The Kolmogorov Law of turbulence

 What can rigorously be proved ?Roger LEWANDOWSKI

IRMAR, UMR CNRS 6625. Labex CHL. University of RENNES 1, FRANCE
henri lebesgue
IRMAR

HENRI LEBESGUE
-

Roger LEWANDOWSKI

Introduction

Aim: Mathematical framework for the Kolomogorov laws.

Table of contents

(1) Incompressible Navier-Stokes Equations (NSE), (2) Probabilistic framework

Introduction

Aim: Mathematical framework for the Kolomogorov laws.

Table of contents

(1) Incompressible Navier-Stokes Equations (NSE),
(2) Probabilistic framework,

Reynolds Stress, Correlations,

Introduction

Aim: Mathematical framework for the Kolomogorov laws.

Table of contents

(1) Incompressible Navier-Stokes Equations (NSE),
(2) Probabilistic framework, Reynolds Stress, Correlations, (3) Homogeneity,

Turbulent Kinetic Energy, Dissipation,

Introduction

Aim: Mathematical framework for the Kolomogorov laws.

Table of contents

(1) Incompressible Navier-Stokes Equations (NSE),
(2) Probabilistic framework, Reynolds Stress, Correlations,
(3) Homogeneity, Turbulent Kinetic Energy, Dissipation,

Introduction

Aim: Mathematical framework for the Kolomogorov laws.

Table of contents

(1) Incompressible Navier-Stokes Equations (NSE),
(2) Probabilistic framework, Reynolds Stress, Correlations,
(3) Homogeneity, Turbulent Kinetic Energy, Dissipation,
(4) Isotropy, Energy spectrum, Similarity and law of the $-5 / 3$.

Introduction

Authors in Maths publications are always by alphabetical order

The Foundations of Chaos Revisited: From Poincaré to Recent Advancements

Lewandowski, R and Pinier, B., The Kolmogorov-Taylor Law of turbulence : what can rigorously be proved ? Part II, In : The Foundations of Chaos Revisited: From Poincaré to Recent Advancements, 82-101, Springer, 2016.

Solutions to the NSE

1) Incompressible 3D Navier-Stokes Equations (NSE)

$$
Q=[0, T] \times \Omega \quad \text { or } \quad Q=\left[0, \infty\left[\times \Omega, \quad \Omega \subset \mathbb{R}^{3}, \quad \Gamma=\partial \Omega,\right.\right.
$$

with the no slip boundary condition and v_{0} as initial data:

Solutions to the NSE

1) Incompressible 3D Navier-Stokes Equations (NSE)

$$
Q=[0, T] \times \Omega \quad \text { or } \quad Q=\left[0, \infty\left[\times \Omega, \quad \Omega \subset \mathbb{R}^{3}, \quad \Gamma=\partial \Omega,\right.\right.
$$

with the no slip boundary condition and \mathbf{v}_{0} as initial data:
$\left\{\begin{aligned} \partial_{t} \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{v}-\nabla \cdot(2 \nu D \mathbf{v})+\nabla p & =\mathbf{f} & & \text { in } Q, \\ \nabla \cdot \mathbf{v} & =0 & & \text { in } Q, \\ \mathbf{v} & =0 & & \text { on } \Gamma, \\ \mathbf{v} & =\mathbf{v}_{0} & & \text { at } t=0,\end{aligned}\right.$
where $\nu>0$ is the kinematic viscosity, f is any external force,

Solutions to the NSE

1) Incompressible 3D Navier-Stokes Equations (NSE)

$$
Q=[0, T] \times \Omega \quad \text { or } \quad Q=\left[0, \infty\left[\times \Omega, \quad \Omega \subset \mathbb{R}^{3}, \quad \Gamma=\partial \Omega,\right.\right.
$$

with the no slip boundary condition and \mathbf{v}_{0} as initial data:

