Analyse asymptotique pour la résolution numérique de problèmes avec micro-défauts

Grégory Vial

avec V. Bonnaillie-Noël, D. Brancherie, M. Dambrine, F. Hérau, D. Martin, S. Tordeux

Institut Camille Jordan, École Centrale de Lyon

Séminaire de Mathématiques et de leurs Applications

Pau, 31 mars 2016

Représentation multi-échelle pour des petits défauts

Représentation multi-échelle pour des petits défauts

Problèmes modèles : élasticité linéaire en domaines perturbés

Représentation multi-échelle pour des petits défauts

Problèmes modèles : élasticité linéaire en domaines perturbés

Représentation multi-échelle pour des petits défauts

Problèmes modèles : élasticité linéaire en domaines perturbés

Représentation multi-échelle pour des petits défauts

Problèmes modèles : élasticité linéaire en domaines perturbés

Difficultés d'approximation numérique

Représentation multi-échelle pour des petits défauts

Problèmes modèles : élasticité linéaire en domaines perturbés

Difficultés d'approximation numérique

Représentation multi-échelle pour des petits défauts

> Problèmes modèles : élasticité linéaire en domaines perturbés

Difficultés d'approximation numérique

Stratégie : représentation asymptotique en la taille des trous.

Représentation multi-échelle pour des petits défauts

$$\begin{split} -\Delta u_{\varepsilon} &= f \quad \text{dans} \ \Omega_{\varepsilon}, \\ u_{\varepsilon} &= 0 \quad \text{sur} \ \Gamma, \\ \partial_{\mathbf{n}} u_{\varepsilon} &= 0 \quad \text{sur} \ \varepsilon \partial \mathbf{H}_{\infty}. \end{split}$$

Représentation multi-échelle pour des petits défauts

$$\begin{split} -\Delta u_{\varepsilon} &= f \quad \text{dans} \ \Omega_{\varepsilon}, \\ u_{\varepsilon} &= 0 \quad \text{sur} \ \Gamma, \\ \partial_{\mathbf{n}} u_{\varepsilon} &= 0 \quad \text{sur} \ \varepsilon \partial \mathbf{H}_{\infty}. \end{split}$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

$$\begin{split} -\Delta u_{\varepsilon} &= f \quad \text{dans} \ \Omega_{\varepsilon}, \\ u_{\varepsilon} &= 0 \quad \text{sur} \ \Gamma, \\ \partial_{\mathbf{n}} u_{\varepsilon} &= 0 \quad \text{sur} \ \varepsilon \partial \mathbf{H}_{\infty}. \end{split}$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Développement asymptotique ?

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

$$-\Delta u_{\varepsilon} = f \quad \text{dans } \Omega_{\varepsilon},$$
$$u_{\varepsilon} = 0 \quad \text{sur } \Gamma,$$
$$\partial_{\varepsilon} u_{\varepsilon} = 0 \quad \text{sur } \varepsilon \partial \mathbf{H}$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Développement asymptotique ?

• $r_{\varepsilon} = u_{\varepsilon} - u_0$ satisfait

$$\begin{cases} -\Delta r_{\varepsilon} &= 0 & \text{dans } \Omega_{\varepsilon}, \\ r_{\varepsilon} &= 0 & \text{sur } \Gamma, \\ \partial_{\mathbf{n}} r_{\varepsilon}(\mathbf{x}) &= -\partial_{\mathbf{n}} u_0(\mathbf{x}) & \text{pour } \mathbf{x} \in \varepsilon \partial \mathbf{H}_{\infty}. \end{cases}$$

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

$$-\Delta u_{\varepsilon} = f \quad \text{dans } \Omega_{\varepsilon},$$
$$u_{\varepsilon} = 0 \quad \text{sur } \Gamma,$$
$$\partial_{\varepsilon} u_{\varepsilon} = 0 \quad \text{sur } \varepsilon \partial \mathbf{H}$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Développement asymptotique ?

• $r_{\varepsilon} = u_{\varepsilon} - u_0$ satisfait

$$\begin{cases} -\Delta r_{\varepsilon} = 0 & \text{dans } \Omega_{\varepsilon}, \\ r_{\varepsilon} = 0 & \text{sur } \Gamma, \\ \partial_{\mathbf{n}} r_{\varepsilon}(\mathbf{x}) = -\nabla u_0(\mathbf{x}) \cdot \mathbf{n} & \text{pour } \mathbf{x} \in \varepsilon \partial \mathbf{H}_{\infty}. \end{cases}$$

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

$$-\Delta u_{\varepsilon} = f \quad \text{dans } \Omega_{\varepsilon},$$
$$u_{\varepsilon} = 0 \quad \text{sur } \Gamma,$$
$$\partial_{\varepsilon} u_{\varepsilon} = 0 \quad \text{sur } \varepsilon \partial \mathbf{H}$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Développement asymptotique ?

• $r_{\varepsilon} = u_{\varepsilon} - u_0$ satisfait

$$\begin{cases} -\Delta r_{\varepsilon} = 0 & \text{dans } \Omega_{\varepsilon}, \\ r_{\varepsilon} = 0 & \text{sur } \Gamma, \\ \partial_{\mathbf{n}} r_{\varepsilon}(\mathbf{x}) = -\nabla u_0(\mathbf{x}) \cdot \mathbf{n} & \text{pour } \mathbf{x} \in \varepsilon \partial \mathbf{H}_{\infty}. \end{cases}$$

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

$$-\Delta u_{\varepsilon} = f \quad \text{dans } \Omega_{\varepsilon},$$
$$u_{\varepsilon} = 0 \quad \text{sur } \Gamma,$$
$$\partial_{\varepsilon} u_{\varepsilon} = 0 \quad \text{sur } \varepsilon \partial \mathbf{H}$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Développement asymptotique ?

• $r_{\varepsilon} = u_{\varepsilon} - u_0$ satisfait

$$\begin{cases} -\Delta \mathcal{R}_{\varepsilon} &= 0 & \text{dans } \Omega_{\varepsilon} / \varepsilon, \\ r_{\varepsilon} &= 0 & \text{sur } \Gamma, \\ \partial_{\mathbf{n}} r_{\varepsilon}(\mathbf{x}) &= -\nabla u_0(\mathbf{x}) \cdot \mathbf{n} & \text{pour } \mathbf{x} \in \varepsilon \partial \mathbf{H}_{\infty}. \end{cases}$$

ÉCOLE

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

$$-\Delta u_{\varepsilon} = f \quad \text{dans } \Omega_{\varepsilon},$$
$$u_{\varepsilon} = 0 \quad \text{sur } \Gamma,$$
$$\partial_{\mathbf{n}} u_{\varepsilon} = 0 \quad \text{sur } \varepsilon \partial \mathbf{H}_{\varepsilon \varepsilon \varepsilon},$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Développement asymptotique ?

• $r_{\varepsilon} = u_{\varepsilon} - u_0$ satisfait

TRALELYON

$$\begin{cases} -\Delta \mathcal{R}_{\varepsilon} &= 0 & \text{dans } \Omega_{\varepsilon}/\varepsilon, \\ \mathcal{R}_{\varepsilon} &= 0 & \text{sur } \Gamma/\varepsilon, \\ \partial_{\mathbf{n}} r_{\varepsilon}(\mathbf{x}) &= -\nabla u_{0}(\mathbf{x}) \cdot \mathbf{n} & \text{pour } \mathbf{x} \in \varepsilon \partial \mathbf{H}_{\infty}. \end{cases}$$

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

$$-\Delta u_{\varepsilon} = f \quad \text{dans } \Omega_{\varepsilon},$$
$$u_{\varepsilon} = 0 \quad \text{sur } \Gamma,$$
$$\partial_{\varepsilon} u_{\varepsilon} = 0 \quad \text{sur } \varepsilon \partial H$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Développement asymptotique ?

