (t, x, y, z), (4.8)

where both coordinates of W take their values in E . We prove that this system of coordinates is
relevant in Proposition 4.1. To start with let us precise the notations.

We denote by Σ the following space

Σ = H2(IR2) ×H2(IR2) × E × E . (4.9)

We endow Σ with the norm:

‖(σ, ϕ,W )‖H2 = ‖σ‖H2(IR2) + ‖ϕ‖H2(IR2) + ‖LW1‖L2(IR3) + ‖LW2‖L2(IR3). (4.10)

From Proposition 3.2, we have the following equivalence of norms on Σ:

‖(σ, ϕ,W )‖H2 ∼ ‖σ‖H2(IR2) + ‖ϕ‖H2(IR2) + ‖W1‖H2(IR3) + ‖W2‖H2(IR3).

In the same way, on Σ ∩H3, we define

‖(σ, ϕ,W )‖H3 = ‖σ‖H3(IR2) + ‖ϕ‖H3(IR2) + ‖L 3

2W1‖L2(IR3) + ‖L 3

2W2‖L2(IR3), (4.11)

and this norm is equivalent to the H3 norm on Σ ∩H3:

‖(σ, ϕ,W )‖H3 ∼ ‖σ‖H3(IR2) + ‖ϕ‖H3(IR2) + ‖W1‖H3(IR3) + ‖W2‖H3(IR3).

Proposition 4.1. There exists δ0 > 0, such that if r ∈ H2(IR3; IR2) satisfies ‖r‖H2(IR3) ≤ δ0, there
exists (σ, ϕ,W ) ∈ Σ such that

r(x, y, z) = R(σ(y, z))(x) +

(

0
1

ch x

)

ϕ(y, z) +W (x, y, z).

In addition, there exists K such that for r ∈ H2(IR3; IR2) in a neighbourhood of zero,

1

K
‖(σ, ϕ,W )‖H2 ≤ ‖r‖H2(IR3) ≤ K‖(σ, ϕ,W )‖H2 , (4.12)

and for r ∈ H3(IR3; IR2) in a neighbourhood of zero,

1

K
‖(σ, ϕ,W )‖H3 ≤ ‖r‖H3(IR3) ≤ K‖(σ, ϕ,W )‖H3 . (4.13)
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Proof. Let us introduce l1 and l2 defined for r = (r1, r2) ∈ H2(IR3; IR2) by:

l1(r)(y, z) =
1

2

∫

x∈IR

r1(x, y, z)
1

chx
dx, l2(r)(y, z) =

1

2

∫

x∈IR

r2(x, y, z)
1

chx
dx.

The operators l1 and l2 are continuous linear mappings from H2(IR3; IR2) (resp. H3(IR3; IR2)) into
H2(IR2) (resp. H3(IR2)).

Also we remark that E2 =
{

W ∈ H2(IR3; IR2), l1(W ) = l2(W ) = 0
}

.

For a fixed r in a neigbourhood of 0, (σ, ϕ,W ) can be found in the following manner:

• applying l2 on (4.8) we obtain:
l2(r)(y, z) = ϕ(y, z),

• applying l1 on (4.8) yields:

l1(r) =
1

2

∫

x∈IR

ρ(σ(y, z))(x)
1

chx
dx.

Let us consider ψ ∈ C∞(IR; IR) given by

ψ(s) =
1

2

∫

x∈IR

ρ(s)(x)
1

ch x
dx.

Since ψ(0) = 0 and ψ′(0) = 1, there exists δ0 > 0 such that ψ is a C∞-diffeomorphism from
] − δ0, δ0[ to a neighbourhood of zero. We obtained

l1(r)(y, z) = ψ(σ(y, z)),

so σ is given by
σ(y, z) = ψ−1(l1(r)(y, z)).

• By subtraction, we set

W (x, y, z) = r(x, y, z) −R(σ(y, z))(x) −
(

0
1

chx

)

ϕ(y, z),

and by construction l1(W ) = l2(W ) = 0, that is W ∈ E2.

Concerning (4.12), with straighforward estimates, using that ρ(0)(x) = 1 and ∂sρ(0)(x) = 1

chx
we

obtain for example that for σ ∈ H2(IR3) sufficiently small

‖(x, y, z) 7→ R(σ(y, z))(x)‖H2(IR3) ≤ K‖σ‖H2(IR2),

so
‖r‖H2(IR3) ≤ K

(

‖σ‖H2(IR2) + ‖ϕ‖H2(IR2) + ‖W‖H2(IR3)

)

≤ K‖(σ, ϕ,W )‖H2 .

By the continuity of the linear operators l1 and l2 for the H2 norm, since ψ−1 is smooth in a
neighbourhood of 0 and satisfies ψ−1(s) = s+ O(s2), we obtain that

‖σ‖H2(IR2) + ‖ϕ‖H2(IR2) ≤ K‖r‖H2(IR3),

and by difference we obtain the claimed estimate on W . We prove (4.13) in the same way. This
concludes the proof of Proposition 4.1.

