
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

CONTROL OF A NETWORK OF MAGNETIC ELLIPSOIDAL
SAMPLES

Shruti Agarwal

Indian Institute of Technology Madras
Department of Mathematics, Chennai - 600 036

India

Gilles Carbou

IMB, Université Bordeaux
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Abstract. In this work, we present a mathematical study of stability and con-
trollability of one-dimensional network of ferromagnetic particles. The control

is the magnetic field generated by a dipole whose position and whose ampli-

tude can be selected. The evolution of the magnetic field in the network of
particules is described by the Landau-Lifschitz equation. First, we model a

network of ellipsoidal shape ferromagnetic particles. Then, we prove the sta-

bility of relevant configurations and discuss the controllability by the means
of the external magnetic field induced by the magnetic dipole. Finally some

numerical results illustrate the stability and the controllability results.

1. Introduction. The study of ferromagnetic systems is of great importance, spe-
cially for the development of modern technological devices for which there is a con-
tinuous demand of more memory. Ferromagnetic materials are used in numerous
technological devices such as hard-disks, cellular phones, magnetic sensors, record-
ing heads etc. These applications ask for the study of a system which is an assembly
of magnetic domains. In order to make these objects efficient and more useful, it
becomes necessary to control their magnetic behavior and to guarantee some con-
trollability and stability properties.

For data recording applications, the first crucial problem is the correct recording
of the information. In our context of an assembly of ferromagnetic materials, this is
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a controllability issue with respect to relevant configurations. This problem is stud-
ied and solved by the control of the external magnetic field generated by a dipole.
The second problem is the accurate conservation of the data. From the mathemat-
ical point of view, this latter problem corresponds to the stability of the relevant
solutions (without any external magnetic field). Existence and controllability results
have been already proven for ferromagnetic materials. Consider e.g. [6] where the
existence of strong solutions for the Landau-Lifschitz equation is proven for finite
local time, and [2] for weak solutions. See [8] for an existence result for global time
of the Landau-Lisfchitz equation with a suitable control. Numerical simulations of
ferromagnetic materials is studied in [3, 11, 13] among other references.

The geometry of the ferromagnetic materials is close to the one of [1] since in
both works, the ferromagnetic domains are assumed to be ellipsoidal. In [1], only
one ellipsoidal domain is considered whereas in the current paper, a network of
ferromagnetic materials is considered with a coupling between them.

In this work, we deal with a one dimensional network of ferromagnetic particles.
We aim to establish sufficient conditions on the cells size and on the network geom-
etry to obtain a stability result for the relevant magnetization configurations. More
precisely it is derived a sufficient condition on the volume of the ellipsoidal samples
and on the distance between the samples for particular magnetic configuration to be
locally asymptotically stable. This is our first main result. Our second main result
is a controllability theorem when the control is defined as the amplitude of a dipole
which is moving along the network with a constant speed. More precisely, given
two relevant magnetization configurations (one is the initial magnetization configu-
ration, whereas the other one is the desired final magnetization configuration), we
prove a controllability result for the magnetization by the mean of an applied mag-
netic field generated by a magnetic dipole modeling a magnetized point. Finally
we perform some simulations to illustrate both main results. We also check on a
numerical simulation that the stability of relevant configurations may be violated
when the geometry of the network and of the ellipsoidal samples does not satisfied
our sufficient condition.

The paper is organized as follows. In Section 2, the model is derived and the
problems that are solved in this paper are introduced, namely the stability of rel-
evant solution of the Landau-Lifschitz equation and the controllability to these
magnetization. Then both main results are given in Section 3. The proof of the
stability result is given in Section 4, whereas the proof of the controllability result
is given in Section 5. Some numerical simulations are performed in Section 6 to
illustrate the main results and to check the accuracy of the sufficient condition for
a magnetization configuration to be stable. Section 7 contains some concluding
remarks and suggest further research lines.

2. Model and control problems under consideration.

2.1. Ferromagnetism model. The general setting of the ferromagnetism is the
following (see [4], [14] and [12] and the references therein). We consider a finite
homogeneous ferromagnetic medium denoted by Ω. We denote by m the magneti-
zation:

m : IR+ × Ω −→ IR3

(t, x, y, z) 7→ m(t, x, y, z).
The magnetic moment m links the magnetic induction B and the magnetic field H
by the relation B = m̄ + H, where m̄ is the extension of m by zero outside Ω. In
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addition, we assume that the material is saturated so that the magnitude of m is
constant. We denote by · the scalar product in IR3 and | · | the associated norm.
After renormalization we assume that

|m| = 1 at any point. (1)

The evolution of m is described by the Landau-Lifschitz equation:
dm

dt
= −m×Heff −m× (m×Heff ), (2)

where we denote by × the cross product on IR3. See [4] for a complete description
of the physical model. The existence of local weak solution of (2) was established
in [16]. Global existence of weak solution is studied in [9, 10], whereas the existence
and uniqueness of regular solutions for Landau-Lisfchitz equation is proven in [6] for
a bounded domain, and in [7] for the domain R3. The effective field Heff = −∇E
is derived from the micromagnetism energy E given by

E = Eexch + Edem + Ea,
where
• the exchange energy Eexch writes

Eexch =
A

2

∫
Ω

|∇m|2,

where A is the exchange length,
• Edem is the demagnetizing energy:

Edem =
1
2

∫
IR3
|Hd(m)|2.