• $r_{\varepsilon} = u_{\varepsilon} - u_0$ satisfait

$$\begin{cases} -\Delta \Re_{\varepsilon} &= 0 & \text{dans } \Omega_{\varepsilon}/\varepsilon, \\ \Re_{\varepsilon} &= 0 & \text{sur } \Gamma/\varepsilon, \\ \partial_{\mathcal{N}} \Re_{\varepsilon}(\mathfrak{X}) &= -\varepsilon \nabla u_0(\varepsilon \mathfrak{X}) \cdot \mathfrak{N} & \text{pour } \mathfrak{X} \in \partial \mathbf{H}_{\infty}. \end{cases}$$

ÉCOLE

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

$$-\Delta u_{\varepsilon} = f \quad \text{dans } \Omega_{\varepsilon},$$
$$u_{\varepsilon} = 0 \quad \text{sur } \Gamma,$$
$$\partial_{\varepsilon} u_{\varepsilon} = 0 \quad \text{sur } \varepsilon \partial \mathbf{H}$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Développement asymptotique ?

• $r_{\varepsilon} = u_{\varepsilon} - u_0$ satisfait

$$\begin{cases} -\Delta \mathcal{R}_{\varepsilon} &= 0 & \text{dans } \Omega_{\varepsilon}/\varepsilon, \\ \mathcal{R}_{\varepsilon} &= 0 & \text{sur } \Gamma/\varepsilon, \\ \partial_{\mathcal{N}} \mathcal{R}_{\varepsilon}(\mathfrak{X}) &= -\varepsilon \nabla u_{0}(\varepsilon \mathfrak{X}) \cdot \mathfrak{N} & \text{pour } \mathfrak{X} \in \partial \mathbf{H}_{\infty}. \end{cases}$$

- Changement de variable : $\mathbf{x} = \varepsilon \mathfrak{X}$, et $\mathcal{R}_{\varepsilon}(\mathfrak{X}) = r_{\varepsilon}(\mathbf{x})$.
- On pose $\Re_{\varepsilon} = -\varepsilon \mathcal{V}_{\varepsilon}$ et on fait $\varepsilon \to 0$.

ÉCOLE

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

$$-\Delta u_{\varepsilon} = f \quad \text{dans } \Omega_{\varepsilon},$$
$$u_{\varepsilon} = 0 \quad \text{sur } \Gamma,$$
$$\partial_{\mathbf{n}} u_{\varepsilon} = 0 \quad \text{sur } \varepsilon \partial \mathbf{H}_{\infty}.$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Développement asymptotique ?

• $r_{\varepsilon} = u_{\varepsilon} - u_0$ satisfait

$$\begin{cases} -\Delta \mathcal{V}_0 &= 0 & \text{dans } \mathbf{R}^2 \setminus \mathbf{H}_{\infty}, \\ \mathcal{R}_{\varepsilon} &= 0 & \text{sur } \Gamma/\varepsilon, \\ \partial_{\mathcal{N}} \mathcal{R}_{\varepsilon}(\mathcal{X}) &= -\varepsilon \nabla \mathcal{U}_0(\varepsilon \mathcal{X}) \cdot \mathcal{N} & \text{pour } \mathcal{X} \in \partial \mathbf{H}_{\infty}. \end{cases}$$

- Changement de variable : $\mathbf{x} = \varepsilon \mathfrak{X}$, et $\mathcal{R}_{\varepsilon}(\mathfrak{X}) = r_{\varepsilon}(\mathbf{x})$.
- On pose $\Re_{\varepsilon} = -\varepsilon \mathcal{V}_{\varepsilon}$ et on fait $\varepsilon \to 0$.

ÉCOLE

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

$$-\Delta u_{\varepsilon} = f \quad \text{dans } \Omega_{\varepsilon},$$
$$u_{\varepsilon} = 0 \quad \text{sur } \Gamma,$$
$$\partial_{\varepsilon} u_{\varepsilon} = 0 \quad \text{sur } \varepsilon \partial \mathbf{H}$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Développement asymptotique ?

• $r_{\varepsilon} = u_{\varepsilon} - u_0$ satisfait

$$\begin{cases} -\Delta \mathcal{V}_0 &= 0 & \text{dans } \mathbf{R}^2 \setminus \mathbf{H}_{\infty}, \\ \mathcal{V}_0 &\to 0 & \text{à l'infini}, \\ \partial_{\mathcal{N}} \mathcal{R}_{\varepsilon}(\mathcal{X}) &= -\varepsilon \nabla \mathcal{U}_0(\varepsilon \mathcal{X}) \cdot \mathcal{N} & \text{pour } \mathcal{X} \in \partial \mathbf{H}_{\infty}. \end{cases}$$

- Changement de variable : $\mathbf{x} = \varepsilon \mathfrak{X}$, et $\mathcal{R}_{\varepsilon}(\mathfrak{X}) = r_{\varepsilon}(\mathbf{x})$.
- On pose $\Re_{\varepsilon} = -\varepsilon \mathcal{V}_{\varepsilon}$ et on fait $\varepsilon \to 0$.

ÉCOLE

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

$$-\Delta u_{\varepsilon} = f \quad \text{dans } \Omega_{\varepsilon},$$
$$u_{\varepsilon} = 0 \quad \text{sur } \Gamma,$$
$$\partial_{\varepsilon} u_{\varepsilon} = 0 \quad \text{sur } \varepsilon \partial \mathbf{H}$$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

Développement asymptotique ?

• $r_{\varepsilon} = u_{\varepsilon} - u_0$ satisfait

$$\begin{cases} -\Delta \mathcal{V}_0 &= 0 & \text{dans } \mathbf{R}^2 \setminus \mathbf{H}_{\infty}, \\ \mathcal{V}_0 &\to 0 & \text{à l'infini}, \\ \partial_{\mathcal{N}} \mathcal{V}_0(\mathcal{X}) &= \nabla u_0(\mathbf{0}) \cdot \mathcal{N} & \text{pour } \mathcal{X} \in \partial \mathbf{H}_{\infty}. \end{cases}$$

- Changement de variable : $\mathbf{x} = \varepsilon \mathfrak{X}$, et $\mathfrak{R}_{\varepsilon}(\mathfrak{X}) = r_{\varepsilon}(\mathbf{x})$.
- On pose $\Re_{\varepsilon} = -\varepsilon \mathcal{V}_{\varepsilon}$ et on fait $\varepsilon \to 0$.

ÉCOLE

Représentation multi-échelle pour des petits défauts

Exemple de l'équation de Laplace

 $\left\{ \begin{array}{ll} -\Delta u_{\varepsilon} = f & \mathrm{dans} \ \Omega_{\varepsilon}, \\ u_{\varepsilon} = 0 & \mathrm{sur} \ \Gamma, \\ \partial_{\mathbf{n}} u_{\varepsilon} = 0 & \mathrm{sur} \ \varepsilon \partial \mathbf{H}_{\infty}. \end{array} \right.$

• Terme limite : $u_{\varepsilon} \rightarrow u_0$ dans $H^1(\Omega_{\varepsilon})$.

• Développement asymptotique ? $u_{\varepsilon}(\mathbf{x}) \simeq u_0(\mathbf{x}) - \varepsilon \mathcal{V}_0(\frac{\mathbf{x}}{\varepsilon})$

• $r_{\varepsilon} = u_{\varepsilon} - u_0$ satisfait

FRALE YON

$$\begin{cases} -\Delta \mathcal{V}_0 &= 0 & \text{dans } \mathbf{R}^2 \setminus \mathbf{H}_{\infty}, \\ \mathcal{V}_0 &\to 0 & \text{à l'infini}, \\ \partial_{\mathcal{N}} \mathcal{V}_0(\mathcal{X}) &= \nabla \mathcal{U}_0(\mathbf{0}) \cdot \mathcal{N} \text{ pour } \mathcal{X} \in \partial \mathbf{H}_{\infty}. \end{cases}$$

- Changement de variable : $\mathbf{x} = \varepsilon \mathfrak{X}$, et $\mathcal{R}_{\varepsilon}(\mathfrak{X}) = r_{\varepsilon}(\mathbf{x})$.
- On pose $\Re_{\varepsilon} = -\varepsilon \mathcal{V}_{\varepsilon}$ et on fait $\varepsilon \to 0$.