Therefore in a neighbourhood of zero, we describe r in the coordinates (σ, ϕ,W ) given by (4.8). Let
us rewrite (2.6) in these coordinates. We assume that δ0 is small enough to ensure that ‖r‖L∞ < 1,
so that (2.6) makes sense.
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We first remark that in the one dimensional case, for a fixed s, the map x 7→ R(s)(x) is a static
solution to (2.6). So denoting by Λ1 the reduced operator:

Λ1w =

(

−1 −1
1 −1

)(

L1w1

L1w2 + w2

)

,

we have

Λ1R(σ)+A(R(σ))∂xxR(σ)+B(R(σ))(∂xR(σ), ∂xR(σ))+C(R(σ))(∂xR(σ))+D(R(σ)) = 0. (4.14)

Furthermore,
∂t(R(σ(t, y, z))(x) = ∂sR(σ(t, y, z))∂tσ(t, y, z),

and

∆(R(σ(t, y, z))(x)) = ∂xxR(σ(t, y, z)) + ∂sR(σ(t, y, z))(∆Y σ) + ∂ssR(σ(t, y, z))|∇Y σ|2,

with ∆Y := ∂yy + ∂zz and |∇Y σ|2 := |∂yσ|2 + |∂zσ|2. So, we have:

ΛR(σ) = Λ1R(σ) +

(

−1 −1
1 −1

)

(−∂sR(σ)∆Y σ − ∂ssR(σ)|∇Y σ|2).

Plugging (4.8) in (2.6) and using (4.14) yield:

∂sR(σ)∂tσ +

(

0
1

chx

)

∂tϕ+ ∂tW =
(

∂sρ(σ)∆Y σ − ∂ssρ(σ)|∇Y σ|2
)

(

1
−1

)

+
1

chx
(−∆Y ϕ+ ϕ)

(

1
1

)

+ ΛW +G.

(4.15)

The nonlinear term G is defined by

G = G1 +G2 + . . .+G5, (4.16)

where

• G1 = A(R(σ))∆Y R(σ) + Ã(R(σ), w)(w)(∆r) +A(r)∆w,

• G2 = 2B(R(σ))(∂xR(σ), ∂xw) +B(R(σ))(∂xw, ∂xw) + B̃(R(σ), w)(w))(∂xr, ∂xr),

• G3 =

3
∑

i=2

B(r)(∂ir, ∂ir),

• G4 = C(x,R(σ))(∂xw) + C̃(x,R(σ), w)(w)(∂xr),

• G5 = D̃(x,R(σ), w)(w),

with the following notations:

• w = ϕ(x)

(

0
1

chx

)

+W and r = R(σ) + w,

• Ã ∈ C∞(B(0, 1/2) ×B(0, 1/2);L(IR2;M2(IR))):

Ã(u, v) =

∫ 1

0

A′(u+ sv)ds,

• B̃ ∈ C∞(B(0, 1/2) ×B(0, 1/2);L(IR2;L2(IR
2; IR2))):

B̃(u, v) =

∫ 1

0

B′(u+ sv)ds,
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• C̃ ∈ C∞(B(0, 1/2) ×B(0, 1/2);L(IR2;M2(IR))):

C̃(x, u, v) =

∫ 1

0

∂rC(x, u+ sv)ds,

• D̃ ∈ C∞(B(0, 1/2) ×B(0, 1/2);L(IR2; IR2)):

D̃(x, u, v) =

∫ 1

0

∂ξD(x, u + sv)ds

(the tilda terms come from the fundamental theorem of the analysis applied between R(σ) and
R(σ) + w).

In order to separate the unknowns, we will use the projectors l1 and l2.

We multiply (4.15) by







1

2chx

0






and we integrate in the x variable. We obtain:

g̃(σ)∂tσ = g̃(σ)∆Y σ + ∆Y ϕ− ϕ+ K̃(σ)|∇Y σ|2 + l1(G),

where

g̃(s) =
1

2

∫

IR

∂sρ(s)(x)
1

ch x
dx =

1

2

∫

IR

[

sh (x− s)th x

ch 2(x − s)
+

1

ch 2(x − s)chx

]

1

chx
dx,

and

K̃(s) =
1

2

∫

IR

∂ssρ(s)(x)
1

ch x
dx

=

∫

IR

[

− thx

ch (x− s)
+ 2

sh 2(x− s)th x

ch 3(x− s)
+ 2

sh (x− s)

ch 3(x− s)chx

]

1

chx
dx.

We remark that g̃ and K̃ are in C∞(IR; IR) and that g̃(0) = 1 and K̃(0) = 0.

Then we write
1

g̃(s)
= 1 + γ(s) where γ(s) = O(|s|) in a neighbourhood of zero. So we obtain that

∂tσ = ∆Y σ + ∆Y ϕ− ϕ+ T1(σ, ϕ,W ), (4.17)

with

T1(σ, ϕ,W ) = γ(σ)(∆Y ϕ− ϕ) +
K̃(σ)

g̃(σ)
|∇Y σ|2 +

1

g̃(σ)
l1(G). (4.18)

Now we multiply (4.15) by

(

0
1

2chx

)

and we integrate in the x variable. We get:

∂tϕ = −∆σ + ∆ϕ− ϕ+ T2(σ, ϕ,W ), (4.19)

where
T2(σ, ϕ,W ) = (1 − g̃(σ))∆Y σ + K̃(σ)|∇Y σ|2 + l2(G). (4.20)

Multiplying (4.17) by ∂sR(σ), (4.19) by

(

0
1

chx

)

and subtracting from (4.15) yield:

∂tW = ΛW + T3(x, σ, ϕ,W ). (4.21)
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The nonlinear term T3 reads

T3(x, σ, ϕ,W ) = G+









−|∇Y σ|2∂ssρ(σ) + (∆Y ϕ− ϕ)

(

1

chx
− ∂sρ(σ)

)

− ρ(σ)T1(σ, ϕ,W )

|∇Y σ|2∂ssρ(σ) + ∆Y σ

(

1

chx
− ∂sρ(σ)

)

− 1

chx
T2(σϕ,W )









.