$$
\left\{\begin{aligned}
\partial_{t} \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{v}-\nabla \cdot(2 \nu D \mathbf{v})+\nabla p & =\mathbf{f} & & \text { in } Q, \\
\nabla \cdot \mathbf{v} & =0 & & \text { in } Q, \\
\mathbf{v} & =0 & & \text { on } \Gamma, \\
\mathbf{v} & =\mathbf{v}_{0} & & \text { at } t=0,
\end{aligned}\right.
$$

where $\nu>0$ is the kinematic viscosity, \mathbf{f} is any external force,

Solutions to the NSE

1) Incompressible 3D Navier-Stokes Equations (NSE)

$$
Q=[0, T] \times \Omega \quad \text { or } \quad Q=\left[0, \infty\left[\times \Omega, \quad \Omega \subset \mathbb{R}^{3}, \quad \Gamma=\partial \Omega,\right.\right.
$$

with the no slip boundary condition and \mathbf{v}_{0} as initial data:

$$
\left\{\begin{aligned}
\partial_{t} \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{v}-\nabla \cdot(2 \nu D \mathbf{v})+\nabla p & =\mathbf{f} & & \text { in } Q, \\
\nabla \cdot \mathbf{v} & =0 & & \text { in } Q, \\
\mathbf{v} & =0 & & \text { on } \Gamma, \\
\mathbf{v} & =\mathbf{v}_{0} & & \text { at } t=0,
\end{aligned}\right.
$$

where $\nu>0$ is the kinematic viscosity, \mathbf{f} is any external force,

$$
D \mathbf{v}=\frac{1}{2}\left(\nabla \mathbf{v}+\nabla \mathbf{v}^{t}\right), \quad((\mathbf{v} \cdot \nabla) \mathbf{v})_{i}=v_{j} \frac{\partial v_{i}}{\partial x_{j}}, \quad \nabla \cdot \mathbf{v}=\frac{\partial v_{i}}{\partial x_{i}} .
$$

Remark

Solutions to the NSE

1) Incompressible 3D Navier-Stokes Equations (NSE)

$$
Q=[0, T] \times \Omega \quad \text { or } \quad Q=\left[0, \infty\left[\times \Omega, \quad \Omega \subset \mathbb{R}^{3}, \quad \Gamma=\partial \Omega,\right.\right.
$$

with the no slip boundary condition and \mathbf{v}_{0} as initial data:

$$
\left\{\begin{aligned}
\partial_{t} \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{v}-\nabla \cdot(2 \nu D \mathbf{v})+\nabla p & =\mathbf{f} & & \text { in } Q, \\
\nabla \cdot \mathbf{v} & =0 & & \text { in } Q, \\
\mathbf{v} & =0 & & \text { on } \Gamma, \\
\mathbf{v} & =\mathbf{v}_{0} & & \text { at } t=0,
\end{aligned}\right.
$$

where $\nu>0$ is the kinematic viscosity, \mathbf{f} is any external force,

$$
D \mathbf{v}=\frac{1}{2}\left(\nabla \mathbf{v}+\nabla \mathbf{v}^{t}\right), \quad((\mathbf{v} \cdot \nabla) \mathbf{v})_{i}=v_{j} \frac{\partial v_{i}}{\partial x_{j}}, \quad \nabla \cdot \mathbf{v}=\frac{\partial v_{i}}{\partial x_{i}}
$$

Remark

$\nabla \cdot \mathbf{v}=0 \Rightarrow(\mathbf{v} \cdot \nabla) \mathbf{v}=\nabla \cdot(\mathbf{v} \otimes \mathbf{v}), \quad \mathbf{v} \otimes \mathbf{v}=\left(v_{i} v_{j}\right)_{1 \leq i, j \leq 3}$.

Solutions to the 3D NSE

2) Two types of solutions to the 3D NSE
(1) Strong solutions over a small time interval $\left[0, T_{\max }[\right.$ "à la" Fujita-Kato,
(2) Weak solutions (also turbulent), global in time, "à la" Leray-Hopf.