Représentation multi-échelle pour des petits défauts

 \textbf{H}_{∞}

 $\begin{array}{ll} -\Delta u_{\varepsilon} = f & \text{dans} \ \Omega_{\varepsilon}, \\ u_{\varepsilon} = 0 & \text{sur} \ \Gamma, \\ \partial_{\mathbf{n}} u_{\varepsilon} = 0 & \text{sur} \ \varepsilon \partial \mathbf{H}_{\infty}. \end{array} \left\{ \begin{array}{l} -\Delta \mathbf{V} = 0 & \text{dans} \ \mathbf{H}_{\infty}, \\ \partial_{\mathcal{N}} \mathbf{V} = \mathcal{N} & \text{sur} \ \partial \mathbf{H}_{\infty}, \\ \mathbf{V} \to 0 & \text{lorsque} \ |\mathcal{X}| \to \infty. \end{array} \right.$

Dvp. asymptotique à l'ordre 1 : $u_{\varepsilon}(\mathbf{x}) \simeq u_0(\mathbf{x}) - \varepsilon \nabla u_0(\mathbf{0}) \cdot \mathbf{V}\left(\frac{\mathbf{x}}{\varepsilon}\right)$.

Représentation multi-échelle pour des petits défauts

 $\begin{array}{ll} -\Delta u_{\varepsilon} = f & \text{dans} \ \Omega_{\varepsilon}, \\ u_{\varepsilon} = 0 & \text{sur} \ \Gamma, \\ \partial_{\mathbf{n}} u_{\varepsilon} = 0 & \text{sur} \ \varepsilon \partial \mathbf{H}_{\infty}. \end{array} \left\{ \begin{array}{l} -\Delta \mathbf{V} = 0 & \text{dans} \ \mathbf{H}_{\infty}, \\ \partial_{\mathcal{N}} \mathbf{V} = \mathcal{N} & \text{sur} \ \partial \mathbf{H}_{\infty}, \\ \mathbf{V} \to 0 & \text{lorsque} \ |\mathcal{X}| \to \infty. \end{array} \right.$

Dvp. asymptotique à l'ordre 1 : $u_{\varepsilon}(\mathbf{x}) \simeq u_0(\mathbf{x}) - \varepsilon \nabla u_0(\mathbf{0}) \cdot \mathbf{V}\left(\frac{\mathbf{x}}{\varepsilon}\right)$.

Représentation multi-échelle pour des petits défauts

 H_{∞}

$$\begin{split} -\Delta u_{\varepsilon} &= f \quad \text{dans} \ \Omega_{\varepsilon}, \\ u_{\varepsilon} &= 0 \quad \text{sur} \ \Gamma, \\ \partial_{\mathbf{n}} u_{\varepsilon} &= 0 \quad \text{sur} \ \varepsilon \partial \mathbf{H}_{\infty}. \end{split} \qquad \begin{cases} -\Delta \mathbf{V} &= 0 \quad \text{dans} \ \mathbf{H}_{\infty}, \\ \partial_{N} \mathbf{V} &= \mathcal{N} \quad \text{sur} \ \partial \mathbf{H}_{\infty}, \\ \mathbf{V} &\to 0 \quad \text{lorsque} \ |\mathcal{X}| \to \infty. \end{cases}$$

Dvp. asymptotique à l'ordre 1 : $u_{\varepsilon}(\mathbf{x}) \simeq u_0(\mathbf{x}) - \varepsilon \nabla u_0(\mathbf{0}) \cdot \mathbf{V}\left(\frac{\mathbf{x}}{\varepsilon}\right)$.

- Construction possible à tout ordre, estimations du reste. [Maz'ya-Nazarov-Plamenevskij].
- Représentations similaires pour d'autres opérateurs, conditions aux limites, géométries, pour des inclusions multiples...

Représentation multi-échelle pour des petits défauts

 $^{H_{\infty}} \bigcirc$

$$\begin{split} -\Delta u_{\varepsilon} &= f \quad \text{dans} \ \Omega_{\varepsilon}, \\ u_{\varepsilon} &= 0 \quad \text{sur} \ \Gamma, \\ \partial_{\mathbf{n}} u_{\varepsilon} &= 0 \quad \text{sur} \ \varepsilon \partial \mathbf{H}_{\infty}. \end{split} \qquad \begin{cases} -\Delta \mathbf{V} &= 0 \quad \text{dans} \ \mathbf{H}_{\infty}, \\ \partial_{\mathcal{N}} \mathbf{V} &= \mathcal{N} \quad \text{sur} \ \partial \mathbf{H}_{\infty}, \\ \mathbf{V} &\to 0 \quad \text{lorsque} \ |\mathcal{X}| \to \infty. \end{cases} \end{split}$$

Dvp. asymptotique à l'ordre 1 : $u_{\varepsilon}(\mathbf{x}) \simeq u_0(\mathbf{x}) - \varepsilon \nabla u_0(\mathbf{0}) \cdot \mathbf{V}(\frac{\mathbf{x}}{\varepsilon})$.

- Construction possible à tout ordre, estimations du reste. [Maz'ya-Nazarov-Plamenevskij].
- Représentations similaires pour d'autres opérateurs, conditions aux limites, géométries, pour des inclusions multiples...

Question : calcul numérique du profil V ?
ÉCOLE
CENTRALELYON

Plan de l'exposé

Problème « jouet » : l'équation de Laplace

- Propriétés de profils
- Conditions aux limites artificielles

Calcul des profils pour l'élasticité

- Conditions aux limites artificielles
- Problèmes de Ventcel non coercifs
- Quelques autres problèmes non coercifs de type Ventcel

Problème « jouet » :

l'équation de Laplace

Inclusion circulaire

$$\mathbf{H}_{\infty} \bigcirc \left\{ \begin{array}{ll} -\Delta V = 0 & \text{dans } \mathbf{H}_{\infty}, \\ \partial_{N} V = \cos \theta & \text{sur } \partial \mathbf{H}_{\infty}, \\ V \to 0 & \text{à l'infini} \end{array} \right.$$

Solution explicite :

 $V(r,\theta)=\frac{\cos\theta}{r}.$

Inclusion circulaire

$$\mathbf{H}_{\infty} \bigcirc \left\{ \begin{array}{ll} -\Delta V = 0 & \text{dans } \mathbf{H}_{\infty}, \\ \partial_{\mathcal{N}} V = \cos \theta & \text{sur } \partial \mathbf{H}_{\infty}, \\ V \to 0 & \text{à l'infini} \end{array} \right.$$

Solution explicite :

 $V(r,\theta)=\frac{\cos\theta}{r}.$

Cas général

Pas de formule explicite, seulement un développement à l'infini :

$$V(r,\theta) = \sum_{k\geq 1} \frac{a_k \cos k\theta + b_k \sin k\theta}{r^k}$$

Équation de Laplace

Conditions artificielles

▶ Domaine tronqué au rayon $R : \mathbf{H}_{\infty}^{R} \subset \mathbf{H}_{\infty}$.

Équation de Laplace

Conditions artificielles

 $\label{eq:H_matrix} \textbf{H}_{\infty} \qquad \qquad \begin{cases} -\Delta V = 0 & \text{dans } \textbf{H}_{\infty}, \\ \partial_{\mathbb{N}} V = \mathcal{N}_{1} & \text{sur } \partial \textbf{H}_{\infty}, \\ V \to 0 & \text{à l'infini} \end{cases}$

▶ Domaine tronqué au rayon $R: \mathbf{H}_{\infty}^{R} \subset \mathbf{H}_{\infty}$.