The demagnetizing field Hd(m) is characterized by curl Hd(m) = 0,

div (Hd(m) + m̄) = 0.
(3)

• The applied energy Ea reflects the effects of an applied magnetic field Ha:

Ea = −
∫

Ω

Ha ·m.

Therefore we obtain that

Heff = ∆m+Hd(m) +Ha.

2.2. Simplified network model. Let us describe now the network model.

We deal with a one dimensional network of magnetic ellipsoidal shape samples.
The ellipsoids are supposed to have the same geometry and to be laid on the axis
IR~e1, where (~e1, ~e2, ~e3) is the canonical basis of IR3. We denote by xj the position
of the jth cell, and we assume that xj = jl, where l > 0 is the distance between two
consecutive cells. In this paper, we consider a finite network, that is the indexes i
are in the finite set I = {0, 1, 2, . . . , N}. The ith cell Ωi is obtained from Ω0 by a
translation of vector il ~e1, so that

Ωi =
{

(x, y, z) ∈ IR3,
(x− il)2

L2
x

+
y2

L2
y

+
z2

L2
z

≤ 1
}
,

where Lx, Ly and Lz are three positive values for the length of the axes of the
ellipsoid in the directions ~e1, ~e2, and ~e3 respectively. We assume that the longest
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axis of the ellipsoids is in the direction ~e2, that is we assume that Ly > max{Lx, Lz}.
We denote by V = 4

3πLxLyLz the volume of each cell.

We assume that the characteristic length of the cells is small compared to l and
V , so that we assume that in each cell Ωi, the magnetization is constant in the
space variable (cf. [1]) and is denoted by mi(t). We use the following notations:

• l∞(I; IR3) :=
{
u = (u0, . . . , uN ) ∈ IRk × . . .× IRk

}
,

• ‖u‖l∞(I;IRk) = sup
i∈I
|ui|k, where | · |k is the euclidean norm in IRk,

• l∞(I;S2) :=
{
u = (u0, . . . , uN ) ∈ l∞(I; IR3), such that ∀ i ∈ I, |ui| = 1

}
.

So the unknown m = (m0, . . . ,mN ) is defined on IR+ with values in l∞(I;S2).
Under this assumption, the exchange field vanishes and therefore effective field
includes only the demagnetizing and the applied fields.

Let us consider a magnetization configuration m = (mi)i∈I . In a fixed cell Ωj0 ,
we split the stray field induced by the distribution m in two parts: the stray field
generated on Ωj0 by mj0 itself, denoted by Hint

d (m)(j0), and the field generated by
the other cells, denoted by Hext

d (m)(j0):

Hd(m)(j0) = Hint
d (m)(j0) +Hext

d (m)(j0).

From classical results (see [1] and [15]), the stray field generated by a uniformly
magnetized ellipsoid on itself is given by

Hint
d (m)(j0) = −

 α 0 0
0 β 0
0 0 γ

mj0 ,

where α, β and γ depends on the ellipsoid geometry. In our case, we have 0 < β < α
and 0 < β < γ.

The stray field generated by the cell i0 on the cell j0 is given by

Hi0,j0(mi0)(x) = − 1
4π

∫
y∈Ωi0

mi0

|x− y|3
dy +

3
4π

∫
y∈Ωi0

x− y
|x− y|5

mi0 · (x− y)dy.

We assume that Ωi0 and Ωj0 are small so that we write that Hi0,j0(mi0) is almost
constant in Ωj0 and we approximate it by

Hi0,j0(mi0) = − V
4π

mi0

l3|i0 − j0|3
+

3V
4π

m1
i0

l3|i0 − j0|3
~e1,

that is

Hi0,j0(mi0) =
V

4πl3
1

|i0 − j0|3
Ami0 , (4)

where

A =

 2 0 0
0 −1 0
0 0 −1

 .

The network exterior stray field at the cell j0 is given by

Hext
d (m)(j0) =

∑
i0 6=j0

Hi0,j0(m(i0)) =


2hextd (m1)(j0)

−hextd (m2)(j0)

−hextd (m3)(j0)

 , (5)
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where (m1,m2,m3) are the coordinates ofm, and where the operator hextd : l∞(I; IR)→
l∞(I; IR) is defined by, for all u = (ui)i∈I in l∞(I; IR),

hextd (u)(j0) =
V

4πl3
∑
j 6=j0

1
|j − j0|3

u(j). (6)

In order to control the network, we apply on it a magnetic field generated by
a suitable dipole of magnetic moment M ~e2 situated in the plane Vect(~e1, ~e2) at
a fixed distance δl from the network. We denote by (X, δl, 0) the coordinates of
the dipole. We assume that the dipole is moving with a constant speed v, so that
X(t) = x0 + vt. Our control is the variable M(t).

By standard results, the field induced on the cell Ωi0 by this dipole is given by

Happ(t,M)(i0) =
µ0M

4π
1
r3

(2 cos(θ)ur + sin(θ) uθ), (7)

where
• r is the distance between the dipole and the cell:

r = [(x0 + vt− i0l)2 + δ2l2]
1
2 ,

• ur and uθ are given by

ur =
1
r

 x0 + vt− i0l
−δl
0

 , uθ =
1
r

 δl
x0 + vt− i0l

0


• θ is the angle ̂(−~e2, ur),
• µ0 is the dielectric permitivity of the vacuum.

