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FWI using DG or FD

Same acoustic model of size 35 x 15 km. Exact same FWI algorithm (n iterations,
frequencies, ...), no initial information.

Computations performed by Florian Faucher (Magique-3D)



The time harmonic anisotropic scalar wave equation

v (A(x)vu(x)) +opx)u(x) = 0 inQ
u(x) = g(x) on 09,
Anisotropies are handled inside the divergence operator
The matrix A is symmetric
A = Ml for isotropic media
A and p are often piecewise constant.

The domain € is 2D or 3D with boundary 9X).

Other boundary conditions can be as well considered



Motivation: Computations on very large domains

Q is very large vs the wavelength
Need to augment the density of nodes to maintain a given level of accuracy
Babuska, SA Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz

equation considering high wave numbers? SIAM Journal on numerical analysis, 1997
(cited 476 times)



Error at every wavelength in P, for 10, 12, 14, 16, 18 segments per A

« 20 segments per \, 4800 dof per A2
18 segments per A, 3888 dof per \?
16 segments per A, 3072 dof per A2
14 segments per A, 2352 dof per A2

« 12 segments per \, 1728 dof per A2

« 10 segments per A, 1200 dof per A2

10% error
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Error at every wavelength in P53 for 4, 6, 8, 10 segments per A

10 segments per ), 2000 dof per A2
8 segments per A, 1280 dof per \?
* 6 segments per A, 720 dof per A2
- 4 segments per A, 320 dof per A2
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Motivation: Computations on very large domains

Q is very large vs the wavelength
Need to augment the density of nodes to maintain a given level of accuracy
Babuska, Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz

equation considering high wave numbers? SIAM Journal on numerical analysis, 1997
(cited 476 times)

Exceed the storage capacities.

Discontinuous Galerkin methods do resist better to pollution effect



General setting

Studies show that DG weak inter-element continuity contributes to fight the
pollution effect

But DG approximations imply to increase the number of nodes significantly

PARN
B

Lead to Trefftz methods

In particular, Ultra-Weak-Variational-Formulations proposed by B. Després and O.
Cessenat.

Trefftz method: shape functions are solutions to the problem

Set on a single element T: Trefftz formulation reduces to the boundary of the
element



Rewrite the IPDG and UWVF formulation in a different context

Classically, plane wave bases or Bessel functions inside each element.

Here we use an auxiliary method to compute local solutions.

We call these methods

BEM-STDG
FEM-STDG
FD-STDG
Plane-wave-STDG

BEM-UWVF
FEM-UWVF
FD-UWVF
Plane-wave-UWVF



General setting

For isotropic media
Boundary Integral Equations (BIE) lead to less pollution effect than FEMs

Recently, Hofreither et al. (2015) have proposed a FEM in which local shape
functions are obtained on the basis of a BIE.

In the same spirit, we propose a DG method using local shape solutions to the
Helmholtz problem that are matched at the interface of the mesh thanks to the
Dirichlet-to-Neumann (DtN) operator which is computed with a BIE.

For anisotropic media
Very precise Finite Element Method to reproduce the BIE

Can also handle strongly heterogeneous media



The mesh

A smart finite element method



The mesh

A classical finite element mesh

A smart finite element mesh



Trial and test functions

Trial and test functions are solutions to the Helmholtz equation in each element
div(AKVuK(x)) + pkuk(x) = 0in K

uk is uniquely defined by its Dirichlet trace if K is small
enough (geometrical criterion)

nK
uk € HY2(0K) K
The discrete variational space is then obtained by consid-
ering a discrete trace space K

uk is P,-continuous on OK.



Trial and test functions

Trial and test functions are solutions to the Helmholtz equation in each element

div(AKVuK(x)> + pkuk(x) = 0in K

uk is uniquely defined by its Robin trace
AVuk - ng + inug € H_1/2(8K)

The discrete variational space is then obtained by consid-
ering a discrete trace space

AVuk - ng + inuk is P,-discontinuous on 0K.

nK
Nk

ng



The reciprocity principle for anisotropic media

Since u and v are solutions of the anisotropic Helmholtz equation on each element K.

/aK(AVu)~nv = /K(Avu)-vv—/#uv:/ u- n(AVu) (1)

oK

The reciprocity principle is the main ingredient of any Trefftz method

/ ug—pv =0
oK

p=(AVu)-n q=(AVv)-n

Denoting by

This expression is the main ingredient of all the Trefftz formulation.



Symmetric Trefftz Variational Formulation

Summing over all the elements

with the collection of interior edges ' and 02 the boundary of the domain

0 = /u+q+—|—u_q_—p+v++p_v_dsx
r

+ / uq — pvdsy
o




Symmetric Trefftz Variational Formulation

0 = /U+q++uq—P+V++PVde
.