Solutions to the 3D NSE

2) Two types of solutions to the 3D NSE
(1) Strong solutions over a small time interval $\left[0, T_{\max }[\right.$ "à la" Fujita-Kato,
(2) Weak solutions (also turbulent), global in time, "à la" Leray-Hopf.

are $C^{1, \alpha}$ over $\left[0, T_{\max }[\times \Omega\right.$ for smooth data,

the corresponding solution is unique, yielding the writing

Solutions to the 3D NSE

2) Two types of solutions to the 3D NSE
(1) Strong solutions over a small time interval $\left[0, T_{\max }[\right.$ "à la" Fujita-Kato,
(2) Weak solutions (also turbulent), global in time, "à la" Leray-Hopf.
Strong solutions are $C^{1, \alpha}$ over $\left[0, T_{\max }[\times \Omega\right.$ for smooth data,

$$
T_{\max }=T_{\max }\left(\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|, \nu\right)
$$

the corresponding solution is unique, yielding the writing

$$
\mathbf{v}=\mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}\right), \quad p=p\left(t, \mathbf{x}, \mathbf{v}_{0}\right)
$$

Remark

Strong solutions are defined over $\left[0, \infty\left[\right.\right.$ when v_{0} and /or ||f|| are
"small enough", ν is "large enough", which means that the flow is rather laminar.

Solutions to the 3D NSE

2) Two types of solutions to the 3D NSE
(1) Strong solutions over a small time interval $\left[0, T_{\max }[\right.$ "à la" Fujita-Kato,
(2) Weak solutions (also turbulent), global in time, "à la" Leray-Hopf.
Strong solutions are $C^{1, \alpha}$ over $\left[0, T_{\max }[\times \Omega\right.$ for smooth data,

$$
T_{\max }=T_{\max }\left(\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|, \nu\right)
$$

the corresponding solution is unique, yielding the writing

$$
\mathbf{v}=\mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}\right), \quad p=p\left(t, \mathbf{x}, \mathbf{v}_{0}\right)
$$

Remark

Strong solutions are defined over $\left[0, \infty\left[\right.\right.$ when \mathbf{v}_{0} and/or ||f|| are "small enough", ν is "large enough", which means that the flow is rather laminar.

Solutions to the 3D NSE

Weak solutions are defined through an appropriate variational formulation set in the sequence of function spaces
$\left\{\mathbf{v} \in H_{0}^{1}(\Omega)^{3}, \nabla \cdot \mathbf{v}=0\right\} \hookrightarrow \mathbf{V}=\left\{\mathbf{v} \in L^{2}(\Omega)^{3},\left.\mathbf{v} \cdot \mathbf{n}\right|_{\Gamma}=0, \nabla \cdot \mathbf{v}=0\right\}$
such that the trajectory
is weakly continuous from $[0, T] \rightarrow \mathbf{V}, T \in] 0, \infty](\forall \boldsymbol{\eta} \in \mathbf{V}$, $t \rightarrow\langle\mathbf{v}(t), \boldsymbol{\eta}\rangle$ is a continuous function of t, where $\langle\cdot, \cdot\rangle$ denotes the scalar product in V).

Solutions to the 3D NSE

Weak solutions are defined through an appropriate variational formulation set in the sequence of function spaces
$\left\{\mathbf{v} \in H_{0}^{1}(\Omega)^{3}, \nabla \cdot \mathbf{v}=0\right\} \hookrightarrow \mathbf{V}=\left\{\mathbf{v} \in L^{2}(\Omega)^{3},\left.\mathbf{v} \cdot \mathbf{n}\right|_{\Gamma}=0, \nabla \cdot \mathbf{v}=0\right\}$
such that the trajectory

$$
\mathbf{v}=\mathbf{v}(t) \in \mathbf{V}
$$

is weakly continuous from $[0, T] \rightarrow \mathbf{V}, T \in] 0, \infty](\forall \boldsymbol{\eta} \in \mathbf{V}$, $t \rightarrow\langle\mathbf{v}(t), \boldsymbol{\eta}\rangle$ is a continuous function of t, where $\langle\cdot, \cdot\rangle$ denotes the scalar product in \mathbf{V}).