(4.22)
We have proved the following proposition:

Proposition 4.2. Let r ∈ C1(0, T ;H2(IR3; IR2)) such that for all t ≥ 0, ‖r(t, .)‖H2(IR3) ≤ δ0. Let
(σ, ϕ,W ) ∈ C1(0, T ; Σ) given by proposition (4.1). Then r satisfies (2.6) if and only if (σ, ϕ,W )
satisfies the system (4.17)-(4.19)-(4.21), and 0 is stable for (2.6) if and only if (0, 0, 0) is stable for
(4.17)-(4.19)-(4.21).

Remark 4.1. The key point of this step is that with l1 and l2, we can separate the variables σ,
ϕ and W in order to obtain the system (4.17)-(4.19)-(4.21) in which the linear parts are almost
independent. When we deal with the complete model for the demagnetizing field or with the travelling
waves solutions when a magnetic field is applied, this splitting is not possible and we are unable to
perform successful variational estimates.

5 Variational Estimates

We recall that we deal with the following system:

∂tσ = ∆Y σ + ∆Y ϕ− ϕ+ T1(σ, ϕ,W ), (5.23)

∂tϕ = −∆σ + ∆ϕ− ϕ+ T2(σ, ϕ,W ), (5.24)

∂tW =

(

−LW1 − (L+ 1)W2

LW1 − (L+ 1)W2

)

+ T3(x, σ, ϕ,W ). (5.25)

The unknown (σ, ϕ,W1,W2) takes its values in Σ defined in (4.9). The nonlinear terms T1, T2 and
T3 are defined in (4.18), (4.20) and (4.22) respectively.

Our stability result is similar to a global existence with small data theorem. By variational estimates
we will prove that if the initial data are small then the solution of (5.23)-(5.24)-(5.25) remains small.
When we multiply the equations by the unknowns or their space derivatives, the linear part yields
good sign absorbing terms. In order to be able to absorb the nonlinear terms, we have to control
them by the absorbing terms. We claim the following proposition:

Proposition 5.1. There exists K such that for all (σ, ϕ,W ) ∈ Σ, if ‖(σ, ϕ,W )‖H2 ≤ γ1, then

‖T1‖H1(IR2) + ‖T2‖H1(IR2) + ‖T3‖H1(IR3)

≤ K‖(σ, ϕ,W )‖H2

(

‖∆Y σ‖H1(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

.
(5.26)

In addition, we can split T1 − T2 on the form : T1 − T2 = T̃a + T̃b, where T̃a and T̃b satisfy the
following estimates: there exists K such that for all (σ, ϕ,W ) ∈ Σ, if ‖(σ, ϕ,W )‖H2 ≤ γ1, then











‖T̃a‖L1(IR2) ≤ K
(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)2
,

‖T̃b‖
L

4

3 (IR2)
≤ K

(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

‖σ‖L4(IR2).
(5.27)
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For the convenience of the reader we postpone the proof of this proposition in the last section.

Before starting the variational estimates, we establish a Sobolev type inequality in 2d:

Lemma 5.1. There exists a constant K such that for all u ∈ H2(IR2),

‖u‖L4(IR2) ≤ K‖u‖
1

2

L2(IR2)
‖∇Y u‖

1

2

L2(IR2)
.

Proof: in the 2-dimensional case, from Sobolev imbeddings, W 1,1(IR2) →֒ L2(IR2) and there exists
K such that

‖v‖L2(IR2) ≤ K‖∇Y v‖L1(IR2).

We apply the previous inequality to u2 to conclude the proof of Lemma 5.1.

5.1 H
1 and H

2 estimates

Taking the inner product of (5.23) with −∆Y σ, we obtain

1

2

d

dt

(

‖∇Y σ‖2
L2(IR2)

)

+ ‖∆Y σ‖2
L2(IR2) = −

∫

IR2

(∆Y ϕ− ϕ)∆Y σ −
∫

IR2

T1(σ, ϕ,W )∆Y σ.

Taking the inner product of (5.24) with −∆Y ϕ+ ϕ we get:

1

2

d

dt

(

‖∇Y ϕ‖2
L2(IR2) + ‖ϕ‖2

L2(IR2)

)

+ ‖∆Y ϕ− ϕ‖2
L2(IR2) =

∫

IR2

(∆Y ϕ− ϕ)∆Y σ

−
∫

IR2

T2(σ, ϕ,W )(∆Y ϕ− ϕ).

Adding the previous equations, we obtain:

1

2

d

dt

(

‖∇Y σ‖2
L2(IR2) + ‖ϕ‖2

L2(IR2) + ‖∇Y ϕ‖2
L2(IR2)

)

+
[

‖∆Y σ‖2
L2(IR2) + ‖ϕ‖2

L2(IR2) + 2‖∇Y ϕ‖2
L2(IR2)

+‖∆Y ϕ‖2
L2(IR2)

]

= −
∫

IR2

T1(σ, ϕ,W )∆Y σ −
∫

IR2

T2(σ, ϕ,W )(∆Y ϕ− ϕ).

(5.28)
Taking the inner product of (5.23) with ∆2

Y σ and the product of (5.24) with ∆Y (∆Y ϕ− ϕ) yield:

1

2

d

dt

(

‖∆Y σ‖2
L2(IR2) + ‖∇Y ϕ‖2

L2(IR2) + ‖∆Y ϕ‖2
L2(IR2)

)

+
[

‖∇Y ∆Y σ‖2
L2(IR2) + ‖∇Y ϕ‖2

L2(IR2)

+2‖∆Y ϕ‖2
L2(IR2) + ‖∇Y ∆Y ϕ‖2

L2(IR2)

]

= −
∫

IR2

∇Y (T1(σ, ϕ,W )) · ∇Y ∆Y σ

−
∫

IR2

∇Y (T2(σ, ϕ,W )) · ∇Y (∆Y ϕ− ϕ).