+ / uq — pvdsy
aQ

The exact solution satisfies uy = u_ and py = —p_on T

0=/U%+wq+pu+mvw
.

—i—/ uq — pvdsy
o0

and u = g on 09

/u—q+ +uiq- + p_vy + pyrv_ds — / pv + ugqdsy = —2/ 8qdsx
r oQ o0

a(u,p;v,q) £a(v)



The symmetric variational formulation

Adding the penalization terms ([ul =0 on I and u = g on 99Q):

/roz[u][v]—i—/anauv - /89agDv

b(u,p;v,q) &(v)

This leads to the Trefftz-DG formulation

a(u,p;v,q) + b(u,p;v,q) = ¢1(q) + la(v).

Why the symmetry is important ?
for the linear algebra solver: it needs less memory
it has been observed that BIE methods are more stable.

Now, the unknowns are u and p = AVu - n on each face of the mesh. One may be
removed.



The DtN operator
Let
uk(x) be given on OK.

The Neumann trace
pxk = Ak Vuk -ng on 0K

may then be deduced thanks to the Dirichlet-to-Neumann operator

1 1

H2(OK) — H™2(0K

DtN:{ 2(9K) 2(9K)
Uk > PK

and we end up with a system involving unknowns defined on the boundary of each
element.

The problem to be addressed: compute the DtN operator



The DtN operator approximation: include an auxiliary numerical method

We can think about different methods for isotropic media like:
finite element /finite difference method based on the velocity/pressure formulation
Boundary element method

Why BEM? They do resist very well to pollution effect



The secondary numerical method: BEM

Vkpkx _ Mkuk
AK 2

uk is approximated by a IP,-continuous function

— Nkuk

pk is approximated by a P,,-discontinuous function

Vk and Nk are the single layer and double layer operators.

(Mkuk, q)ox = /a uk(x) gk (x)dsx,
K
(Vkpk,ak)ok = / / pk(x) Gk(x —y) gk (y)dsxdsy,
ok Jok
0Gk
(Nkuk,qr)ok = pk(x) 3 (x — y)ak (y)dsxdsy
oK Jok ny

with

exp(ikic[x]) i
G = ——— — "2 with kx = LtAR
O = =a R = 5



The boundary element method

uk is approximated by a IP,-continuous function

pk is approximated by a P,,-discontinuous function

o geometric nodes for pk

¢ geometric nodes for ux

We can use different meshes for uk and pg.
Idea: the Neumann trace must be computed accurately

Remark: pg is discontinuous, only at the geometric singularities.



The skeleton of the matrix

Connection of the elements




The final formulation

Symmetric block sparse matrix
full small blocks
really adapted to GMRES Solver




A numerical simulation

&

in Q
at x =0,

(2)
at x = N

at y =0 and NA



Poly degree nodes per A Method Error at 175\ for P,
Error at 500\ for P3

m=2 12 IPDG 72 %

BEM-STDG 22 %

16 IPDG 67 %

BEM-STDG 5.6 %

24 IPDG 13 %

BEM-STDG 0.8 %

m=23 12 IPDG 19 %

BEM-STDG 1.6 %

18 IPDG 1.7 %

BEM-STDG 0.1 %

24 IPDG 0.3 %

BEM-STDG 0.02 %




Degree  Density Method Condition number CPU time
(nodes/\) 50 A 500 A 500 A
m=2 12 IPDG 8.81010 4710t 2.54
BEM-STDG  6.06107  1.00108 4.76
24 IPDG 1.2102 2.7610%2  19.03
BEM-STDG 596108 9.4210° 8.5
m=3 12 IPDG 4210 8910t 2.13
BEM-STDG  2.1108 1.510° 4.75
24 IPDG 2.010%  6.210'3 20.81
BEM-STDG  9.5210% 8.0710'° 8.4
m=4 8 IPDG 1.4310% 3.7810'! 0.66
BEM-STDG  1.1310% 1.08108 3.89
24 IPDG 2.38101% 24110  17.91
BEM-STDG  1.710°  1.710%! 8.41

Condition number and CPU time for h p refinements



Case of an unstructured mesh
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Case of an unstructured mesh of an heterogenous medium

Configuration



Case of an unstructured mesh of an heterogenous medium

Configuration Mesh



Case of an unstructured mesh of an heterogenous medium

DG Solution

(Imaginary part)