• Condition ("absorbante") pour $\mathfrak{X} \in \Gamma_R$ (i.e. $|\mathfrak{X}| = R$).

Équation de Laplace

Conditions artificielles

► Domaine tronqué au rayon $R: \mathbf{H}_{\infty}^{R} \subset \mathbf{H}_{\infty}$.

• Condition ("absorbante") pour $\mathfrak{X} \in \Gamma_R$ (i.e. $|\mathfrak{X}| = R$).

Rappel :

$$V(r,\theta) = \sum_{k\geq 1} \frac{a_k \cos k\theta + b_k \sin k\theta}{r^k}$$

Conditions artificielles

 $\label{eq:H_matrix} \textbf{H}_{\infty} \qquad \qquad \begin{cases} -\Delta V = 0 & \text{dans } \textbf{H}_{\infty}, \\ \partial_{N} V = \mathcal{N}_{1} & \text{sur } \partial \textbf{H}_{\infty}, \\ V \rightarrow 0 & \text{à l'infini} \end{cases}$

► Domaine tronqué au rayon $R: \mathbf{H}_{\infty}^{R} \subset \mathbf{H}_{\infty}$.

- ► Condition ("absorbante") pour $\mathfrak{X} \in \Gamma_R$ (i.e. $|\mathfrak{X}| = R$).
 - Rappel :

$$V(r,\theta) = \sum_{k\geq 1} \frac{a_k \cos k\theta + b_k \sin k\theta}{r^k}$$

Construction élémentaire :

Conditions artificielles

► Domaine tronqué au rayon $R: \mathbf{H}_{\infty}^{R} \subset \mathbf{H}_{\infty}$.

- ► Condition ("absorbante") pour $\mathfrak{X} \in \Gamma_R$ (i.e. $|\mathfrak{X}| = R$).
 - Rappel :

$$V(r,\theta) = \sum_{k\geq 1} \frac{a_k \cos k\theta + b_k \sin k\theta}{r^k}$$

- Construction élémentaire :
 - Ordre 0 : V = 0 pour $\mathfrak{X} \in \Gamma_R$.

- ► Domaine tronqué au rayon $R: \mathbf{H}_{\infty}^{R} \subset \mathbf{H}_{\infty}$.
- Condition ("absorbante") pour $\mathfrak{X} \in \Gamma_R$ (i.e. $|\mathfrak{X}| = R$).
 - Rappel :

$$V(r,\theta) = \sum_{k\geq 1} \frac{a_k \cos k\theta + b_k \sin k\theta}{r^k}$$

- Construction élémentaire :
 - Ordre 0 : V = 0 pour $\mathfrak{X} \in \Gamma_R$. car $V = \mathcal{O}(\frac{1}{r})$ à l'infini.

- $\label{eq:H_matrix} \textbf{H}_{\infty} \qquad \qquad \begin{cases} -\Delta V = 0 & \text{dans } \textbf{H}_{\infty}, \\ \partial_{N} V = \mathcal{N}_{1} & \text{sur } \partial \textbf{H}_{\infty}, \\ V \rightarrow 0 & \text{à l'infini} \end{cases}$
- ▶ Domaine tronqué au rayon $R: \mathbf{H}_{\infty}^{R} \subset \mathbf{H}_{\infty}$.
- Condition ("absorbante") pour $\mathfrak{X} \in \Gamma_R$ (i.e. $|\mathfrak{X}| = R$).
 - Rappel :

$$V(r,\theta) = \sum_{k\geq 1} \frac{a_k \cos k\theta + b_k \sin k\theta}{r^k}$$

- Construction élémentaire :
 - Ordre 0 : V = 0 pour $\mathfrak{X} \in \Gamma_R$.
 - Ordre 1: $V + R\partial_{\mathcal{N}}V = 0$ pour $\mathfrak{X} \in \Gamma_R$.

- ▶ Domaine tronqué au rayon $R: \mathbf{H}_{\infty}^{R} \subset \mathbf{H}_{\infty}$.
- Condition ("absorbante") pour $\mathfrak{X} \in \Gamma_R$ (i.e. $|\mathfrak{X}| = R$).
 - Rappel :

$$V(r,\theta) = \sum_{k\geq 1} \frac{a_k \cos k\theta + b_k \sin k\theta}{r^k}$$

- Construction élémentaire :
 - Ordre 0 : V = 0 pour $\mathfrak{X} \in \Gamma_R$.
 - Ordre 1: $V + R\partial_N V = 0$ pour $\mathfrak{X} \in \Gamma_R$. en effet $V \sim R^{-1}(a_1 \cos \theta + b_1 \sin \theta)$ et $R\partial_N V \sim -R^{-1}(a_1 \cos \theta + b_1 \sin \theta)$.

- $\label{eq:H_matrix} \textbf{H}_{\infty} \qquad \qquad \begin{cases} -\Delta V = 0 & \text{dans } \textbf{H}_{\infty}, \\ \partial_{N} V = \mathcal{N}_{1} & \text{sur } \partial \textbf{H}_{\infty}, \\ V \rightarrow 0 & \text{à l'infini} \end{cases}$
- ► Domaine tronqué au rayon $R: \mathbf{H}_{\infty}^{R} \subset \mathbf{H}_{\infty}$.
- Condition ("absorbante") pour $\mathfrak{X} \in \Gamma_R$ (i.e. $|\mathfrak{X}| = R$).
 - Rappel :

$$V(r,\theta) = \sum_{k\geq 1} \frac{a_k \cos k\theta + b_k \sin k\theta}{r^k}$$

- Construction élémentaire :
 - Ordre 0 : V = 0 pour $\mathfrak{X} \in \Gamma_R$.
 - Ordre 1 : $V + R\partial_{\mathcal{N}}V = 0$ pour $\mathfrak{X} \in \Gamma_R$.
 - Ordre 2: $V + \frac{3R}{2}\partial_{\mathcal{N}}V \frac{R^2}{2}\Delta_{\tau}V = 0$ pour $\mathfrak{X} \in \Gamma_R$.

Conditions artificielles

COLE

- ▶ Domaine tronqué au rayon $R: \mathbf{H}_{\infty}^{R} \subset \mathbf{H}_{\infty}$.
- ► Condition ("absorbante") pour $\mathfrak{X} \in \Gamma_R$ (i.e. $|\mathfrak{X}| = R$).
 - Rappel :

RALELYON

$$V(r,\theta) = \sum_{k\geq 1} \frac{a_k \cos k\theta + b_k \sin k\theta}{r^k}$$

- Construction élémentaire :
 - Ordre 0 : V = 0 pour $\mathfrak{X} \in \Gamma_R$.
 - Ordre 1 : $V + R\partial_{\mathcal{N}}V = 0$ pour $\mathfrak{X} \in \Gamma_R$.
 - Ordre 2: $V + \frac{3R}{2}\partial_N V \frac{R^2}{2}\Delta_\tau V = 0$ pour $\mathfrak{X} \in \Gamma_R$. $V \sim R^{-1}(a_1\cos\theta + b_1\sin\theta) + R^{-2}(a_2\cos2\theta + b_2\sin2\theta)$ $R\partial_N V \sim -R^{-1}(a_1\cos\theta + b_1\sin\theta) - 2R^{-2}(a_2\cos2\theta + b_2\sin2\theta)$ $R^2\Delta_\tau V \sim -R^{-1}(a_1\cos\theta + b_1\sin\theta) - 4R^{-2}(a_2\cos2\theta + b_2\sin2\theta)$

Conditions artificielles

- $\label{eq:H_matrix} \textbf{H}_{\infty} \qquad \qquad \begin{cases} -\Delta V = 0 & \text{dans } \textbf{H}_{\infty}, \\ \partial_{N} V = \mathcal{N}_{1} & \text{sur } \partial \textbf{H}_{\infty}, \\ V \rightarrow 0 & \text{à l'infini} \end{cases}$
- ▶ Domaine tronqué au rayon $R: \mathbf{H}_{\infty}^{R} \subset \mathbf{H}_{\infty}$.
- Condition ("absorbante") pour $\mathfrak{X} \in \Gamma_R$ (i.e. $|\mathfrak{X}| = R$).
 - Rappel :

$$V(r,\theta) = \sum_{k\geq 1} \frac{a_k \cos k\theta + b_k \sin k\theta}{r^k}$$

- Construction élémentaire :
 - Ordre 0 : V = 0 pour $\mathfrak{X} \in \Gamma_R$.
 - Ordre 1 : $V + R\partial_{\mathcal{N}}V = 0$ pour $\mathfrak{X} \in \Gamma_R$.
 - Ordre 2: $V + \frac{3R}{2}\partial_N V \frac{R^2}{2}\Delta_\tau V = 0$ pour $\mathfrak{X} \in \Gamma_R$.