(5.29)
Estimates 5.26 in Proposition 5.1 together with (5.28) and (5.29) yield that while ‖(σ, ϕ,W )‖H2 ≤ γ1,
then

1

2

d

dt

(

‖∇Y σ‖2
L2(IR2) + ‖∆Y σ‖2

L2(IR2) + ‖ϕ‖2
L2(IR2) + 2‖∇Y ϕ‖2

L2(IR2) + ‖∆Y ϕ‖2
L2(IR2)

)

+
[

‖∆Y σ‖2
L2(IR2) + ‖∇Y ∆Y σ‖2

L2(IR2) + ‖ϕ‖2
L2(IR2) + 3‖∇Y ϕ‖2

L2(IR2) + 3‖∆Y ϕ‖2
L2(IR2)

+‖∇Y ∆Y ϕ‖2
L2(IR2)

]

≤ K‖(σ, ϕ,W )‖H2

(

‖∆Y ϕ‖2
H1(IR2) + ‖ϕ‖2

H3(IR2) + ‖W‖2
H3(IR3)

)

.

(5.30)
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Taking the inner product of (5.25) with

(

L2W1

L(L+ 1)W2

)

yields:

1

2

d

dt

(

‖LW1‖2
L2(IR3) + ‖(L+ Id)W2‖2

L2(IR3)

)

+ ‖L 3

2W1‖2
L2(IR3) + ‖L 1

2 (L + Id)W2‖2
L2(IR3)

≤ ‖L 1

2T3‖L2(IR3)

(

‖L 3

2W1‖L2(IR3) + ‖L 1

2 (L+ Id)W2‖L2(IR3)

)

≤ K‖(σ, ϕ,W )‖H2

(

‖∆Y ϕ‖2
H1(IR2) + ‖ϕ‖2

H3(IR2) + ‖W‖2
H3(IR3)

)

.

(5.31)

while ‖(σ, ϕ,W )‖H2 ≤ γ1 (by Proposition 5.1).

5.2 L
2-estimates

Subtracting (5.23) to (5.24) yields

∂t(σ − ϕ) = 2∆Y σ + T1(σ, ϕ,W ) − T2(σ, ϕ,W ).

Multiplying by σ − ϕ, we obtain:

1

2

d

dt
‖σ − ϕ‖2

L2(IR2) + 2‖∇Y σ‖2
L2(IR2) = 2

∫

IR2

∇Y σ∇Y ϕ+

∫

IR2

(T1 − T2)σ −
∫

IR2

(T1 − T2)ϕ.

By Young inequality and with the splitting of T1 − T2 (see Proposition 5.1), we have

1

2

d

dt

(

‖σ − ϕ‖2
L2(IR2)

)

+ 2‖∇Y σ‖2
L2(IR2) ≤ ‖∇Y σ‖2

L2(IR2) + ‖∇Y ϕ‖2
L2(IR2) + ‖T̃a‖L1(IR2)‖σ‖L∞(IR2)

+‖T̃b‖
L

4

3 (IR2)
‖σ‖L4(IR2) + (‖T1‖L2(IR2) + ‖T2‖L2(IR2))‖ϕ‖L2(IR2).

So, applying Estimate (5.27) (see Proposition 5.1), while ‖(σ, ϕ,W )‖H2 ≤ γ1, we get

1

2

d

dt

(

‖σ − ϕ‖2
L2(IR2)

)

+ ‖∇Y σ‖2
L2(IR2) ≤ ‖∇Y ϕ‖2

L2(IR2)

+K‖σ‖L∞(IR2)

[

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

]2

+K
[

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

]

‖σ‖2
L4(IR2)

+K‖(σ, ϕ,W )‖H2

[

‖∆Y σ‖L2(IR2) + ‖ϕ‖H2(IR2) + ‖W‖H2(IR3)

]

‖ϕ‖L2(IR2).

By Lemma 5.1,
‖σ‖2

L4(IR2) ≤ K‖σ‖L2(IR2)‖∇Y σ‖L2(IR2).

So, we obtain that while ‖(σ, ϕ,W )‖H2 ≤ γ1,

1

2

d

dt

(

‖σ − ϕ‖2
L2(IR2)

)

+ ‖∇Y σ‖2
L2(IR2) ≤ ‖∇Y ϕ‖2

L2(IR2)

+K‖(σ, ϕ,W )‖H2)

[

‖∇Y σ‖2
L2(IR2) + ‖ϕ‖2

H3(IR2) + ‖W‖2
H3(IR3)

]

.

(5.32)

5.3 End of the proof

We define N and D by

N (t) =
(

‖σ − ϕ‖2
L2(IR2) + ‖∇Y σ‖2

L2(IR2) + ‖∆Y σ‖2
L2(IR2) + ‖ϕ‖2

L2(IR2) + 2‖∇Y ϕ‖2
L2(IR2)

+‖∆Y ϕ‖2
L2(IR2) + ‖LW1‖2

L2(IR3) + ‖(L+ Id)W2‖2
L2(IR3)

)

(t),
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and

D(t) =
[

‖∇Y σ‖2
L2(IR2) + ‖∆Y σ‖2

L2(IR2) + ‖∇Y ∆Y σ‖2
L2(IR2) + ‖ϕ‖2

L2(IR2) + 2‖∇Y ϕ‖2
L2(IR2)

+3‖∆Y ϕ‖2
L2(IR2) + ‖∇Y ∆Y ϕ‖2

L2(IR2) + ‖L 3

2W1‖2
L2(IR3) + ‖L 1

2 (L+ Id)W2‖2
L2(IR3)

]

(t).