Case of an unstructured mesh of an heterogenous medium
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The anisotropic Ultra Weak Variational method
The basis of the reciprocity principle is the reciprocity principle
Z/ ug—pv =0

and the identity

(p + inu) (q — inv) — (p — i77u) (q + inv)

uq—pv =
a-p 2in
The choice of 7
is well known for isotropic and homogenous media n = k
has not been defined correctly for hetrogeneous media

has not yet been defined for heterogeneous anisotropic media



The trial and test functions

We denote by

(XT: = %+%7
’)\(/T = %_2’;}#7
yr = V7T+27;T7

The reciprocity principle:

/ xTyTnTds =/ yTXTnTds
oT oK

x7 is a trial function



Reflexion transmission between two media

|
|
V- (ATVU,T) — u%uT =0 pr ::: —-pr V- (ALVUL) — ;LQLUL =0

|

nr ! nrt
|
|

ur JI; ur,

media 1 : media 2

I

We consider a plane wave orthogonal to the boundary

out

ur(x) = IMexp(ikrx1) + 19t exp(—ikTx1) x1 >0,

ur(x) = " exp(—ikpx1) + Pt exp(ikpx1) x1 <0



Link with the choice of 7 for the UWVF method

T 2 2inT
Iout — ﬂ _ pPT
T 2 2inT
i ur PL
Jin — L

L 2 T 2inL
Jout  — b 7PL
L 2 2

with 7 given by

nr = kT\/I"I'(ATI"I)
e = k[_ n-: (ALI'I)

This will be our choice of



Transmission condition between two media

For the plane wave solution
198 = Ry 19 + Tyl

109 = Ryrli" + Ty I,

with
— NT ML — nL—nr
R = nL+nT Rur nT+nL
_ 27 _ 2y
Tr= n+nr Tir = nL+nr



The Transmission Condition between two media

This last expression is rephrased in terms of the xt variables
XT = Rrxt + Trrxe,
XL = Rixg + Trixr.
and in terms of u and p
—pT +inLuT = pr+ inLug,
—pL+ inTuL = pr + inTUT.

This is rather similar to an upwind flux.



The boundary conditions

u = gp, (Dirichlet condition)
p = gn (Neumann condition)

can be rewritten in terms of incoming and outgoing waves

1 . Q ,
—%(Aan—mu)_ﬂ(AVU'n—i-/nu)—i—g

with @ given here by
Q=-1, g=2¢p, on d<p,

Q=+1, g=—gn/in, on I,



The boundary conditions

u = gp, (Dirichlet condition)

p = gn (Neumann condition)

can be rewritten in terms of incoming and outgoing waves
xT=QxT+g
with @ given here by
R=-1, g=gp, on 0Qp,

Q:+17 g:_gN/lna on aQN)



UWVF formulation with outgoing and incoming waves

The starting point is the reciprocity principle

/ xT yT nrds =/ XTyT nrds
oT oT



UWVF formulation with outgoing and incoming waves

The starting point is the reciprocity principle
/ xryrnrds= Y [ Xryrords+ ) / yTXT nrds
oT FreFs Fr FrieFr Fro

where we have decomposed the boundary into two parts
the edges shared F7 with another element L

the exterior edges Fy



UWVF formulation with outgoing and incoming waves

The starting point is the reciprocity principle

X7 yT nrds =
[ 3

FreFs

Z/ Trixeyr nrds + Z/ Rrixryr nrds
FrieFz Fr FrieFzr Fru

/ XTyT NTds+
Fr

For the edges of the boundary, we replace x1 by

XT=QxT+§&



UWVF formulation with outgoing and incoming waves

The starting point is the reciprocity principle

/ xT yrnrds = (Qrxr +g)yT nrds+
oT FreFs Fr

> Truxeyr nrds + Z/ Rrixryr nrds
FrieFr Fri FrieFr Fr

For the edges of the boundary, we replace x1 by
xT=QxT+g
For the interior edges, we replace x7 by
X7 = Ryuxt + Trrx.