It yields the following model:

for i ∈ I, mi : IR+ −→ S2 ⊂ IR3,

dmi

dt
= −mi ×Heff (i)−mi × (mi ×Heff (i)) for i ∈ I and t ∈ IR+,

Heff (i) = −Dmi +Hext
d (m)(i) +Happ(t,M)(i),

(8)

with

D =

 a 0 0
0 0 0
0 0 b

 , (9)

where a = α − β > 0 and b = γ − β > 0 (for simplicity, we have replaced D by
D− βId without changing the model, since it only appears in the term m×Dm in
the equations). Without loss of generality, we assume that 0 < a < b.

We call relevant configurations the magnetization distributions of the form:

m0
i = εi ~e2, with εi ∈ {+1,−1} for i ∈ I. (10)

Let us interpret these relevant configurations as a memory states in a electronic
device, where εi = 1 corresponds to a bit 1, εi = −1 corresponds to a bit 0.

In order to ensure a good conservation of the memory, the key point is the
stability of the relevant configurations for the system (8) without applied field.

Let us introduce the problems under consideration.
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Problem 1. Exponential stability of any relevant position.
For any initial conditions sufficiently close to a given relevant configuration, the

solution of the Landau-Lischitz equation (8) converges exponentially fast to the rel-
evant configuration, without any external magnetic field.

Problem 2. Controllability under the action of a dipole.
Given any pair of relevant configuration, if the initial condition is a neighborhood

of the first relevant configuration, then, with a suitable amplitude of the magnetic
field created by the dipole, the magnetic field of the network enters in finite time in
a neighborhood of the second relevant configuration and converges exponentially fast
to it thereafter.

These problems are solved in Theorems 1 and 2 respectively under conditions on
the geometry of the network.

3. Statement of the main results. To state the stability result, we need to
introduce the following notation. For α > 0 small enough, we define V+1(ν) and
V−1(ν) by

V+1(ν) =
{
ξ = (ξ1, ξ2, ξ3) ∈ S2, ξ2 > 0 and aξ2

1 + bξ2
3 < ν2

}
,

V−1(ν) =
{
ξ = (ξ1, ξ2, ξ3) ∈ S2, ξ2 < 0 and aξ2

1 + bξ2
3 < ν2

}
.

We remark that for ξ ∈ S2, if ξ2 > 0 (resp. if ξ2 < 0), the quantity aξ2
1 + bξ2

3

measures the distance between ξ and +~e2 (resp. −~e2) since in this case:

a

2
|ξ − ~e2|2 ≤ aξ2

1 + bξ2
3 ≤ b|ξ − ~e2|2.

For ε = (ε1, . . . , εN ) with εi ∈ {−1,+1}, we denote for ν > 0:

V̄ε(v) =
{
m ∈ l∞(I;S2),∀ i ∈ I, mi ∈ Vεi

(ν)
}
. (11)

Our first main result is the following:

Theorem 1. There exists γ0 > 0 (depending on a and b, but independent to the
size of the network) such that if

V

l3
≤ γ0 , (12)

then there exists ν0 > 0, and c > 0 such that for all relevant configurations m0

associated to ε (that is m0
i = εi ~e2 for all i), for all minit ∈ V̄ε(ν0), the solution m

of (8) with M ≡ 0 starting from the initial condition m(0) = minit satisfies:

∀ t ≥ 0,m(t) ∈ V̄ε(ν0e
−ct).

Remark 1. This theorem means that all the relevant configurations are uniformly
asymptotically stable for the Landau-Lifschitz equation (8) with zero applied field
(M ≡ 0).

The second question under consideration is the controllability of our network by
the mean of a dipole generating applied field. We consider m[ and m] two relevant
configurations. We assume that at t = 0 the magnetization of our network is close
to m[. In order to align the magnetization with m], we define the control t 7→M(t)
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by

for t ∈ [i lv , i
l
v + δ lv [, M(t) =


+M if m[

i = −m]
i = ~e2,

0 if m[
i = m]

i ,

−M if m[
i = −m]

i = −~e2.

for t /∈
N⋃
i=0

[i
l

v
, i
l

v
+ δ

l

v
[, M(t) = 0.

(13)

for a suitable M > 0 and 0 ≤ δ ≤ 1. We denote Tf = (N + δ)l/v. For t ≥ Tf ,
M(t) = 0, that is the dipole is switched off.

Our second main result is the following:

Theorem 2. Let v be a fixed positive value. Let γ0 and c be given by Theorem 1.
There exists γ1 > 0 with γ1 < γ0, there exist ν1 > 0, M > 0 and δ > 0 such that if

V

l3
≤ γ1,

then we have the following controllability result:
let m[ and m] be two relevant configurations, and let t 7→M(t) be the control given
by (13). If minit ∈ V̄ε[(ν1), then the solution m of (8) starting from the initial
condition minit satisfies:

∀ t ≥ Tf , m(t) ∈ V̄ε](ν1e
−c(t−Tf )).