Adding up (5.30), (5.31) and (5.32), we obtain that

1

2

dN
dt

+ D(t) ≤ K‖(σ, ϕ,W )‖H2

[

‖∇Y σ‖2
H2(IR2) + ‖ϕ‖2

H3(IR2) + ‖W‖2
H3(IR3)

]

(the term ‖∇Y ϕ‖2
L2(IR2) in the right hand side of (5.32) vanishes with a part of the left hand side of

(5.30)).

As remarked in Proposition 3.2, on E , we have the equivalences of norms: ‖L 3

2W1‖L2(IR3) ∼
‖W1‖H3(IR3) and ‖L 1

2 (L+ Id)W2‖L2(IR3) ∼ ‖W2‖H3(IR3). So there exists a constant C1 such that

D ≥ C1

[

‖∇Y σ‖2
H2(IR2) + ‖ϕ‖2

H3(IR2) + ‖W‖2
H3(IR3)

]

.

In addition, ‖σ‖L2(IR2) ≤ ‖σ − ϕ‖L2(IR2) + ‖ϕ‖L2(IR2), so again with Proposition 3.2, there exists C2

such that
1

C2
‖(σ, ϕ,W )‖H2 ≤ N (t) ≤ C2‖(σ, ϕ,W )‖H2 .

Hence while ‖(σ, ϕ,W )‖H2 ≤ γ1, we have

1

2

dN
dt

+
[

‖∇Y σ‖2
H2(IR2) + ‖ϕ‖2

H3(IR2) + ‖W‖2
H3(IR3)

]

(C1 −KC2N (t)) ≤ 0. (5.33)

Let us introduce η0 = min

{

γ1

C2
,
C1

KC2

}

. If N (0) ≤ η0, then with (5.33), N (t) remains smaller than

C1

KC2
, that is N (t) decreases and remains smaller than η0, so that ‖(σ, ϕ,W )‖H2 remains smaller

than γ1. So we are always in the validity domain of our estimates.

Therefore we have proved the stability of (0, 0, 0) for (4.17)-(4.19)-(4.21). This concludes the proof
of Theorem 1.1 using Propositions 2.1 and 4.2.

6 Proof of Proposition 5.1

We recall that from Proposition 4.1, for r ∈ H2(IR3) in a neighbourhood of 0, we can write

r(x, y, z) = R(σ(y, z))(x) + ϕ(y, z)

(

0
1

chx

)

+W (x, y, z),

with (σ, ϕ,W ) ∈ Σ, and there exists K independant of r such that for k = 2 or 3,

1

K
‖(σ, ϕ,W )‖Hk ≤ ‖r‖Hk(IR3) ≤ K‖(σ, ϕ,W )‖Hk

(see (4.9), (4.10) and (4.11) for the notations).

We introduce γ1 > 0 such that if ‖(σ, ϕ,W )‖H2 ≤ γ1, then ‖r‖L∞ ≤ δ0, so that we are in the
framework of Proposition 4.2.

To start with, we recall Gagliardo-Nirenberg type inequalities.

Lemma 6.1. There exists a constant K such that for all u ∈ H2(IR2),

‖∇Y u‖2
L2p(IR2) ≤ K‖u‖L∞(IR2)‖∆Y u‖Lp(IR2) for p = 1, 2, 4.
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Proof. For i ∈ {2, 3} and for p = 1, 2, 4, we have:
∫

IR2

(∂iu)
2p =

∫

IR2

∂iu(∂iu)
2p−1

= −(2p− 1)

∫

IR2

u∂iiu(∂iu)
2p−2

≤ K‖u‖L∞(IR2)‖∂iiu‖Lp(IR2)‖∂iu‖2p−2
L2p(IR2)

,

which concludes the proof of Lemma 6.1.

6.1 Proof of Estimate (5.26)

In the following proposition, we estimate the nonlinear term G defined in (4.16) (we recall that this
term appears in (4.15)).

Proposition 6.1. There exists K such that for all (σ, ϕ,W ) ∈ Σ, if ‖(σ, ϕ,W )‖H2 ≤ γ1, then

‖G‖L2(IR3) + ‖∇G‖L2(IR3) ≤ K‖(σ, ϕ,W )‖H2

(

‖∆Y ‖H1(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

.

First we establish preliminary estimates.

Lemma 6.2. There exists K such that for all (σ, ϕ,W ) ∈ Σ, if ‖(σ, ϕ,W )‖H2 ≤ γ1, then

‖R(σ)‖L∞(IR3) + ‖∇R(σ)‖L4(IR3) + ‖∇∂xR(σ)‖L4(IR3) ≤ K‖(σ, ϕ,W )‖H2 ,

and
‖∆YR(σ)‖L2(IR3) + ‖∆YR(σ)‖L4(IR3) + ‖∇∆Y R(σ)‖L2(IR3)

≤ K
(

‖∆Y σ‖H1(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

.