[Engquist-Majda, Halpern-Rauch, ...]

Problème approché d'ordre 2 :

Problème approché d'ordre 2 :

$$\begin{split} & -\Delta V = 0 & \text{dans } \mathbf{H}_{\infty}^{R}, \\ & \partial_{N} V(\mathfrak{X}) = \mathfrak{N}_{1} & \text{pour } \mathfrak{X} \in \partial \mathbf{H}_{\infty}, \\ & \chi + \frac{3R}{2} \partial_{N} V - \frac{R^{2}}{2} \Delta_{\tau} V = 0 & \text{sur } \Gamma_{R} = \{\mathfrak{X} \; ; \; |\mathfrak{X}| = R\}. \end{split}$$

Formulation variationnelle

$$\int_{\mathbf{H}_{\infty}^{R}} \nabla V \cdot \nabla W + \frac{2}{3R} \int_{\Gamma_{R}} V W + \frac{R}{3} \int_{\Gamma_{R}} \nabla_{\Gamma_{R}} V \cdot \nabla_{\Gamma_{R}} W = \int_{\partial \mathbf{H}_{\infty}} \mathcal{N}_{1} W$$

Problème approché d'ordre 2 :

$$\begin{split} & (\begin{array}{c} -\Delta V = 0 \\ \partial_N V(\mathfrak{X}) = \mathfrak{N}_1 \end{array} \begin{array}{c} \text{dans } \mathbf{H}_{\infty}^R, \\ & \\ \mathcal{N} V(\mathfrak{X}) = \mathfrak{N}_1 \end{array} \begin{array}{c} \text{pour } \mathfrak{X} \in \partial \mathbf{H}_{\infty}, \\ & \\ \mathcal{N} V + \frac{3R}{2} \partial_N V - \frac{R^2}{2} \Delta_\tau V = 0 \end{array} \begin{array}{c} \text{sur } \Gamma_R = \{\mathfrak{X} ; \ |\mathfrak{X}| = R\}. \end{split}$$

Formulation variationnelle

$$\int_{\mathbf{H}_{\infty}^{R}} \nabla V \cdot \nabla W + \frac{2}{3R} \int_{\Gamma_{R}} V W + \frac{R}{3} \int_{\Gamma_{R}} \nabla_{\Gamma_{R}} V \cdot \nabla_{\Gamma_{R}} W = \int_{\partial \mathbf{H}_{\infty}} \mathcal{N}_{1} W$$

coercive dans

 $\mathfrak{W} = \left\{ W \in H^1(\mathbf{H}_\infty^R) \; ; \; W|_{\Gamma_R} \in H^1(\Gamma_R) \right\}.$

Problème approché d'ordre 2 :

$$\begin{array}{ll} & -\Delta V = 0 & \text{dans } \mathbf{H}_{\infty}^{R}, \\ & \partial_{N} V(\mathfrak{X}) = \mathfrak{N}_{1} & \text{pour } \mathfrak{X} \in \partial \mathbf{H}_{\infty}, \\ & \nabla V + \frac{3R}{2} \partial_{N} V - \frac{R^{2}}{2} \Delta_{\tau} V = 0 & \text{sur } \Gamma_{R} = \{\mathfrak{X} \; ; \; |\mathfrak{X}| = R\}. \end{array}$$

Formulation variationnelle

$$\int_{\mathbf{H}_{\infty}^{R}} \nabla V \cdot \nabla W + \frac{2}{3R} \int_{\Gamma_{R}} V W + \frac{R}{3} \int_{\Gamma_{R}} \nabla_{\Gamma_{R}} V \cdot \nabla_{\Gamma_{R}} W = \int_{\partial \mathbf{H}_{\infty}} \mathcal{N}_{1} W$$

coercive dans

$$\mathfrak{W} = \left\{ W \in \mathsf{H}^1(\mathsf{H}^R_\infty) \; ; \; W|_{\mathsf{\Gamma}_R} \in \mathsf{H}^1(\mathsf{\Gamma}_R)
ight\}.$$

Problème bien posé !

 \mathbf{H}_{∞}

Conditions artificielles

- Ordre 0 : V = 0 pour $|\mathcal{X}| = R$.
- Ordre 1 : $V + R\partial_{\mathcal{N}}V = 0$ pour $|\mathfrak{X}| = R$.
- Ordre 2: $V + \frac{3R}{2}\partial_N V \frac{R^2}{2}\Delta_\tau V = 0$ pour $|\mathcal{X}| = R$.

Erreurs H^1 vs R (loglog) Q_6 et Q_{10} .

Conditions artificielles

$$\mathbf{H}_{\infty} \qquad \qquad \left\{ \begin{array}{ll} -\Delta V = 0 & \text{dans } \mathbf{H}_{\infty}^{\mathcal{R}}, \\ \partial_{\mathcal{N}} V(\mathcal{X}) = \mathcal{N}_{1} & \text{pour } \mathcal{X} \in \partial \mathbf{H}_{\infty}, \end{array} \right.$$

- Ordre 0 : V = 0 pour $|\mathcal{X}| = R$.
- Ordre 1 : $V + R\partial_N V = 0$ pour $|\mathfrak{X}| = R$.
- Ordre 2: $V + \frac{3R}{2}\partial_N V \frac{R^2}{2}\Delta_\tau V = 0$ pour $|\mathcal{X}| = R$.

Erreurs L^{∞} vs DdL (semilog)

Calculs de profils

pour l'élasticité linéaire

Élasticité linéaire

Profils pour un domaine avec une inclusion

$$\begin{cases} -\mu \Delta \mathbf{V} - (\lambda + \mu) \text{grad } \text{div } \mathbf{V} = \mathbf{0} \text{ dans } \mathbf{H}_{\infty}, \\ \sigma(\mathbf{V}) \cdot \mathcal{N} = \mathbf{G} \text{ sur } \partial \mathbf{H}_{\infty}, \\ \mathbf{V} \rightarrow \mathbf{0} \text{ à l'infini.} \end{cases}$$

Singularités à l'infini pour le problème de profil [Grisvard]

•
$$\mathfrak{S}^{q}(r,\theta) = r^{q} \begin{pmatrix} \varphi_{r}(\theta) \\ \varphi_{\theta}(\theta) \end{pmatrix}$$
 pour $q \in \mathbb{Z}$.

• Pour q = -1,

$$\begin{cases} \varphi_r(\theta) = A\cos 2\theta + B\sin 2\theta \\ \varphi_{\theta}(\theta) = \frac{\mu}{\lambda + 2\mu} (B\cos 2\theta - A\sin 2\theta) + B \frac{\lambda + \mu}{\lambda + 2\mu} \end{cases}$$

Développement à l'infini :

$$\mathbf{V} = \tilde{\mathfrak{S}}^{-1} + \tilde{\mathfrak{S}}^{-2} + \cdots$$

Élasticité linéaire Conditions artificielles

Développement à l'infini :

$$\mathbf{V} = \tilde{\mathfrak{S}}^{-1} + \tilde{\mathfrak{S}}^{-2} + \cdots$$

• Dérivation de conditions artificielles sur $|\mathcal{X}| = R$

Ordre 0 :

Ordre 1 (en polaires) :

$$\boldsymbol{\sigma}(\mathbf{V})\cdot \boldsymbol{\aleph} + \frac{A_1}{R}\mathbf{V} + \frac{1}{2R}\begin{bmatrix} A_2 & 0\\ 0 & A_3 \end{bmatrix} \partial_{\theta}^2 \mathbf{V} = 0.$$

avec

$$A_1 = \frac{E}{1+\nu}, \quad A_2 = -\frac{\nu E}{2(1-\nu^2)}, \quad A_3 = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)},$$

Comme E > 0 et $\nu \in (-1, .5)$, on a $A_3 > 0$.