The remaining of the paper is organized as follows. We prove Theorem 1, namely
the stability of all the relevant configurations, in Section 4. We remark that our
stability criteria depends neither on the size of the network N nor on the considered
relevant configuration m[. Section 5 is devoted to the proof of Theorem 2, i.e. the
controllability of a finite network by the mean of a magnetic dipole generating
an applied field. The paper end with some numerical simulations and concluding
remarks (see respecively Sections 6 and 7).

4. Proof of the stability for the relevant configurations. In this section we
tackle the stability of a relevant configuration for the Landau-Lifschitz equation
without applied field. More precisely we prove Theorem 1 and we consider the
following system with unknown m : IR+ −→ l∞(I;S2):

dm

dt
= −m× (−Dm+Hext

d (m))−m× (m× (−Dm+Hext
d (m)))

= m× F (m) (14)

with F (m) = −(−Dm + Hext
d (m)) −m × (−Dm + Hext

d (m)). The existence and
uniqueness of a solution of (14) for any initial condition m0 ∈ l∞(I;S2) follows from
the classical Cauchy-Lipschitz theorem and the constraint mi(t) ∈ S2 for all i in I
and for all t ≥ 0.

Let m0 be a fixed relevant configuration: m0 ∈ l∞(I;S2) such that

∀i ∈ I, m0
i = εi ~e2, εi ∈ {−1,+1}.

Because of the saturation constraint (1), we only deal with perturbations m of
m0 satisfying:

∀i ∈ I, ∀t, |mi(t)| = 1.
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So we describe such a perturbation writting for all i ∈ I:

mi = ρ1
i ~e1 + ρ3

i ~e3 + εi ~e2 + λ(ρi)εi ~e2 (15)

where ρi = (ρ1
i , ρ

3
i ) and λ(ρi) =

√
1− |ρi|2 − 1.

In order to find an equivalent formulation of (14) in the variable ρ ∈ C1(IR+; l∞(I; IR2)),
we plug (15) in (14) and we project the obtained expression on both ~e1 and ~e3 axis.

We obtain that m, given by (15), satisfies (14) if and only if ρ satisfies the
following system:

dρ

dt
=
(
−a εb
−εa −b

)
ρ+ L(ρ) +N (ρ) (16)

where

L(ρ) =

 εhextd (ρ3)− ρ3hextd (ε) + 2hextd (ρ1) + ερ1hextd (ε)

2εhextd (ρ1) + ρ1hextd (ε)− hextd (ρ3) + ερ3hextd (ε)

 .

The nonlinear term N = (N1,N3) is given by

N1(ρ) = −ελ(ρ)(−bρ3 − hextd (ρ3))− ρ3hextd (ελ(ρ)) + ελ(ρ)((−aρ1 + 2hextd (ρ1))ε
+ρ1hextd (ε)) + (−aρ1 + 2hextd (ρ1))λ(ρ) + ερ1hextd (ελ(ρ)) ,

N3(ρ) = ελ(ρ)(−aρ1 + 2hextd (ρ1)) + ρ1hextd (ελ(ρ))
−ελ(ρ)(−hextd (ε)ρ3 + (bρ3 + hextd (ρ3))ε)
+λ(ρ)(−bρ3 − hextd (ρ3)) + εhextd (ελ(ρ))ρ3 .

Remark 2. By projection, it is clear that if m satisfies (14) then ρ satisfies (16).
For the converse implication, we remark that if m ∈ C1(l∞(I;S2)) and satisfies:

∀i ∈ {1, 3}, dm
dt
· ~ei = (m× F (m)) · ~ei,

because of the constraint |m| = 1, then m satisfies
dm

dt
= m× F (m).

This argument is used in a partial differential equation framework in [8] and in [5].
In addition, m0 is asymptotically stable for (14) if and only of 0 is asymptotically
stable for (16).

Let us study now the stability of 0 for (16) under a smallness condition on
V

l3
.

The linear operator hextd is estimated in the following way: for all u = (ui)i∈I in
l∞(I), then

‖hextd (u)‖l∞(I) ≤
V

4πl3
∑
j 6=0

1
|j|3
‖u‖l∞(I). (17)

So, we estimate the linear operator L with the following lemma:

Lemma 3. There exists a constant K1 such that

‖L(ρ)‖l∞(I;IR2) ≤ K1
V

l3
‖ρ‖l∞(I;IR2).

This constant K1 depends neither on a, b, V , l nor on the size of the network.

The nonlinear right-hand side term of (16) is estimated with straightforward
arguments in the following lemma.
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Lemma 4. We assume that
V

l3
≤ 1. There exists a constant K such that for all

ρ ∈ l∞(I; IR2) such that ‖ρ‖l∞(I) ≤ 1
2 , then

‖N1(ρ)‖l∞(I) + ‖N2(ρ)‖l∞(I) ≤ K‖ρ‖2l∞(I).

We define ρ̃ ∈ C0(IR+; l∞(I; IR)) by

ρ̃i(t) =
(
a(ρ1

i (t))
2 + b(ρ3

i (t))
2
) 1

2 .

We remark that

|(aρ1
i , bρ

2
i )| ≤

√
b|ρ̃i| and a|ρ̃i|2 ≤ |ρi|2 ≤ b|ρ̃i|2. (18)

In addition, m ∈ V̄ε(ν) if and only if ρ̃ < ν (see 11).