Remark

Because of lack of uniqueness result, we can't
write

Solutions to the 3D NSE

Weak solutions are defined through an appropriate variational formulation set in the sequence of function spaces
$\left\{\mathbf{v} \in H_{0}^{1}(\Omega)^{3}, \nabla \cdot \mathbf{v}=0\right\} \hookrightarrow \mathbf{V}=\left\{\mathbf{v} \in L^{2}(\Omega)^{3},\left.\mathbf{v} \cdot \mathbf{n}\right|_{\Gamma}=0, \nabla \cdot \mathbf{v}=0\right\}$
such that the trajectory

$$
\mathbf{v}=\mathbf{v}(t) \in \mathbf{V}
$$

is weakly continuous from $[0, T] \rightarrow \mathbf{V}, T \in] 0, \infty](\forall \boldsymbol{\eta} \in \mathbf{V}$, $t \rightarrow\langle\mathbf{v}(t), \boldsymbol{\eta}\rangle$ is a continuous function of t, where $\langle\cdot, \cdot\rangle$ denotes the scalar product in \mathbf{V}).

Remark

For $\mathbf{v}_{0} \in \mathbf{V}$ and $\mathbf{f} \in L^{2}(\Omega)^{3}$, there exists a global weak solution $\mathbf{v}=\mathbf{v}(t), t \in \mathbb{R}^{+}$. Because of lack of uniqueness result, we can't write

$$
\mathbf{v}=\mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}\right)
$$

Probabilistic framework

1) Long Time Average

Let $\mathcal{B}\left(\mathbb{R}_{+}\right)$denotes the Borel σ-algebra on \mathbb{R}_{+}, λ the Lebesgue measure, and let μ denotes the "probability half-measure"

$$
\forall A \in \mathcal{B}\left(\mathbb{R}_{+}\right), \quad \mu(A)=\lim _{t \rightarrow \infty} \frac{1}{t} \lambda(A \cap[0, t]),
$$

Probabilistic framework

1) Long Time Average

Let $\mathcal{B}\left(\mathbb{R}_{+}\right)$denotes the Borel σ-algebra on \mathbb{R}_{+}, λ the Lebesgue measure, and let μ denotes the "probability half-measure"

$$
\forall A \in \mathcal{B}\left(\mathbb{R}_{+}\right), \quad \mu(A)=\lim _{t \rightarrow \infty} \frac{1}{t} \lambda(A \cap[0, t])
$$

$$
\text { Let } \mathbf{v} \in L^{1}\left(\mathbb{R}^{+} \rightarrow \mathbf{V} ; \mu\right)
$$

$$
E(\mathbf{v})=\overline{\mathbf{v}}=\int_{\mathbf{R}^{+}} \mathbf{v}(t) d \mu(t)=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \mathbf{v}(t) d t
$$

Let v be a Leray-Hopf solution to the NSE. It is not known wether for a given x
proved that in some sense when f is steady ${ }^{1}$

Probabilistic framework

1) Long Time Average

Let $\mathcal{B}\left(\mathbb{R}_{+}\right)$denotes the Borel σ-algebra on \mathbb{R}_{+}, λ the Lebesgue measure, and let μ denotes the "probability half-measure"

$$
\forall A \in \mathcal{B}\left(\mathbb{R}_{+}\right), \quad \mu(A)=\lim _{t \rightarrow \infty} \frac{1}{t} \lambda(A \cap[0, t])
$$

$$
\text { Let } \mathbf{v} \in L^{1}\left(\mathbb{R}^{+} \rightarrow \mathbf{V} ; \mu\right)
$$

$$
E(\mathbf{v})=\overline{\mathbf{v}}=\int_{\mathbf{R}^{+}} \mathbf{v}(t) d \mu(t)=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \mathbf{v}(t) d t
$$

Let \mathbf{v} be a Leray-Hopf solution to the NSE. It is not known wether for a given $\mathbf{x} \in \Omega, \mathbf{v}(t, \mathbf{x}) \in L^{1}\left(\mathbb{R}^{+} \rightarrow \mathbf{V} ; \mu\right)$. However, it can be proved that in some sense when \mathbf{f} is steady ${ }^{1}$,

$$
E(\mathbf{v})=\overline{\mathbf{v}}=\overline{\mathbf{v}}(\mathbf{x}) \in W^{2,5 / 4}(\Omega)^{3}
$$