Élasticité linéaire Conditions artificielles

$$\boldsymbol{\sigma}(\mathbf{V})\cdot \boldsymbol{\aleph} + \frac{A_1}{R}\mathbf{V} + \frac{1}{2R} \begin{bmatrix} A_2 & 0\\ 0 & A_3 \end{bmatrix} \partial_{\theta}^2 \mathbf{V} = 0.$$

• Mauvais signe : $A_3 > 0$.

Problème scalaire modèle :

$$\begin{cases} -\Delta V = 0 & \text{dans } \Omega, \\ R \partial_{\mathcal{N}} V + \alpha V + \beta \partial_{\theta}^{2} V = G & \text{sur } \partial \Omega. \end{cases}$$

avec $\alpha, \beta > 0$.

- Pas d'approche variationnelle.
- Existence, unicité ?

Un problème modèle de type Ventcel non coercif Cas d'une boule

Pour $\Omega = \mathcal{B}_1 \subset \mathbf{R}^2$:

 $\left\{ \begin{array}{cc} -\Delta V = 0 & \text{dans } \mathcal{B}_1, \\ R\partial_N V + \alpha V + \beta \partial_{\theta}^2 V = G & \text{sur } \partial \mathcal{B}_1. \end{array} \right.$

On cherche V sous la forme

$$V(r,\theta) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta) r^n$$

On obtient les relations

 $a_n(-\beta n^2 + n + \alpha) = a_n(G)$ et $b_n(-\beta n^2 + n + \alpha) = b_n(G)$,

où $a_n(G)$ et $b_n(G)$ sont les coefficients de Fourier de G.

Solution unique ssi $\alpha \neq \beta n^2 - n$ pour chaque $n \in \mathbb{N}$.

Un problème modèle de type Ventcel non coercif Cas general

 $\left\{ \begin{array}{c} -\Delta V = 0 & \text{dans } \Omega, \\ R\partial_N V + \alpha V + \beta R^2 \Delta_\tau V = G & \text{sur } \partial\Omega. \end{array} \right.$

Introduction de l'opérateur DtN :

 $\begin{array}{rcl} \Lambda: & \mathsf{H}^{1/2}(\partial\Omega) & \to & \mathsf{H}^{-1/2}(\partial\Omega) \\ & \psi & \mapsto & \partial_{\mathcal{N}}U, \end{array}$

où U résout

 $\begin{cases} -\Delta U = 0 & \text{dans } \Omega \\ U = \psi & \text{sur } \partial \Omega \end{cases}$

• On récrit comme une équation sur $\partial \Omega$:

 $\beta R^2 \Delta_\tau w + R\Lambda w + \alpha w = G$

(la donnée de Dirichlet w est alors relevée pour obtenir U).

Un problème modèle de type Ventcel non coercif Cas general

 $\beta R^2 \Delta_\tau w + R\Lambda w + \alpha w = G$

Résultat. Le problème admet une unique solution ssi $\alpha \neq \alpha_n$ ($\forall n \in \mathbb{N}$), où (α_n) est une suite croissant vers l'infini ($\beta > 0$ fixé).

IDÉE DE PREUVE.

- L'opérateur Δ_τ est pseudo. diff. elliptique semi-borné, autoadjoint d'ordre 2.
- L'opérateur A est pseudo. diff. elliptique semi-borné, autoadjoint d'ordre 1.
- ► L'opérateur $-\beta R^2 \Delta_{\tau} R\Lambda$ est pseudo. diff. elliptique semi-borné, autoadjoint d'ordre 2.
- Les (α_n) sont les valeurs propres de $-\beta R^2 \Delta_{\tau} R\Lambda$.

Un problème modèle de type Ventcel non coercif

Retour à la problématique « conditions artificielles »

$$\begin{cases} -\Delta V = 0 & \text{dans } \Omega \setminus \overline{\omega}, \\ R \partial_{\mathbb{N}} V + \alpha V + \beta R^2 \Delta_{\tau} V = 0 & \text{sur } \partial \Omega, \\ V = G & \text{sur } \partial \omega. \end{cases}$$

• Question : si $\Omega = B_R$ a-t-on existence pour *R* assez grand?

Un problème modèle de type Ventcel non coercif

Retour à la problématique « conditions artificielles »

$$\begin{cases} -\Delta V = 0 & \text{dans } \Omega \setminus \overline{\omega}, \\ R \partial_{\mathcal{N}} V + \alpha V + \beta R^2 \Delta_{\tau} V = 0 & \text{sur } \partial \Omega, \\ V = G & \text{sur } \partial \omega. \end{cases}$$

• Question : si $\Omega = \mathcal{B}_R$ a-t-on existence pour *R* assez grand?

• Cas particulier d'un anneau : $\omega = \mathcal{B}_1$.

Représentation en série de Laurent

$$V(r,\theta) = d + c \ln r + \sum_{n \in \mathbb{Z}^*} \left(a_n r^n \cos n\theta + b_n r^n \sin n\theta \right)$$

Condition d'unicité

$$R \notin \left\{ \gamma_n = \left(\frac{\beta n^2 + n - \alpha}{\beta n^2 - n - \alpha} \right)^{1/2n} \text{ pour } n \in \mathbb{N} \right\}$$

 \implies pour $R > R_c$, il y a unicité.

Un problème modèle de type Ventcel non coercif

Retour à la problématique « conditions artificielles »

$$\begin{cases} -\Delta V &= 0 \quad \text{dans } \Omega \setminus \overline{\omega}, \\ R \partial_{\mathcal{N}} V + \alpha V + \beta R^2 \Delta_{\tau} V &= 0 \quad \text{sur } \partial \Omega, \\ V &= G \quad \text{sur } \partial \omega. \end{cases}$$

• Question : si $\Omega = \mathcal{B}_R$ a-t-on existence pour *R* assez grand?

Cas général.

ÉCOLE

▶ Par homothétie $x \mapsto x/R$, on peut se ramener au cas

 $\omega = \varepsilon \widetilde{\omega} = D$ et $\Omega = \mathcal{B}_1$,

avec $\varepsilon = 1/R$.

L'opérateur à étudier est alors

 $L_D = \alpha \mathsf{Id} + \Lambda_D + \beta \Delta_\tau \quad \text{sur } \partial \mathcal{B}_1,$

avec $\Lambda_D(\psi) = U$ où U satisfait

 $L_D = \alpha \mathsf{Id} + \Lambda_D + \beta \Delta_\tau \quad \text{sur } \partial \mathcal{B}_1,$

avec $\Lambda_D(\psi) = U$ où U satisfait

$$\begin{array}{rcl} -\Delta U &=& 0 & \text{dans } \mathcal{B}_1 \setminus \overline{D} \\ U &=& \psi & \text{sur } \partial \mathcal{B}_1 \\ U &=& 0 & \text{sur } \partial D \end{array}$$

► $D = \emptyset$ est connu : L_{\emptyset} est inversible ssi $\alpha \notin \{\alpha_n\}$.

Résultat asymptotique :

$$\|\Lambda_{\varepsilon\widetilde{\omega}} - \Lambda_{\emptyset}\|_{\mathcal{L}(\mathsf{H}^{1/2}(\partial\Omega),\mathsf{H}^{-1/2}(\partial\Omega))} \leq \frac{C}{|\ln \varepsilon|}.$$

► **Conclusion** : si ε est assez petit, $L_{\varepsilon \widetilde{\omega}}$ est génériquement inversible.