It remains to understant what is the ~ operator



The incoming to outgoing operator

Given x1 € L2(0K), we consider the solution of
Find u € HY(K) tel queV - (AVu) +pu = 0 dans T

ur AVUT'I'IT .

oT
5 2i77T XT sur

~ _ur pr (UT PT
XT = — + — =uTr —
2 2”7T

No need to compute p1 to get xr.
The incoming to outgoing operator is a unitary operator

o L2(0T) — L2(0T)

XT — ;T



1
Vx-VxE—ck®E=0

0

in

nx(EVxE)—an(Exn):gR

nx (Exn)=gp

Problem well posed.

on 0Qp

Q

on O0Qg

E € H(curl,Q)

g, >0, piece-wise
constant

gD, 8R € L%(aQ)
Im(Z) >0

k=2



The symmetric DG Trefftz formulation

The DG formulation mesh

Q= T, Tnk=0 if T#K

TeT
r= UJr, o2= |JF

FEF FEFo




The symmetric DG Trefftz formulation

The basis function space

1
X7 = {w € H(curl, T); V x ATV Xw-—eTk?w=0 in T,
T

1
nx (wlpt xn), nx (ﬁvw)bT € L2(5T)}



The symmetric DG Trefftz formulation

A Green formula on one element T:

1 1 1
/(VxVxE).wdx:/(Y7><E).(§7><w)dx+/ nx (—V x E)|spq - wds
T BT T HT aT nT



The symmetric DG Trefftz formulation

A Green formula on one element T:

1 1 1
/(VxVxE)-wdx:/(VxE)-(wa)dx+/ nx (—V x E)|pq - wds
T BT T KT oT BT

Replace V x %V x E by 5k2TE and sum over Trefftz elements:



The symmetric DG Trefftz formulation

A Green formula on one element T:

1 1 1
/(VXVXE)U)dX:/(V XE)(VXL&J)dX—F/ nX(—C XE)|6Q'U)dS
T BT T HT aT nT

Replace V x %V x E by 5k2TE and sum over Trefftz elements:

Z/T(/:}L(VXE)'(VXM)_W%E'“J dx = Z/aT(/];VXE)‘BT'nTXWTdS

TeT TeT



The symmetric DG Trefftz formulation

A Green formula on one element T:

1 1 1
/(VXVXE)U)dX:/(V XE)(VXL&J)dX—F/ nX(—C XE)|6Q'U)dS
T BT T HT aT nT

Replace V x %V x E by 5k2TE and sum over Trefftz elements:

Z/T(/:}L(VXE)'(VXM)_W%E'“J dx = Z/aT(/];VXE)‘BT'nTXWTdS

TeT TeT



The symmetric DG Trefftz formulation

We can invert the roles of E and w because w verifies Maxwell on each

element:
Z/( (V X E) (wa)—skEw)dx—Z/ “V xw)|gr - n X Exds
TeT TeT

Compute difference:

Z/ ( VXE)|3T nwaT—( VXw)‘aT I'ITXET)dS—O
oT

TeT



The symmetric DG Trefftz formulation

Notation: sums and differences
on edges

On anedge F =0T NIJK we
define

The trace jump: [[w]] =

The trace average: {H{w}} =

Nt X Wt +NK X wgk.

1
E(WT+WK).

Figure: Schematic view over two
neighbouring Trefftz elements sharing
a common edge F with normals.



The symmetric DG Trefftz formulation

The variational formulation

E € X7,Vw € X1
a(E,w) = Lw



The symmetric DG Trefftz formulation

The variational formulation

E € X7,Vw € X1
a(E,w) = Lw

/ {E}}- [[1v % ] + [[1v < E]] - {{w})
v <) uwn—[[en (137 % w)ds
+/89E nx(Mwa)+n><( V><E) wds
2f69 >( VXE)( 5V x w)ds



The symmetric DG Trefftz formulation

The variational formulation

{ E € X7,Vw € X1

a(E,w) = Lw

/ {E}}- [[1v % ] + [[1v < E]] - {{w})
v <) uwn—[[en (137 % w)ds
+/89E nx(Mwa)+n><( V><E) wds
2f89 >( VxE)( 5V x w)ds

1 1
:2/ —gr - (— wa)ds+2/ gp-n x (=V x w)ds.
oar £ 0p I



The symmetric DG Trefftz formulation

The local problem: an isomorphism

1
Vx —Vxwg—erkiw, =0 in T
ur

1
Nnx(—VXxwg)—Zrnx(wgxn)=g on 0T
BT

Solved with impedance BC

L:L20T) — Xr
g— L(g) =wg



The symmetric DG Trefftz formulation

The local problem: an isomorphism

1
Vx —Vxwg—erkiw, =0 in T
ur

1
nx(M—wag)—ZTnx(ngn):g on 0T

T
Solved with impedance BC
Im(Z7) > 0, example:

.2

g L(g) = wg



The symmetric DG Trefftz formulation
The local problem: an isomorphism

1
Vx —Vxwg—erkiw, =0 in T
ur

1
nx(M—wag)—ZTnx(ngn):g on 0T
T
Solved with impedance BC

Im(Z7) > 0, example:
£L2(8T)—>X7’ ZT:i\/mk
g— L(g) = wg Well posed.