[^0]
Probabilistic framework

2) Ensemble Average

The source term \mathbf{f} and the viscosity ν are fixed. Let $\mathbb{K} \subset \mathbf{V}$ be a compact,

$$
T_{\mathbb{K}}=\inf _{\mathbf{v}_{0} \in \mathbb{K}} T_{\max }\left(\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|, \nu\right)>0, \quad Q=\left[0, T_{\mathbb{K}}\right] \times \Omega
$$

where μ_{n} is the probability measure over \mathbb{K} :

Probabilistic framework

2) Ensemble Average

The source term \mathbf{f} and the viscosity ν are fixed. Let $\mathbb{K} \subset \mathbf{V}$ be a compact,

$$
T_{\mathbb{K}}=\inf _{\mathbf{v}_{0} \in \mathbb{K}} T_{\max }\left(\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|, \nu\right)>0, \quad Q=\left[0, T_{\mathbb{K}}\right] \times \Omega
$$

Let $\left\{\mathbf{v}_{0}^{(1)}, \cdots, \mathbf{v}_{0}^{(n)}, \cdots\right\}$ be a countable dense subset of \mathbb{K},

$$
\overline{\mathbf{v}}_{n}=\overline{\mathbf{v}}_{n}(t, \mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}^{(i)}\right)=E_{\mu_{n}}(\mathbf{v}(t, \mathbf{x}, \cdot))
$$

where μ_{n} is the probability measure over \mathbb{K} :

$$
\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{v_{0}^{(i)}}
$$

Probabilistic framework

Up to a subsequence
$\mu_{n} \rightarrow \mu \quad$ weakly in the sense of the measures, $\quad\|\mu\|=1$.

Probabilistic framework

Up to a subsequence

$$
\mu_{n} \rightarrow \mu \quad \text { weakly in the sense of the measures, } \quad\|\mu\|=1
$$

so that, $\forall(t, \mathbf{x}) \in Q$,

$$
\overline{\mathbf{v}}(t, \mathbf{x})=E_{\mu}(\mathbf{v}(t, \mathbf{x}, \cdot))=\int_{\mathbb{K}} \mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}\right) d \mu\left(\mathbf{v}_{0}\right)=\lim _{n \rightarrow \infty} \overline{\mathbf{v}}_{n}(t, \mathbf{x})
$$

Probabilistic framework

Up to a subsequence

$$
\mu_{n} \rightarrow \mu \quad \text { weakly in the sense of the measures, } \quad\|\mu\|=1 .
$$

so that, $\forall(t, \mathbf{x}) \in Q$,

$$
\begin{gathered}
\overline{\mathbf{v}}(t, \mathbf{x})=E_{\mu}(\mathbf{v}(t, \mathbf{x}, \cdot))=\int_{\mathbb{K}} \mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}\right) d \mu\left(\mathbf{v}_{0}\right)=\lim _{n \rightarrow \infty} \overline{\mathbf{v}}_{n}(t, \mathbf{x}) . \\
\bar{p}(t, \mathbf{x})=E_{\mu}(p(t, \mathbf{x}, \cdot))=\int_{\mathbb{K}} p\left(t, \mathbf{x}, \mathbf{v}_{0}\right) d \mu\left(\mathbf{v}_{0}\right)
\end{gathered}
$$

