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In this talk I present you a joint work on the analysis of a time noise-driven Allen-Cahn
equation modelling the evolution of damage in continuum media in the presence of stochastic
dynamics [1]. In detail, we are interested in the following stochastic PDE du+ (ξ −∆u) dt = (ws(u) + f) dt+ h(u)dW in Ω×D × (0, T )

u(ω, x, t = 0) = u0(x) ω ∈ Ω, x ∈ D,
∇u.n = 0 in Ω× ∂D × (0, T ),

(1)

where ξ ∈ ∂I[0,1](u), T > 0, W = {Wt,Ft, 0 6 t 6 T} is a standard adapted continuous
Brownian motion defined on the classical Wiener space (Ω,F ,P), D is a smooth bounded
domain of Rd with d > 1, n is the outward unit normal vector to ∂D and u0 is a given initial
condition. Note that the equation in (1) can also be written in the following way:

ws(u) + f − ∂t
(
u−

∫ t

0

h(u)dW
)

+ ∆u ∈ ∂I[0,1](u) in Ω×D × (0, T ),

where the stochastic integral is understood in the sense of Itô (see Da Prato-Zabczyk
[2]). The subdifferential ∂I[0,1] represents a physical constraint on u which is forced to take
values in the interval [0, 1]. Using a Yosida approximation and time-discretization procedure,
I will present a result of global-in-time existence and uniqueness of the solution under the
following hypotheses:

H1: u0 ∈ H1(D).

H2: 0 6 u0(x) 6 1 for almost all x ∈ D.

H3: h : R→ R is a Lipschitz-continuous function such that h(0) = h(1) = 0.

H4: ws : R→ [0,+∞) is a Lipschitz-continuous function with, for convenience, ws(0) = 0.

H5: f is a predictable process belonging to L2((0, T )× Ω, L2(D)).
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tic perturbation, Itô integral, multiplicative noise, predictable processes, implicit time dis-
cretization...

References

[1] C. Bauzet, E. Bonetti, G. Bonfanti, F. Lebon and G. Vallet, A global existence
and uniqueness result for a stochastic Allen-Cahn equation with constraint, Mathematical
Methods in the Applied Sciences, Volume 40, Issue 14, 2017.

[2] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions. Encyclo-
pedia of Mathematics and its Applications, Cambridge University Press, 1992.
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