Proof. We recall that there exists K such that for s in the neighbourhood of 0, we have

• |R(s)(x)| + |∂xR(s)(x)| + |∂xxR(s)(x)| ≤ K
|s|

chx
,

• |∂sR(s)(x)| + |∂x∂sR(s)| ≤ K

chx
,

• |∂ssR(s)(x)| + |∂x∂ssR(s)(x)| ≤ K

chx
,

• |∂sssR(s)(x)| ≤ K

chx
.

On one hand, the first claimed estimate is a straightforward consequence of the previous remarks
and the Sobolev embeddings of H2(IR2) into L∞(IR2) and W 1,4(IR2).

On the other hand,
∆Y (R(σ)) = ∂sR(σ)∆Y σ + ∂ssR(σ)|∇Y σ|2,

so

|∆Y (R(σ))| ≤ K(|∆Y σ| + |∇Y σ|2)
1

chx
.

With Lemma 1,
‖∆YR(σ)‖L2(IR3) ≤ K‖∆Y σ‖L2(IR2).

In addition,
‖∆Y R(σ)‖L4(IR3) ≤ K‖∆Y σ‖L4(IR2) +K‖∇Y σ‖2

L8(IR2)

≤ K‖∆Y σ‖L4(IR2) by Lemma 6.1,

≤ K‖∇Y σ‖H1(IR2) by Sobolev embedding.
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To conclude, we have

∂x∆Y R(σ) = ∂x∂sR(σ)∆Y σ + ∂x∂ssR(σ)|∇Y σ|2,
so the estimate on ∂x∆Y R(σ) is straightforward.
Concerning the derivatives in y and z, we have

∇Y ∆YR(σ) = ∂ssR(σ)(∇Y σ)∆Y σ + ∂sR(σ)∇Y ∆Y σ + ∂sssR(σ)(∇Y σ)|∇Y σ|2

+2∂ssR(σ)∇2
Y σ · ∇Y σ,

so

‖∇Y ∆Y R(σ)‖L2(IR3) ≤ K‖∇Y σ‖L4(IR2)‖∆Y σ‖L4(IR2) +K‖∇Y ∆Y σ‖L2(IR2) +K‖∇Y σ‖3
L6(IR2)

+K‖∇2
Y σ‖L4(IR2)‖∇Y σ‖L4(IR2)

≤ K
(

‖∇2
Y σ‖L2(IR2) + ‖∇3

Y σ‖L2(IR2)

)

≤ ‖∇Y σ‖H1(IR2).

This concludes the proof of Lemma 6.2.

We recall that we denote by w the quantity

w(t, x, y, z) = ϕ(t, x, y, z)

(

0
1

chx

)

+W (t, x, y, z).

Lemma 6.3. There exists a constant K such that

‖w‖L∞(IR3) + ‖w‖H2(IR3) + ‖∇w‖L4(IR3) ≤ K‖(σ, ϕ,W )‖H2 ,

and

‖w‖H2(IR3) + ‖∆w‖L4(IR3) + ‖∇∆w‖L2(IR3) ≤ K
(

‖∆Y ‖H1(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

.

Proof. This lemma is a direct consequence of the Sobolev inequalities.

Proof of Proposition 6.1. We estimate each term of G separately (see (4.16)).

• We recall that

G1 = A(R(σ))∆Y R(σ)+ Ã(R(σ), w)(w)(∂xxR(σ))+ Ã(R(σ,w)(w)∆Y R(σ)+A(R(σ)+w)∆w.

In addition from proposition 2.2, there exists K such that for |ξ| ≤ 1

2
,

|A(ξ)| ≤ K|ξ|, |A′(ξ)| ≤ K,

Ã(u, v) ≤ K(|u| + |v|) and |∂uÃ(u, v)| + |∂vÃ(u, v)| ≤ K.

Therefore

|G1| ≤ K|R(σ)||∆Y R(σ)| +K|w||∂xxR(σ)| +K|w||∆Y R(σ)| + (|R(σ)| + |w|)|∆w|,

so that

‖G1‖L2(IR3) ≤ K
(

‖R(σ)‖L∞(IR3) + ‖w‖L∞(IR3)

) (

‖∆YR(σ)‖ + ‖∆w‖L2(IR3)

)

+K‖∂xxR(σ)‖L∞(IR3)‖w‖L2(IR3)

≤ K‖(σ, ϕ,W )‖H2

(

‖∆Y ‖H1(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

,
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from Lemma 6.2 and Lemma 6.3.

Concerning the gradient we have

|∇G1| ≤ K|∇R(σ)||∆Y R(σ)| +K|R(σ)||∇∆Y R(σ)| +K (|∇R(σ)| + |∇w|) |w||∂xxR(σ)|

+K|∇w||∂xxR(σ)| +K (|∇R(σ)| + |∇w|) |w||∆Y R(σ)|

+K|∇w||∆Y R(σ)| + (|∇R(σ)| + |∇w|) |∆w| +K (|R(σ)| + |w|) |∇∆w|.

Thus

‖∇G1‖L2(IR3) ≤ K‖∇R(σ)‖L4(IR3)‖∆YR(σ)‖L4(IR3) +K‖R(σ)‖L∞(IR3)‖∇∆YR(σ)‖L2(IR3)

+K
(

‖∇R(σ)‖L4(IR3) + ‖∇w‖L4(IR3)

)

‖w‖L4(IR3)‖∂xxR(σ)‖L∞(IR3)

+K‖∇w‖L2(IR3)‖∂xxR(σ)‖L∞(IR3)

+K
(

‖∇R(σ)‖L4(IR3) + ‖∇w‖L4(IR3)

)

‖w‖L∞(IR3)‖∆YR(σ)‖L4(IR3)

+K‖∇w‖L4(IR3)‖∆YR(σ)‖L4(IR3)

+
(

‖∇R(σ)‖L4(IR3) + ‖∇w‖L4(IR3)

)

‖∆w‖L4(IR3)

+K
(

‖R(σ)‖L∞(IR3) + ‖w‖L∞(IR3)

)

‖∇∆w‖L2(IR3)

≤ K‖(σ, ϕ,W )‖H2

(

‖∆Y ‖H1(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

,

using Lemmas 6.2 and 6.3.