Probabilistic framework

Up to a subsequence

$$
\mu_{n} \rightarrow \mu \quad \text { weakly in the sense of the measures, } \quad\|\mu\|=1
$$

so that, $\forall(t, \mathbf{x}) \in Q$,

$$
\begin{gathered}
\overline{\mathbf{v}}(t, \mathbf{x})=E_{\mu}(\mathbf{v}(t, \mathbf{x}, \cdot))=\int_{\mathbb{K}} \mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}\right) d \mu\left(\mathbf{v}_{0}\right)=\lim _{n \rightarrow \infty} \overline{\mathbf{v}}_{n}(t, \mathbf{x}) \\
\bar{p}(t, \mathbf{x})=E_{\mu}(p(t, \mathbf{x}, \cdot))=\int_{\mathbb{K}} p\left(t, \mathbf{x}, \mathbf{v}_{0}\right) d \mu\left(\mathbf{v}_{0}\right) \\
\overline{\mathbf{v}}(0, \mathbf{x})=\overline{\mathbf{v}}_{0}(\mathbf{x})=\int_{\mathbb{K}} \mathbf{v}_{0}(\mathbf{x}) d \mu\left(\mathbf{v}_{0}\right)
\end{gathered}
$$

Remark

It is not known if the probability measure μ is unique or not

Probabilistic framework

Up to a subsequence

$$
\mu_{n} \rightarrow \mu \quad \text { weakly in the sense of the measures, } \quad\|\mu\|=1
$$

so that, $\forall(t, \mathbf{x}) \in Q$,

$$
\begin{gathered}
\overline{\mathbf{v}}(t, \mathbf{x})=E_{\mu}(\mathbf{v}(t, \mathbf{x}, \cdot))=\int_{\mathbb{K}} \mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}\right) d \mu\left(\mathbf{v}_{0}\right)=\lim _{n \rightarrow \infty} \overline{\mathbf{v}}_{n}(t, \mathbf{x}) . \\
\bar{p}(t, \mathbf{x})=E_{\mu}(p(t, \mathbf{x}, \cdot))=\int_{\mathbb{K}} p\left(t, \mathbf{x}, \mathbf{v}_{0}\right) d \mu\left(\mathbf{v}_{0}\right) \\
\overline{\mathbf{v}}(0, \mathbf{x})=\overline{\mathbf{v}}_{0}(\mathbf{x})=\int_{\mathbb{K}} \mathbf{v}_{0}(\mathbf{x}) d \mu\left(\mathbf{v}_{0}\right)
\end{gathered}
$$

Remark

It is not known if the probability measure μ is unique or not

Reynolds Stress

1) Reynolds decomposition We can decompose (\mathbf{v}, p) as follows:

$$
\mathbf{v}=\overline{\mathbf{v}}+\mathbf{v}^{\prime}, \quad p=\bar{p}+p^{\prime}
$$

which is the Reynolds decomposition, \mathbf{v}^{\prime} and p^{\prime} are the fluctuations.

Either for long time or ensemble averages:

called the Reynods rules. From $\overline{\overline{\mathbf{v}}}=\overline{\mathrm{v}}$ and $\overline{\bar{p}}=\bar{p}$, one gets

Reynolds Stress

1) Reynolds decomposition We can decompose (\mathbf{v}, p) as follows:

$$
\mathbf{v}=\overline{\mathbf{v}}+\mathbf{v}^{\prime}, \quad p=\bar{p}+p^{\prime}
$$

which is the Reynolds decomposition, \mathbf{v}^{\prime} and p^{\prime} are the fluctuations. Either for long time or ensemble averages:

$$
\begin{align*}
\overline{\partial_{t} \mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}\right)} & =\partial_{t} \overline{\mathbf{v}}(t, \mathbf{x}), \tag{1}\\
\overline{\nabla \mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}\right)} & =\nabla \overline{\mathbf{v}}(t, \mathbf{x}), \tag{2}\\
\overline{\nabla p\left(t, \mathbf{x}, \mathbf{v}_{0}\right)} & =\nabla \bar{p}(t, \mathbf{x}), \tag{3}
\end{align*}
$$

called the Reynods rules. From $\overline{\mathrm{v}}=\overline{\mathrm{v}}$ and $\bar{p}=\bar{p}$, one gets:

Lemma

Reynolds Stress

1) Reynolds decomposition We can decompose (\mathbf{v}, p) as follows:

$$
\mathbf{v}=\overline{\mathbf{v}}+\mathbf{v}^{\prime}, \quad p=\bar{p}+p^{\prime}
$$

which is the Reynolds decomposition, \mathbf{v}^{\prime} and p^{\prime} are the fluctuations. Either for long time or ensemble averages:

$$
\begin{align*}
\overline{\partial_{t} \mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}\right)} & =\partial_{t} \overline{\mathbf{v}}(t, \mathbf{x}), \tag{1}\\
\overline{\nabla \mathbf{v}\left(t, \mathbf{x}, \mathbf{v}_{0}\right)} & =\nabla \overline{\mathbf{v}}(t, \mathbf{x}), \tag{2}\\
\overline{\nabla p\left(t, \mathbf{x}, \mathbf{v}_{0}\right)} & =\nabla \bar{p}(t, \mathbf{x}), \tag{3}
\end{align*}
$$

called the Reynods rules. From $\overline{\overline{\mathbf{v}}}=\overline{\mathbf{v}}$ and $\overline{\bar{p}}=\bar{p}$, one gets:
Lemma

$$
\forall(t, \mathbf{x}) \in Q, \quad \overline{\mathbf{v}^{\prime}\left(t, \mathbf{x}, \mathbf{v}_{0}\right)}=0, \quad \overline{p^{\prime}\left(t, \mathbf{x}, \mathbf{v}_{0}\right)}=0
$$

Reynolds Stress

2) Averaged NSE

Note that $E_{\mu}(\mathbf{f})=\mathbf{f} E_{\mu}(1)=\mathbf{f}$. By the Reynolds rules and the previous lemma:

$$
\left\{\begin{aligned}
\partial_{t} \overline{\mathbf{v}}+(\overline{\mathbf{v}} \cdot \nabla) \overline{\mathbf{v}}-\nu \Delta \overline{\mathbf{v}}+\nabla \bar{p} & =-\nabla \cdot \boldsymbol{\sigma}^{(\mathrm{R})}+\mathbf{f} & & \text { in } Q \\
\nabla \cdot \overline{\mathbf{v}} & =0 & & \text { in } Q \\
\overline{\mathbf{v}} & =0 & & \text { on } \Gamma \\
\overline{\mathbf{v}} & =\overline{\mathbf{v}_{0}} & & \text { at } t=0,
\end{aligned}\right.
$$

[^1]
Reynolds Stress

2) Averaged NSE

Note that $E_{\mu}(\mathbf{f})=\mathbf{f} E_{\mu}(1)=\mathbf{f}$. By the Reynolds rules and the previous lemma:

$$
\left\{\begin{aligned}
\partial_{t} \overline{\mathbf{v}}+(\overline{\mathbf{v}} \cdot \nabla) \overline{\mathbf{v}}-\nu \Delta \overline{\mathbf{v}}+\nabla \bar{p} & =-\nabla \cdot \boldsymbol{\sigma}^{(\mathrm{R})}+\mathbf{f} & & \text { in } Q \\
\nabla \cdot \overline{\mathbf{v}} & =0 & & \text { in } Q \\
\overline{\mathbf{v}} & =0 & & \text { on } \Gamma \\
\overline{\mathbf{v}} & =\overline{\mathbf{v}_{0}} & & \text { at } t=0,
\end{aligned}\right.
$$

where

$$
\boldsymbol{\sigma}^{(\mathrm{R})}=\overline{\mathbf{v}^{\prime} \otimes \mathbf{v}^{\prime}}
$$

is the Reynolds stress.

Standard correlation tensors

Standard correlation tensor Let $M_{1}, \ldots, M_{n} \in Q, M_{k}=\left(t_{k}, \mathbf{x}_{k}\right)$,

$$
\mathbb{B}_{n}=\mathbb{B}_{n}\left(M_{1}, \ldots, M_{n}\right)=\left(B_{i_{1} \ldots i_{n}}\left(M_{1}, \ldots, M_{n}\right)\right)_{1 \leq i_{1} \ldots i_{n} \leq 3}
$$