Multiplying (16) by (aρ1, bρ3), we have for i ∈ I
1
2
d

dt
[a(ρ1

i )
2 + b(ρ3

i )
2] + a2(ρ1

i )
2 + b2(ρ3

i )
2 = (L(ρ)i +N (ρ)i) · (aρ1

i , bρ
3
i ),

so using that 0 < a < b and Lemmas 3 and 4, we obtain that

1
2
d

dt

(
|ρ̃i|2

)
+ a|ρ̃i|2 ≤ K1

V

l3
‖ρ‖l∞

√
bρ̃i +K‖ρ‖2l∞

√
bρ̃i ,

≤ K1
V

l3

√
b

a
‖ρ̃‖2l∞ +K

√
ba‖ρ̃‖3l∞ . (19)

We define γ0 by

γ0 =
a

3
2

√
bK1

. (20)

We assume that V and l are fixed so that
V

l3
< γ0. We aim to show that 0 is

asymptotically stable for (16).

We multiply (19) by e2at and we integrate from 0 to t. We obtain that for all
i ∈ I,

(ρ̃i(t))
2
e2at ≤ ‖ρ̃(0)‖2l∞ + 2K1

V

l3

√
b

∫ t

0

‖ρ̃(s)‖2l∞e2asds+ 2K

√
b

a

∫ t

0

‖ρ̃(s)‖3l∞e2asds.

So taking the supremum for i ∈ I, we obtain that for all t,

‖ρ̃(t)‖2l∞e2at ≤ ‖ρ̃(0)‖2l∞+2K1
V

l3

√
b

∫ t

0

‖ρ̃(s)‖2l∞e2asds+2K

√
b

a

∫ t

0

‖ρ̃(s)‖3l∞e2asds.

We denote by c = a −K1
V
l3

√
b
a . From (20), since

V

l3
< γ0, c is positive. Now,

while ‖ρ̃(s)‖l∞ ≤
ca

2K
√
b
, we have

‖ρ̃(t)‖2l∞e2at ≤ ‖ρ̃(0)‖2l∞ + (2a− c)
∫ t

0

‖ρ̃(s)‖2l∞e2asds,

and by Gronwall lemma, we obtain that, while ‖ρ̃(s)‖l∞ ≤
ca

2K
√
b
,

‖ρ̃(t)‖2l∞ ≤ ‖ρ̃(0)‖2l∞e−ct.



10 S. AGARWAL, G. CARBOU, S. LABBÉ, AND C. PRIEUR

So, if ‖ρ̃(0)‖l∞ ≤
ca

2K
√
b
, then for all t ≥ 0, ‖ρ̃(t)‖2l∞ remains less than

ca

2K
√
b

and

∀ t ≥ 0, ‖ρ̃(t)‖2l∞ ≤ ‖ρ̃(0)‖2l∞e−ct.

We set ν0 =
ca

2K
√
b
, and it concludes the proof of Theorem 1. �

5. Proof of the controllability result. Let m[ and m] be two relevant config-
urations associated to ε[ and ε] respectively, that is m[

i = ε[i ~e2 and m]
i = ε]i ~e2 for

i ∈ I. In this section we prove Theorem 2, that is the controllability result to m[

with initial condition in a neighborhood of m]. Let us introduce ν0 > 0 given by
Theorem 1.

For a fixed ζ ∈ S2, for µ ∈ [−1, 1], we define W(ζ, ν) by

W(ζ, ν) =
{
x ∈ S2, x · ζ ≥ ν

}
.

We define ~ξ by ~ξ =
1√
10

 3
−1
0

.

We introduce ν1 and µ1 > 0 such that 0 < ν1 < ν0 so that

V+1(ν1) ⊂ W(~ξ,−1 + µ1) and W(−~e2, 1− µ1) ⊂ V−1(ν1). (21)

We introduce the following sequence (ti)i∈I of time instants, defined by ti = i lv ,
for all i ∈ I. We assume that

m(0) ∈ Vε[(ν1). (22)

We recall that our control is defined by (13) where δ andM are two constant values.
These former values will be selected so that, for i ∈ {0, . . . , N + 1}, the following
property (Pi) holds:

(Pi) ∀ j ∈ {0, . . . , N}, mj(ti) ∈


Vε[

j
(ν1) for j ≥ i,

Vε]
j
(ν1) for j < i.

Note that Theorem 2 follows from (PN+1).
The selection of δ andM is done by using an induction argument on the property

(Pi).

The property (P0) is true (whatever of the value of δ and M).

Let i0 ∈ I such that (Pi0) holds. The conditions on M and δ such that (Pi0+1)
are derived as follows. First we give bound on the applied field during the time
interval [ti0 , ti0 + δ lv ) in Section 5.1. Then we prove in Section 5.2 that, under
suitable conditions onM and δ, the magnetization on the other cells is not changed.
Afterwards, in Section 5.3, we give conditions onM and δ so that the property the
magnetization in the cell i0 is switched on the direction m]

i0
. In Section 5.4 the

constant values M and δ are chosen so that the induction argument holds and we
conclude the proof of Theorem 2.
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5.1. Evaluation of the applied field. In this section some estimations on the
applied field are given. For t ∈ [ti0 , ti0 + δ lv ), two cases have to be considered:

• close to the cell i0, the applied field is given by Happ(t,M)i0 = −ε]i0ha(t)ξ̄(t),
with