• We have

G2 = 2B(R(σ))(∂xR(σ), ∂xw) +B(R(σ))(∂xw, ∂xw) + B̃(R(σ,w)(w)(∂xR(σ), ∂xR(σ))

+2B̃(R(σ,w)(w)(∂xR(σ), ∂xw) + B̃(R(σ,w)(w)(∂xw, ∂xw).

Furthermore, we recall that from Proposition 2.2, there exists K such that for |ξ| ≤ 1
2 one has

|B(ξ)| ≤ K|ξ|, |B′(ξ)| ≤ K,

and for |u| ≤ 1/2 and |v| ≤ 1/2,

|B̃(u, v)| + |∂uB̃(u, v)| + |∂vB̃(u, v)| ≤ K.

A straightforward calculation, Lemma 6.2 and Lemma 6.3 yield the expected estimates on G2

and ∇G2.

• The term G3 is given by

G3 = B(r)(∂sR(σ), ∂sR(σ))|∇σ|2 + 2

3
∑

i=2

B(r)(∂sR(σ), ∂iw)∂iσ +

3
∑

i=2

B(r)(∂iw, ∂iw).

Using that |B(ξ)| ≤ K|ξ| and that |B′(ξ)| ≤ K for ξ ∈ B(0, 1/2), since, by Lemma 6.1,
‖∇Y σ‖L4(IR2) ≤ K‖σ‖L∞(IR2)‖∆Y σ‖L2(IR2), we obtain the claimed estimate on G3.

• To estimate G4, we remark that

G4 = C(x,R(σ))(∂xw) + C̃(x,R(σ), w)(w)(∂xR(σ)) + C̃(x,R(σ), w)(w)(∂xw),
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and we recall that for |ξ| ≤ 1/2,

|C(x, ξ)| + |∂xC(x, ξ)| ≤ K

chx
|ξ|,

and

|∂ξC(x, r)| + |∂x∂ξC(x, ξ)| + |∂ξξC(x, ξ)| ≤ K

chx
,

so that

|C̃(x, u, v)| + |∂uC̃(x, u, v)| + |∂vC̃(x, u, v)| ≤ K

chx
.

The expected estimate of G4 is then a straightforward consequence of these remarks.

• The last term G5 is estimated with the same kind of arguments, using that

|D̃(x, u, v)| + |∂xD̃(x, u, v)| ≤ K(|u|+ |v|),

and that
|∂uD̃(x, u, v)| + |∂vD̃(x, u, v)| ≤ K

for u and v in B(0, 1/2).

With these estimates, we conclude the proof of Proposition 6.1.

Now we conclude the proof of Estimate (5.26): we remark that for s ∈ IN , there exists C such that
if u ∈ Hs(IR3; IR3), then li(u) ∈ Hs(IR2; IR) and

‖li(u)‖Hs(IR2) ≤ C‖u‖Hs(IR3).

This estimate together with Proposition 6.1 yield the expected estimates on T1 and T2. By difference
we obtain the claimed result on T3.

6.2 Splitting of T1 − T2

We aim to split T1 − T2 on the form : T1 − T2 = T̃a + T̃b, where T̃a and T̃b satisfy the following
estimates: there exists K such that for all (σ, ϕ,W ) ∈ Σ, if ‖(σ, ϕ,W )‖H2 ≤ γ1, then

‖T̃a‖L1(IR2) ≤ K
(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)2

and
‖T̃b‖

L
4

3 (IR2)
≤ K

(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

‖σ‖L4(IR2).

The method is the following: each term of T1−T2 is at least quadratic. Either it contains a product
of two absorbing components (that is ∇Y σ, ∆Y σ, or ϕ , W and their derivatives), and we put this
term in T̃a, or it contains σ multiplicated by an absorbing component, and we put it in T̃b (the terms
quadratic in σ are removed by using (4.14) in Section 4). Let us precise this splitting.

We recall that

T1(σ, ϕ,W ) = γ(σ)(∆Y ϕ− ϕ) +
K̃(σ)

g̃(σ)
|∇Y σ|2 +

1

g̃(σ)
l1(G),

T2(σ, ϕ,W ) = (1 − g̃(σ))∆Y σ + K̃(σ)|∇Y σ|2 + l2(G),

where γ(s) = O(s), g̃(s) = 1 + O(s) and K̃(s) = O(s).
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We denote by

T̃ 1
a = (

K̃(σ)

g̃(σ)
− K̃(σ))|∇Y σ|2,

T̃ 1
b = γ(σ)(∆Y ϕ− ϕ) − (1 − g̃(σ))∆Y σ.

On one hand we have

‖T̃ 1
a‖L1(IR2) ≤ K‖σ‖L∞‖∇Y σ‖2

L2(IR2) ≤ K
(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)2
.

On the other hand,
|T̃ 1

b | ≤ K|σ||∆Y ϕ− ϕ| +K|σ||∆Y σ|,
thus,

‖T̃ 1
b ‖L

4

3 (IR2)
≤ K‖σ‖L4(IR2)

(

‖∆Y ϕ− ϕ‖L2(IR2) + ‖∆Y σ‖L2(IR2)

)

≤ K
(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

‖σ‖L4(IR2).