 $L_D = \alpha \mathsf{Id} + \Lambda_D + \beta \Delta_\tau \quad \text{sur } \partial \mathcal{B}_1,$

avec $\Lambda_D(\psi) = U$ où U satisfait

$$\begin{array}{rcl} -\Delta U &=& 0 & \text{dans } \mathcal{B}_1 \setminus \overline{D} \\ U &=& \psi & \text{sur } \partial \mathcal{B}_1 \\ U &=& 0 & \text{sur } \partial D \end{array}$$

► $D = \emptyset$ est connu : L_{\emptyset} est inversible ssi $\alpha \notin \{\alpha_n\}$.

Résultat asymptotique :

$$\|\Lambda_{\varepsilon\widetilde{\omega}} - \Lambda_{\emptyset}\|_{\mathcal{L}(\mathsf{H}^{1/2}(\partial\Omega),\mathsf{H}^{-1/2}(\partial\Omega))} \leq \frac{C}{|\ln \varepsilon|}.$$

► Conclusion : si ε est assez petit, $L_{\varepsilon \widetilde{\omega}}$ est génériquement inversible. \implies Pour *R* assez grand, le problème initial a une unique solution.

$$\begin{array}{rcl} -\Delta u &=& 0 & \text{ dans } \mathcal{B}_R \setminus \overline{\omega}, \\ R \partial_{\mathcal{N}} u + \alpha u + \beta R^2 \Delta_{\tau} u &=& g & \text{ sur } \partial \mathcal{B}_R, \\ u &=& 0 & \text{ sur } \partial \omega, \end{array}$$

et l'opérateur L correspondant au problème sur le bord défini par

 $Lu = -\beta R^2 \Delta_{\tau} u - \alpha u - R\Lambda u \quad \text{sur} \quad \partial \mathcal{B}_R$

$$\begin{aligned} &-\Delta u &= 0 \quad \text{dans } \mathcal{B}_R \setminus \overline{\omega}, \\ &R\partial_{\mathcal{N}} u + \alpha u + \beta R^2 \Delta_{\tau} u &= g \quad \text{sur } \partial \mathcal{B}_R, \\ &u &= 0 \quad \text{sur } \partial \omega, \end{aligned}$$

et l'opérateur L correspondant au problème sur le bord défini par

 $Lu = -\beta R^2 \Delta_\tau u - \alpha u - R\Lambda u \quad \text{sur} \quad \partial \mathcal{B}_R$

$$\begin{aligned} &-\Delta u &= 0 \quad \text{dans } \mathcal{B}_R \setminus \overline{\omega}, \\ &R\partial_{\mathcal{N}} u + \alpha u + \beta R^2 \Delta_{\tau} u &= g \quad \text{sur } \partial \mathcal{B}_R, \\ &u &= 0 \quad \text{sur } \partial \omega, \end{aligned}$$

et l'opérateur L correspondant au problème sur le bord défini par

 $Lu = -\beta R^2 \Delta_\tau u - \alpha u - R\Lambda u \quad \text{sur} \quad \partial \mathcal{B}_R$

Cas d'une inclusion circulaire

Problème profil
$$\begin{cases} -\mu\Delta\mathbf{u} - (\lambda + \mu)\mathbf{grad} \operatorname{div} \mathbf{u} &= \mathbf{0} \quad \operatorname{dans} \mathcal{B}_R \setminus \omega \\ \sigma(\mathbf{u}) \cdot \mathcal{N} &= \mathbf{G} \quad \operatorname{sur} \partial \omega \\ \frac{R(1+\nu)}{E}\sigma(\mathbf{u}) \cdot \mathcal{N} + \frac{R^2}{2} \begin{bmatrix} \frac{-\nu}{2(1-\nu)} & \mathbf{0} \\ \mathbf{0} & \frac{1-\nu}{1-2\nu} \end{bmatrix} \Delta_{\tau}\mathbf{u} + \mathbf{u} &= \mathbf{0} \quad \operatorname{sur} \partial \mathcal{B}_R \end{cases}$$

Cas d'une inclusion circulaire

Problème profil

$$-\mu\Delta\mathbf{u} - (\lambda + \mu)\operatorname{grad}\operatorname{div}\mathbf{u} = \mathbf{0} \quad \operatorname{dans} \mathcal{B}_R \setminus \omega$$
$$\sigma(\mathbf{u}) \cdot \mathcal{N} = \mathbf{G} \quad \operatorname{sur} \partial \omega$$
$$\frac{R(1+\nu)}{E}\sigma(\mathbf{u}) \cdot \mathcal{N} + \frac{R^2}{2} \begin{bmatrix} \frac{-\nu}{2(1-\nu)} & \mathbf{0} \\ \mathbf{0} & \frac{1-\nu}{1-2\nu} \end{bmatrix} \Delta_{\tau}\mathbf{u} + \mathbf{u} = \mathbf{0} \quad \operatorname{sur} \partial \mathcal{B}_R$$

• Cas d'une boule :
$$\omega = \mathcal{B}_1$$

Théorème. Il existe un ensemble dénombrable 8 t.q.

 $\forall \nu \notin S$, $\exists \mathcal{R}_{\nu}$ dénombrable t.q. $\forall R \notin \mathcal{R}_{\nu}$,

 $\forall \mathbf{G} \in \mathsf{H}^{1/2}(\partial \omega), \quad \exists \mathbf{u} \in \mathsf{H}^{2}(\mathcal{B}_{R} \setminus \omega) \text{ solution}.$

Cas d'une inclusion circulaire

On se ramène à une équation sur $\partial \mathcal{B}_R$:

$$\frac{1}{2} \begin{bmatrix} \frac{-\nu}{2(1-\nu)} & 0\\ 0 & \frac{1-\nu}{1-2\nu} \end{bmatrix} \partial_{\theta}^{2} \varphi + \varphi + \Lambda_{R}(\varphi) = \frac{-R(1+\nu)}{E} \sigma(\mathbf{u}_{0}) \cdot \mathbb{N} \text{ sur } \partial \mathcal{B}_{R},$$

avec $\Lambda_{R}(\varphi) = \begin{bmatrix} \frac{R(1+\nu)}{E} \sigma(\mathbf{v}) \cdot \mathbb{N} \end{bmatrix} \Big|_{\partial \mathcal{B}_{R}}$, où

$$-\mu \Delta \mathbf{v} - (\lambda + \mu) \operatorname{grad} \operatorname{div} \mathbf{v} = 0 \quad \operatorname{sur} \mathcal{B}_R \setminus \omega,$$
$$\sigma(\mathbf{v}) \cdot \mathcal{N} = 0 \quad \operatorname{sur} \partial \omega,$$
$$\mathbf{v} = \varphi \quad \operatorname{sur} \partial \mathcal{B}_R.$$

et

$$-\mu \Delta \mathbf{u}_{0} - (\lambda + \mu) \mathbf{grad} \operatorname{div} \mathbf{u}_{0} = 0 \quad \operatorname{sur} \mathcal{B}_{R} \setminus \omega,$$
$$\boldsymbol{\sigma}(\mathbf{u}_{0}) \cdot \mathcal{N} = \mathbf{G} \quad \operatorname{sur} \partial \omega,$$
$$\mathbf{u}_{0} = 0 \quad \operatorname{sur} \partial \mathcal{B}_{0},$$

Cas d'une inclusion circulaire

On cherche une solution sous la forme

$$\varphi = \begin{bmatrix} \varphi_0' \\ \varphi_0^{\theta} \end{bmatrix} + \sum_{n \ge 1} \begin{bmatrix} \varphi_n' \\ \varphi_n^{\theta} \end{bmatrix} \cos n\theta + \sum_{n \ge 1} \begin{bmatrix} \psi_n' \\ \psi_n^{\theta} \end{bmatrix} \sin n\theta$$