ξ̄(t) =
1

((t/τ − 1)2 + 4)((t/τ − 1)2 + 1))
1
2

 3(t/τ − 1)
(t/τ − 1)2 − 2

0

 , (23)

and

ha(t) =
µ0M

4π
1

(δl)3

4 + (t/τ − 1)2

(1 + (t/τ − 1)2)
3
2
. (24)

We remark that there exists constants K1 and K2 such that:

|ξ′| (t) ≤ K1
v
δl

and ha(t) ≥ K2
M

(δl)
3
2

;

• On the other cells, for j 6= i0, it holds

|Happ(t,M)(j)| ≤ K3
M

(1− δ)3l3
. (25)

5.2. Pseudo-stability under small external field. We fix j0 ∈ I, j0 6= i0. We
prove in this section that, if some conditions on M and δ hold, the magnetization
m(t) := mj0(t) at the cell j0 remains almost unchanged. To do that, we denote by

P (t) = (P1, P2, P3)(t) :=
(
Happ(t,M)(j0) +Hext

d (m)(j0)
)

the contribution of the applied field and the exterior demagnetizing field at the cell
j0.

By (5) and (17), there exists C1 such that, for all m in l∞(I;S2),∣∣Hext
d (m)(j0)

∣∣ ≤ C1
V

l3
.

Let h0 be a bound of the applied field at the cell j0, that is we assume that

∀ t ≥ ti0 , |Happ(t,M)(j0)| ≤ h0. (26)

From the induction assumption (we recall that we assume that (P(i0)) is true),
we have m(ti0) ∈ V+1(ν1) or m(ti0) ∈ V−1(ν1). To ease the presentation, let us
assume in this section that m(ti0) ∈ V+1(ν1) (the other case is considered in a
similar way).

Due to (26), we have, for all t in [ti0 , ti0+1),

|P (t)| ≤ C1
V

l3
+ h0. (27)

Due to (8), the magnetization m satisfies, for all t ≥ 0,
dm
dt

= −m×Dm−m× (m×Dm)−m× P (t)−m× (m× P (t)).

We take the scalar product of this equation with −Dm. Writting
r(t) =

(
a(m1(t))2 + b(m3(t))2

) 1
2 , we obtain that:

1
2
d

dt
r2 = −|m×Dm|2 + (m× P (t) + m× (m× P (t))) ·Dm

≤ −|m×Dm|2 +
√

2(C1
V

l3
+ h0)|Dm|. (28)
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We remark that |m×Dm|2 ≥ a(m2)2r2, and that |Dm| ≤
√
br.

From straightforward geometric arguments, if ξ is in V+1(ν1) then

|ξ2| >
(

1− 1
a
ν2

1

) 1
2

. So while m remains in V+1(ν1), |m × Dm|2 ≥
(
1− 1

aν
2
1

)
r2,

and then, from (28),

1
2
d

dt
r2 +

(
1− 1

a
ν2

1

)
r2 ≤

√
2b(C1

V

l3
+ h0)r,

and so, while r ≤ ν1, we have
dr
dt

+
(

1− 1
a
ν2

1

)
r ≤
√

2b(C1
V

l3
+ h0).

We assume that ν1 > 0 is sufficiently small so that 1− 1
a
ν2

1 > 0. We define γ1 and
h0 > 0 by

γ1 =
1

C1

√
2b

(1− 1
a
ν2

1)
ν1

2
and h0 =

1√
2b

(1− 1
a
ν2

1)
ν1

2
. (29)

If
V

l3
≤ γ1, then while r ≤ ν1,

dr
dt

+
(

1− 1
a
ν2

1

)
r ≤
√

2b(C1γ1 + h0) =
(

1− 1
a
ν2

1

)
ν1.

So, r is a sub-solution of the following ordinary differential equation:
dz

dt
+
(

1− 1
a
ν2

1

)
z =

(
1− 1

a
ν2

1

)
ν1

for which ν1 is a constant solution. So, γ1 and h0 being given by (29), assuming
V

l3
≤ γ1 and |Happ(t,M)(j0)| ≤ h0 ∀ t ≥ ti0 ,

if m(ti0) is in V+1(ν1), then, for all t ≥ ti0 , m(t) is in V+1(ν1). Therefore, with the
bound (25), we have proved

Lemma 5. If the conditions
V

l3
≤ γ1 and K3

M
(1− δ)3l3

≤ 1√
2b

(1− 1
a
ν2

1)
ν1

2
(30)

hold, then for j0 6= i0, if mj0(ti0) is in V+1(ν1), then mj0(t) remains in the same
neighborhood V+1(ν1) of ~e2, for all t ≥ ti0 .
Moreover, the same conclusion holds replacing +1 by -1 and ~e2 by −~e2.

5.3. Reversal for a fixed cell. We describe the reversal of one cell with the
following lemma:

Lemma 6. Let ξ ∈ C1(IR+;S2) and A ∈ C0(IR+; IR3). We assume that

∀ t, |A(t)| ≤ κ1 and |ξ′(t)| ≤ κ2. (31)

For a fixed ζ ∈ S2, for µ ∈ [−1, 1], we define W(ζ, ν) by

W(ζ, ν) =
{
x ∈ S2, x · ζ ≥ ν

}
.