Concerning the other two terms, we will split G on the form G = Ga +Gb with the corresponding
estimates on Ga and Gb. Let us describe this splitting for each term Gi defining G (see (4.16)).

• Concerning G1, we recall that

∆Y R(σ) = ∂sR(σ)∆Y σ + ∂ssR(σ|∇Y σ|2,

and that
A(r) = A(R(σ + w) = A(R(σ)) + Ã(R(σ,w)(w),

with

Ã(u, v) =

∫ 1

0

A′(u+ sv)ds.

Then we set G1 = Ga
1 +Gb

1 with

Ga
1 = A(R(σ))(∂ssR(σ)|∇Y σ|2) + Ã(R(σ), w)(w)(∂sR(σ)∆Y σ)

+Ã(R(σ), w)(w)(∂ssR(σ)|∇Y σ|2) + 2Ã(R(σ), w)(w)(∆w),

Gb
1 = A(R(σ))(∂sR(σ)∆Y σ) +A(R(σ))(∆w).

If (σ, ϕ,W ) is bounded as it is assumed, we have:

|Ga
1 | ≤

K

chx
|∇Y σ|2 +

K

chx
|w||∆Y σ| +K|w||∆w|,

thus,

‖Ga
1‖L1(IR3) ≤ K

(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)2
.

On the other hand,

|Gg
1| ≤

K

chx
|σ|(|∆Y σ| + |∆w|),

so
‖Gb

1‖L
4

3 (IR3)
≤ K

(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

‖σ‖L4(IR2).

• The splitting for G2 is the following: G2 = Ga
2 +Gb

2 where

Ga
2 = B(R(σ))(∂xw, ∂xw) + 2B̃(R(σ), w)(w)(∂xR(σ), ∂xw) + B̃(R(σ), w)(w)(∂xw, ∂xw)

Gb
2 = 2B(R(σ))(∂xR(σ), ∂xw) + B̃(R(σ), w)(w)(∂xR(σ), ∂xR(σ)).
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Since |∂xR(σ)| ≤ K

chx
|σ|, we have

|Gb
2| ≤

K

chx
|σ|(|∂xw| + |w|),

hence
‖Gb

2‖L
4

3 (IR3)
≤ K‖w‖H1(IR3)‖σ‖L4(IR2).

In addition,
|Ga

2 | ≤ K|∂xw|2 +K|w||∂xw|,
so

‖Ga
2‖L1(IR3) ≤ K‖w‖2

H1(IR3).

• Since ∂ir = ∂sR(σ)∂iσ + ∂iw for i = 2 or i = 3, we set Ga
3 = G3 and Gb

3 = 0 and we have

‖Ga
3‖L1(IR3) ≤ K(‖∇Y σ‖2

L2(IR2) + ‖∇w‖2
L2(IR3)).

• We define the decomposition of G4 setting

Ga
4 = C̃(x,R(σ), w)(w)(∂xw),

Gb
4 = C(x,R(σ))(∂xw) + C̃(x,R(σ), w)(w)(∂xR(σ)).

Since |C(x,R(σ))| ≤ K

chx
|σ|, we have

|Gb
4| ≤

K

chx
|σ|(|∂xw| + |w|),

thus
‖Gb

4‖L
4

3 (IR3)
≤ K‖w‖H1(IR3)‖σ‖L4(IR2).

Furthermore,
‖Ga

4‖L1(IR3) ≤ K‖w‖2
H1(IR3).

• Lastly, for G5, from the Taylor expansion, we have

D̃(x,R(σ), w)(w) = ∂ξD(x,R(σ))(w) + ˜̃D(x,R(σ), w)(w,w),

where
˜̃D(x, u, v) =

1

2

∫ 1

0

(1 − s)∂ξξD(x, u + sv)ds.

We set
Ga

5 = ˜̃D(x,R(σ), w)(w,w) and Gb
5 = ∂ξD(x,R(σ))(w).

Then we have

|Gb
5| ≤

K

chx
|σ||w| so ‖Gb

5‖L
4

3 (IR3)
≤ K‖w‖L2(IR3)‖σ‖L4(IR2),

and
‖Ga

5‖L1(IR3) ≤ K‖w‖2
L2(IR3).
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Denoting Ga =
∑

iG
a
i and Gb =

∑

iG
b
i , we have obtained that G = Ga +Gb with

‖Ga‖L1(IR3) ≤ K
(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)2
, (6.34)

and
‖Gb‖

L
4

3 (IR3)
≤ K

(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

‖σ‖L4(IR2). (6.35)

We set

T̃ 2
a =

1

g̃(σ)
l1(Ga) − l2(Ga) and T̃ 2

b =
1

g̃(σ)
l1(Gb) − l2(Gb).

By properties of the operators l1 and l2, (6.34) and (6.35) yield

‖T̃ 2
a‖L1(IR2) ≤ K

(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)2
,

and
‖T̃ 2

b ‖L
4

3 (IR2)
≤ K

(

‖∇Y σ‖H2(IR2) + ‖ϕ‖H3(IR2) + ‖W‖H3(IR3)

)

‖σ‖L4(IR2).

Defining T̃a and T̃b respectively by

T̃a = T̃ 1
a + T̃ 2

a and T̃b = T̃ 1
b + T̃ 2

b ,

we have obtained the expected decomposition. This concludes the proof of Proposition 5.1.
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