Soit $\Phi_n = \left[\varphi_n^r, \psi_n^r, \varphi_n^{\theta}, \psi_n^{\theta}\right]^T$ et $f_{n,R}$ la décomposition du second membre

Le problème se récrit

 $P_n\Phi_n + \mathcal{R}_{n,R}\Phi_n = f_{n,R}$

 $\text{avec} \ \|\mathcal{R}_{n,R}\|_{\infty} \leq Cn^{2}R^{-2n+2}, \ \|\mathcal{R}_{1,R}\|_{\infty} \leq CR^{-4}, \ \|\mathcal{R}_{0,R}\|_{\infty} \leq CR^{-2}$

Cas d'une inclusion circulaire

On cherche une solution sous la forme

$$\varphi = \begin{bmatrix} \varphi_0' \\ \varphi_0^{\theta} \end{bmatrix} + \sum_{n \ge 1} \begin{bmatrix} \varphi_n' \\ \varphi_n^{\theta} \end{bmatrix} \cos n\theta + \sum_{n \ge 1} \begin{bmatrix} \psi_n' \\ \psi_n^{\theta} \end{bmatrix} \sin n\theta$$

Soit $\Phi_n = \left[\varphi_n^r, \psi_n^r, \varphi_n^{\theta}, \psi_n^{\theta}\right]^T$ et $f_{n,R}$ la décomposition du second membre

Le problème se récrit

 $P_n\Phi_n + \mathcal{R}_{n,R}\Phi_n = f_{n,R}$

 $\text{avec } \| \mathfrak{R}_{n, R} \|_{\infty} \leq C n^2 R^{-2n+2}, \| \mathfrak{R}_{1, R} \|_{\infty} \leq C R^{-4}, \| \mathfrak{R}_{0, R} \|_{\infty} \leq C R^{-2}$

Résultat. Soit $\gamma = \frac{1-2\nu}{2(1-\nu)}$

- 1. Il existe un ensemble dénombrable \$ tel que pour tout $\gamma \notin \$$, P_n est inversible d'inverse borné en n
- 2. Pour tout $\gamma \notin S$, il existe R_{γ} tel que le problème de Ventcel admet une unique solution pour $R \ge R_{\gamma}$

Simulations numériques

Géométries :

Normes de résolvantes en fonction de R

Simulations numériques

Géométries :

Rayons R singuliers en fonction de l'eccentricité :

Quelques problèmes non coercifs

de type Ventcel

En électromagnétisme [Thèse B. Delourme 2010]

- Structure 3D mince
- Répartition périodique
- Eq. de Maxwell harmoniques
- Développement en δ (homog. et dvpts raccordés)
- Conditions aux limites approchées sur Γ

En électromagnétisme [Thèse B. Delourme 2010]

Problème modèle 2D

- Géométrie simplifiée
- Eq. de Helmholtz : div(ε_δ⁻¹∇u) + ω²μ_δu = f. ∂Ω
 Condition de radiation sur ∂Ω ∂_tu + iωu = 0.

Modèle asymptotique d'ordre 1

TRALELYON

COLE

$$\begin{cases} \varepsilon_{\infty}^{-1} \Delta u + \omega \mu_{\infty} u = f & \text{dans } \Omega_{\pm} \\ \partial_{r} u + i \omega u = 0 & \text{sur } \partial \Omega, \\ [u]_{\Gamma} = \delta A_{0} \langle r \partial_{r} u \rangle_{\Gamma} & \text{sur } \Gamma, \\ [r \partial_{r} u]_{\Gamma} = \delta \left(-\omega^{2} B_{0} \langle u \rangle_{\Gamma} - B_{2} \partial_{\theta}^{2} \langle u \rangle_{\Gamma} \right) & \text{sur } \Gamma. \end{cases}$$

En électromagnétisme [Thèse B. Delourme 2010]

Problème modèle 2D

COLE

Géométrie simplifiée

TRALELYON

• Eq. de Helmholtz : $\operatorname{div}(\varepsilon_{\delta}^{-1}\nabla u) + \omega^{2}\mu_{\delta}u = f.$

• Condition de radiation sur $\partial \Omega$

 $\partial_r u + i\omega u = 0.$

Modèle asymptotique d'ordre 1 $\langle \phi \rangle_{\Gamma} = \frac{1}{2} (\phi(x+0) + \phi(x-0))$

$$\begin{cases} \varepsilon_{\infty}^{-1} \Delta u + \omega \mu_{\infty} u = f & \text{dans } \Omega_{\pm}, \\ \partial_{r} u + i \omega u = 0 & \text{sur } \partial \Omega, \\ [u]_{\Gamma} = \delta A_{0} \langle r \partial_{r} u \rangle_{\Gamma} & \text{sur } \Gamma, \\ [r \partial_{r} u]_{\Gamma} = \delta \left(-\omega^{2} B_{0} \langle u \rangle_{\Gamma} - B_{2} \partial_{\theta}^{2} \langle u \rangle_{\Gamma} \right) & \text{sur } \Gamma. \end{cases}$$

En électromagnétisme [Thèse B. Delourme 2010]

Problème modèle 2D

COLE

- Géométrie simplifiée
- Eq. de Helmholtz : $\operatorname{div}(\varepsilon_{\delta}^{-1}\nabla u) + \omega^{2}\mu_{\delta}u = f.$

• Condition de radiation sur $\partial \Omega$

 $\partial_r u + i\omega u = 0.$

Modèle asymptotique d'ordre 1 $\langle \phi \rangle_{\Gamma} = \frac{1}{2} (\phi(x+0) + \phi(x-0))$

$$\begin{cases} \varepsilon_{\infty}^{-1} \Delta u + \omega \mu_{\infty} u = f & \text{dans } \Omega_{\pm}, \\ \partial_{r} u + i\omega u = 0 & \text{sur } \partial \Omega, \\ [u]_{\Gamma} = \delta A_{0} \langle r \partial_{r} u \rangle_{\Gamma} & \text{sur } \Gamma, \\ [r\partial_{r} u]_{\Gamma} = \delta \left(-\omega^{2} B_{0} \langle u \rangle_{\Gamma} - B_{2} \partial_{\theta}^{2} \langle u \rangle_{\Gamma} \right) & \text{sur } \Gamma. \quad \text{Pb. } B_{2} < 0 \end{cases}$$
TRALELYON

En mécanique [Projet ANR Epsilon –2012]

 $\Omega:=\left(\text{-L,L}\right)^3$

Couches minces d'hétérogénéités dans un matériau

Condition de transmission approchée d'ordre 2

Ventcel avec mauvais signe.

Pour des écoulements [Bresch-Milisic 2008]

- Écoulement sur fond rugueux
- Géométrie périodique
- Construction de modèles approchés : lois de parois

Pour des écoulements [Bresch-Milisic 2008]

- Modèle 2D périodique
- Équation de Laplace Dirichlet/périodique

Loi de parois multi-échelles implicite d'ordre 2 :

 $\left\{ \begin{array}{l} -\Delta \mathcal{V}_{\varepsilon} = C \quad \text{dans } \Omega^{0}, \\ \mathcal{V}_{\varepsilon} - \varepsilon \partial_{n} \mathcal{V}_{\varepsilon} \beta(\frac{x_{1}}{\varepsilon}, 0) + \frac{\varepsilon^{2}}{2} \partial_{\tau}^{2} \mathcal{V}_{\varepsilon} \gamma(\frac{x_{1}}{\varepsilon}, 0) = 0 \quad \text{sur } \Gamma^{0}. \end{array} \right.$

(β , γ solutions de problèmes de cellule, de signes contraires). ÉCOLE CENTRALELYON

Conclusion - perspectives

Géométries plus générales.

Borne explicite pour les rayons singuliers ?

Analyse numérique de la méthode asymptotique complète.