Let ha ∈ C0(IR+; IR). We consider the following ordinary differential equation
du

dt
= −u× (A(t) + ha(t)ξ(t))− u× (u× (A(t) + ha(t)ξ(t)). (32)
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Let µ1 > 0, let τ > 0. There exists hinf ∈ IR+ such that for all A and ξ satisfying
(31), for all ha such that ha(t) ≥ hinf for t ≥ 0, then, if u(0) is inW(ξ(0),−1+µ1),
then the solution u of (32) with initial data u(0) at t = 0 satifies u(τ) ∈ W(ξ(τ), 1−
µ1).

Proof. We set β(t) = u(t) · ξ(t). We have

β′(t) = ha(t)(1− (β(t))2) + H̄(t) (33)

with H̄(t) = u(t) · ξ′(t)− u(t)× A(t) · ξ(t)− u(t)× (u(t)× A(t)) · ξ(t). We remark
that from (31), for all t ≥ 0, |H̄(t)| ≤ κ2 +

√
2κ1. We define h1

inf by

h1
inf =

κ2 +
√

2κ1

µ1(2− µ1)
.

We assume that
∀ t ≥ 0, ha(t) ≥ h1

inf . (34)

Then the constant maps −1 + µ1 and 1 − µ1 are subsolutions of (33) since under
assumption (34),

ha(t)(1− (1− µ1)2) + H̄(t) ≥ ha(t)(1− (1− µ1)2)− (κ2 +
√

2κ1) ,
≥ h1

inf (1− (1− µ1)2)− (κ2 +
√

2κ1) ,
≥ 0 .

Thus we get

Claim 7. Under Assumption (34), if at the initial time, u(0) ∈ W(ξ(0),−1 + µ1),
then for all t ≥ 0, u(t) remains in W(ξ(0),−1 + µ1). In addition, if at a time t0,
u(t0) is in W(ξ(t0), 1− µ1), then for all t ≥ t0, u(t) remains in W(ξ(t), 1− µ1).

Furthermore, while u(t) remains in W(ξ(t),−1 + µ1) \W(ξ(t), 1− µ1), we have:
1− (β(t))2 ≥ 1− (1− µ1)2 ≥ µ1(2− µ1) that is

β′(t) ≥ µ1(1− 2µ1)ha(t)− (κ2 +
√

2κ1).

We define hinf by

hinf =
1

µ1(2− µ1)

(
κ2 +

√
2κ1 +

2(1− µ1)
τ

)
. (35)

If ha(t) ≥ hinf , then, while |β(t)| ≤ 1 − µ1, then β′(t) ≥ 2(1− µ1)
τ

. Thus, with

β(0) ≥ −1 + µ1, we deduce

∀t such that |β(t)| ≤ 1− µ1, it holds β(t) ≥ (1− µ1)
(

2t
τ
− 1
)
.

First case: Assume that there exists t0 < τ such that u(t0) is inW(ξ(t0), 1−µ1).
Due to Claim 7, for all t ≥ t0, u(t) remains in W(ξ(t), 1− µ1).

Second case: if for all t < τ , u(t) remains out of W(ξ(t), 1− µ1), then

∀ t < τ, β(t) ≥ (1− µ1)
(

2t
τ
− 1
)

and in particular, β(τ) ≥ 1− µ1, that is

u(τ) ∈ W(ξ(t), 1− µ1).

It concludes the proof of Lemma 6. �
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To prove the switch, namely that at time ti0 + τ the magnetization mi0 at the
cell i0 enters a neighborhood of ε]i0 =, and remains in this neighborhood thereafter,
two cases may occur:

First case: if ε]i0 = −1, that is m]
i0

= −~e2, for t ∈ [ti0 , ti0+1), we set:

M(t) =
{
M for ti0 ≤ t < ti0 + δl

v
0 for ti0 + δl

v ≤ t < ti0+1
.

We apply Lemma 6 at this cell, with ξ̄(t) given by (23), τ = δl
v , A(t) = −Dmi0(t) +

Hext
d (m(t))(i0). We remark that

• ξ(ti0) = ~ξ so by Assumption (P(i0)) and with (21), m(ti0) is in W(ξ(ti0), µ1),
• |A(t)| ≤ K2 (since m takes its values in the sphere, and since V/l3 is supposed

to be small),
• |ξ′(t)| ≤ K1

v
δl

and ha ≥ K2
M

(δl)
3
2
.

By Lemma 6, the switch is obtained if

K2
M

(δl)
3
2
≥ 1
µ1(2− µ1)

(
κ2 +

√
2κ1 +

2(1− µ1)
τ

)
. (36)

Under this condition, mi0(ti0 + τ) is in W(ξ(ti0 + τ), µ1) = W(−~e2, µ1). Since, by
(21), W(−~e2, µ1) ⊂ V−1(ν1), then mi0(ti0 + τ) is in V−1(ν1) and remains in this
neighborhood of −~e2 for t ∈ [ti0 + τ, ti0+1) since the applied field vanishes in this
time interval, and applying Theorem 1.

Second case: if ε]i0 = 1, that is m]
i0

= ~e2, for t ∈ [ti0 , ti0+1), we set:

M(t) =
{
−M for ti0 ≤ t < ti0 + δl

v
0 for ti0 + δl

v ≤ t < ti0=1
.

