On a stochastic model of damage and rupture

<u>C. Bauzet</u>^{*}, F. Lebon^{*}, E. Bonetti[†], G. Bonfanti[‡] and G. Vallet[§]

In this talk I present you a joint work on the analysis of a time noise-driven Allen-Cahn equation modelling the evolution of damage in continuum media in the presence of stochastic dynamics [1]. In detail, we are interested in the following stochastic PDE

$$\begin{cases} du + (\xi - \Delta u) dt &= (w_s(u) + f) dt + h(u) dW & \text{in } \Omega \times D \times (0, T) \\ u(\omega, x, t = 0) &= u_0(x) & \omega \in \Omega, x \in D, \\ \nabla u \cdot \mathbf{n} &= 0 & \text{in } \Omega \times \partial D \times (0, T), \end{cases}$$
(1)

where $\xi \in \partial I_{[0,1]}(u)$, T > 0, $W = \{W_t, \mathcal{F}_t, 0 \leq t \leq T\}$ is a standard adapted continuous Brownian motion defined on the classical Wiener space $(\Omega, \mathcal{F}, \mathbb{P})$, D is a smooth bounded domain of \mathbb{R}^d with $d \ge 1$, **n** is the outward unit normal vector to ∂D and u_0 is a given initial condition. Note that the equation in (1) can also be written in the following way:

$$w_s(u) + f - \partial_t \left(u - \int_0^t h(u) dW \right) + \Delta u \in \partial I_{[0,1]}(u) \text{ in } \Omega \times D \times (0,T),$$

where the stochastic integral is understood in the sense of Itô (see DA PRATO-ZABCZYK [2]). The subdifferential $\partial I_{[0,1]}$ represents a physical constraint on u which is forced to take values in the interval [0, 1]. Using a Yosida approximation and time-discretization procedure, I will present a result of global-in-time existence and uniqueness of the solution under the following hypotheses:

$$H_1: u_0 \in H^1(D).$$

 $H_2: 0 \leq u_0(x) \leq 1$ for almost all $x \in D$.

 $H_3: h: \mathbb{R} \to \mathbb{R}$ is a Lipschitz-continuous function such that h(0) = h(1) = 0.

 $H_4: w_s: \mathbb{R} \to [0, +\infty)$ is a Lipschitz-continuous function with, for convenience, $w_s(0) = 0$.

 H_5 : f is a predictable process belonging to $L^2((0,T) \times \Omega, L^2(D))$.

Keywords : Subdifferential, Yosida approximation, maximal monotone operators, stochastic perturbation, Itô integral, multiplicative noise, predictable processes, implicit time discretization...

References

- C. BAUZET, E. BONETTI, G. BONFANTI, F. LEBON AND G. VALLET, A global existence and uniqueness result for a stochastic Allen-Cahn equation with constraint, Mathematical Methods in the Applied Sciences, Volume 40, Issue 14, 2017.
- [2] G. DA PRATO AND J. ZABCZYK. Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992.

^{*}Laboratoire de Mécanique et d'Acoustique, Université d'Aix-Marseille

[†]Dipartimento di matematica F. Enriques, Università degli studi di Milano, Italia

[‡]Dipartimento DICATAM, Università di Brescia, Italia

[§]Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l'Adour