The symmetric DG Trefftz formulation

The local problem: an isomorphism

1
Vx —Vxwg—erkiw, =0 in T
ur

1
nx(M—wag)—ZTnx(ngn):g on 0T
T
Solved with impedance BC

Im(Z7) > 0, example:
L:120T) = Xt Zr — i JiTETK
g— L(g) = wg Well posed.

Direct acces to curl trace.



The symmetric DG Trefftz formulation

L2( 8T
\_/'
P(OT) —£ X(T —S 5 H(curl, T)
Ly
~ d
LA(P(OT)) —=— NE(T)

Figure: Relationship between all relevant function spaces. Arrows with C denote inclusion
maps.



The symmetric DG Trefftz formulation

L2( aT

P(OT) —£ X(T —S 5 H(curl, T)

~ <

LH(PR(OT)) —=— NJ(T)

Figure: Relationship between all relevant function spaces. Arrows with C denote inclusion
maps.

Approximation of impedance boundary condition:

PIOT) = {ge L?(OT), glrPIf), Vf, feFhs}



The symmetric DG Trefftz formulation

Figure: To the left: the Trefftz DG mesh. T is the interior edges. K and T are two
neighbouring Trefftz elements. To the right: one Trefftz element with a triangular FE mesh.



Approximation of the local problem: Nedelec finite element method

The weak formulation:

E € Ho(curl,Q),Vw € Hy(curl,Q)

1
/(VxE)-(wa)dx—k2/5E-wdx
Q M Q

+Z [y0,n % (Exn)-wds=— [, g wds

Inhomogenous Dirichlet data is treated with a variable change.



Approximation of the local problem: Nedelec finite element method

Validation of method

- [cos(@)] ek [—sin(&)] o

 rewx
8332001

Eo.ama

-0.42188

-8.5436-01

Figure: A plane wave test: § = 45 degrees.
p=1,h=0.13k = 4.



Approximation of the local problem: Nedelec finite element method

I 1
Validation of method -1t eury = / |.[2dx +/ |V % Pdx
cos(6) sin(0) : @k
— — - —ikx
k=klgn@)|" E=E]| cos(t) | €

Finite Element H(curl) hp-convergence

f rewx
8332601 -2

-4

-6

logio(e)

p=0.a= 1.011
p=1.a= 1987
p=2.a= 2989
p=3.a= 3.997
p=4.a= 5002

-8

x 4 ® % ®

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8

Figure: A plane wave test: § = 45 degrees. logholh)
p=1,h=0.13k = 4.
Figure: Relative error convergence rate:
e = Chp*!



Approximation of the local problem:

logiele)
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Approximation of the local problem:

logiele)
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Rule of thumb: p > ¢q

p < g — precision loss



Approximation of the local problem:
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p < g — precision loss

Super convergence



Approximation of the local problem:

logiele)
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—141

Trefftz order = 0

Error H(curl)
Trefftz order = 1

Trefftz order = 2
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FE order:

e Oth
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¢ m X +

Nedelec finite element method

Rule of thumb: p > ¢q
p < g — precision loss
Super convergence

Increasing p does not
change the
Trefftz DOFs



Re(E) Y
[ 1.8e+00
1

A qualitative result: scattering on a perfect conducting circle
Re(B)_T
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Etotal = Eincident + Escatter

Incident plane wave from the left
On the Ieft: Etota/

On the right: Escatter
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Long range propagation: Numerical dispersion

VXxVxXxE—-KE=0 in Q=]0,L] x[0,1]
nx(Exn)=0, ye{01}

nx(Exn)=-e, x=0

nx(4VxE)—iknx (Exn)=0, x=L

e = 100 max |E— Bl N
()€ ||El|oo




Long range propagation: Numerical dispersion

Trefftz DG: g = 1 Trefftz DG: q = 2
0 + N=6 a=3.16E-02 + N=6 a=110E04
x N=9 a=427E03 0.14 x N=9 a=144E-05
o N=12 a=9.84E04 o N=12 a=211E-06
8 0.12
g T PR
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Figure: Relative maximum order for long range propagation using the FE method for different
orders and meshes. N on this figure corresponds to 1/h.



Long range propagation: Numerical dispersion
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Figure: Relative maximum order for long range propagation using the FE method for different
orders and meshes.
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Conclusion and perspectives

Trefftz IPDG formulation combined with BEM reduces the pollution effect

FEM UWVF shows the same properties. We have only very preliminary results
that can not be yet presented

The future: extension to elastic waves. Not that obvious when considering BEM
or FEM...

With Sébastien Pernet, we are planning to answer to call to get a PhD thesis.
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