We conclude that in both cases, the following result holds:

Lemma 8. If Condition (36) is satisfied, then mi0(ti0+τ) is in V−1(ν1) and remains
in this neighborhood of −~e2 for t ∈ [ti0 + τ, ti0+1)

5.4. Conditions onM and δ for the induction argument. If both Conditions
(30) and (36) are satisfied, then if P(i0) is true, then P(i0 +1) holds. The existence
of M satisfying both (30) and (36) is ensured assuming that

δ
3
2

K2

1
µ1(2− µ1)

(
κ2 +

√
2κ1 +

2(1− µ1)
τ

)
≤ M

l3
≤ (1− δ)3

K3

√
2b

(1− 1
a
ν2

1)
ν1

2
. (37)

The M satisfying this condition exists for a sufficiently small δ. With this
selection of M and δ, the induction argument applies and (PN+1) holds (recall
I = {0, . . . , N}). It concludes the proof of Theorem 2.

Remark 3. We remark that in (37), if v is large, then we must take δ small, so that
the model is not yet valid, since it is based on the fact that the cells’ diameter is
small compared to the other lengths. In addition, the model for the field generated
by the dipole is valid far from the dipole.

6. Numerical simulations. In order to illustrate the previous results, we per-
formed a set of simulations. Then, through this simulations, we point out the
stability of the relevant configurations and the efficiency of the developed controls.
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6.1. Numerical scheme. The numerical scheme used in these simulations is an
explicit Euler scheme with re-normalization. For small set of particles, the problem
is not steep and the basic explicit scheme is highly adapted. Simulation has been
performed using Matlab.

6.2. Illustration of the stability result. Let us consider a set of ten particles
(see Figure 1) with the parameters and shape of Table 6.2.

l 10−6

V 1.8963× 10−17

a 0.25
b 0.5

Table 1. A first set of physical parameters

x

y

z

l

Figure 1. Set of particles.

The ratio V
l3 appears in the sufficient condition of Theorem 1. With the physical

parameters of Table 6.2, we compute V
l3 = 0.1435. Let us illustrate Theorem 1 by

showing that modifying the ratio V
l3 we may have either unstable unstable relevant

configurations or stable ones.
To do that we first give an example of randomly modified relevant configuration

whose, with no external field, goes to the relevant configuration when times goes to
infinity. In the following computations we set, for m0 a relevant configuration,

∀i ∈ {1, · · · , 10}, mi = m0
i + ηi,

where η is a random vector whose components follows the uniform law on (−1, 1).
Let us consider again the set of ten particles of Figure 1 and let us modify the

physical parameters of Table 6.2 so that V
l3 = 4.7038. The matrix D defined by (9)

and which is a parameter of the model (8) is computed with a = 0.4 and b = 1.
The initial magnetization configuration is illustrated in Figure 2 by the red arrows
on the associated set of particles.

Figure 3 gives the final configuration (T = 10 and 2000 time discretization
points).

Remark 4. Is this example we see that a too dense set of particles has not rele-
vant configurations as stable configurations and can not be considered for magnetic
recording purposes.
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x

y

z

Figure 2. Initial magnetization configuration: random perturba-
tion of a given relevant configuration with a dense set of particles.

x

y

z

Figure 3. Final configuration (for T = 10) with a dense set of particles.

Now the physical parameters are chosen such that we have a = 0.25, b = 0.5
and V

l3 = 0.1435. In this case, for the following random perturbation of a relevant
configuration chose as initial configuration, the Theorem 1 stands (see Fig. 4 for
initial configuration and Figure 5 for final configuration for T = 10 and 2000 time
discretization points).

x

y

z

Figure 4. Initial configuration: random perturbation of a given
relevant configuration with a sparse set of particles.

x

y

z

Figure 5. Final configuration (for T = 10) with a sparse set of particles.
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6.3. Illustration of the controllability result. The controllability part is more
time consuming than the relaxation part seen in the previous sub-section. To il-
lustrate the efficiency of the developed control strategy suggested by Theorem 2,
we apply the control M(t) to the previous set of particles. The initial and final
configurations are relevant configurations (see Figure 6 for the initial configuration
and Figure 7 for the final configuration).

x

y

z

Figure 6. Initial configuration.

x

y

z

Figure 7. Goal configuration.

Choosing v= l, M = 109 × l3, x0 = 0 and δ = 0.3, we may check on numerical
simulations that the equilibrium is reached at time T = 40, choosing 40 000 time
steps for the discretization.

7. Conclusion. In this paper, we modeled and studied an one-dimensional finite
network of ferromagnetic particles in respect of its stability and controllability. It
is of great importance because of the practical applications of such network. To
establish the stability of relevant configurations of a network, a stability criteria
is given. For controllability, the most crucial issue is the coupled behavior of the
particles in a network, that is, on the use of control, the change of the magnetiza-
tion of one particle should perturb only a few the magnetization of other particles.
This issue is carefully considered and under some conditions, it is proved that the
magnetization of the particles in a network enters in a neighborhood of the relevant
configuration in finite time and converges exponentially fast to it after this time.
Also, numerical simulation is done to illustrate the obtained analytic results. In a
future work, we will consider the speed of convergence and the optimal controlla-
bility problem under a constraint on the amplitude of the dipole and in presence of
a limitation of the speed of its movement.
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