at these points is defined by

$$
\begin{aligned}
& B_{i_{1} \ldots i_{n}}\left(M_{1}, \ldots, M_{n}\right)=\prod_{k=1}^{n} v_{i_{k}}\left(t_{k}, \mathbf{x}_{k}, \mathbf{v}_{0}\right)
\end{aligned}=\begin{aligned}
& \int_{\mathbb{K}}\left(\prod_{k=1}^{n} v_{i_{k}}\left(t_{k}, \mathbf{x}_{k}, \mathbf{v}_{0}\right)\right) d \mu\left(\mathbf{v}_{0}\right)=E_{\mu}\left(\prod_{k=1}^{n} v_{i_{k}}\left(t_{k}, \mathbf{x}_{k}, \mathbf{v}_{0}\right)\right)
\end{aligned}
$$

where $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$.

Discussion about Homogeneity

Extension of the test family

(1) field family:

$$
\mathcal{G}=\left\{\begin{array}{c}
\left.v_{1}, v_{2}, v_{3}, p, \partial_{j} v_{i}(1 \leq i, j \leq 3)\right\}, \partial_{t} v_{i}(1 \leq i \leq 3) \\
\partial_{i} p(1 \leq i \leq 3), \partial_{i j}^{2} v_{k}(1 \leq i, j, k \leq 3)
\end{array}\right\}
$$

(2) fluctuations field family:

Discussion about Homogeneity

Extension of the test family

(1) field family:

$$
\mathcal{G}=\left\{\begin{array}{c}
\left.v_{1}, v_{2}, v_{3}, p, \partial_{j} v_{i}(1 \leq i, j \leq 3)\right\}, \partial_{t} v_{i}(1 \leq i \leq 3) \\
\partial_{i} p(1 \leq i \leq 3), \partial_{i j}^{2} v_{k}(1 \leq i, j, k \leq 3)
\end{array}\right\}
$$

(2) fluctuations field family:

$$
\mathcal{H}=\left\{\begin{array}{c}
\left.v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, p^{\prime}, \partial_{j} v_{i}^{\prime}(1 \leq i, j \leq 3)\right\}, \partial_{t} v_{i}^{\prime}(1 \leq i \leq 3) \\
\partial_{i} p^{\prime}(1 \leq i \leq 3), \partial_{i j}^{2} v_{k}^{\prime}(1 \leq i, j, k \leq 3)
\end{array}\right\}
$$

each element of
is Hölder continuous with respect to $(t, x) \in Q$, and continuous

Discussion about Homogeneity

Extension of the test family

(1) field family:

$$
\mathcal{G}=\left\{\begin{array}{c}
\left.v_{1}, v_{2}, v_{3}, p, \partial_{j} v_{i}(1 \leq i, j \leq 3)\right\}, \partial_{t} v_{i}(1 \leq i \leq 3) \\
\partial_{i} p(1 \leq i \leq 3), \partial_{i j}^{2} v_{k}(1 \leq i, j, k \leq 3)
\end{array}\right\}
$$

(2) fluctuations field family:

$$
\mathcal{H}=\left\{\begin{array}{c}
\left.v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, p^{\prime}, \partial_{j} v_{i}^{\prime}(1 \leq i, j \leq 3)\right\}, \partial_{t} v_{i}^{\prime}(1 \leq i \leq 3) \\
\partial_{i} p^{\prime}(1 \leq i \leq 3), \partial_{i j}^{2} v_{k}^{\prime}(1 \leq i, j, k \leq 3)
\end{array}\right\}
$$

each element of

$$
\mathcal{F}=\mathcal{G} \cup \mathcal{H}
$$

is Hölder continuous with respect to $(t, \mathbf{x}) \in Q$, and continuous with respect to $\mathbf{v}_{0} \in \mathbb{K}$.

Discussion about Homogeneity

Let $D=I \times \omega \subset Q$ open and connected subset, such that $l \subset] 0, T_{\mathbb{K}}[$ and $\bar{\omega} \subset \Omega$.

Aim To introduce different concepts of homogeneity in D, reflected in the local invariance under spatial translations of the correlation tensors based on the families \mathcal{G} and/or $\mathcal{F}=\mathcal{G} \cup \mathcal{H}$, which is essential in the derivation of models such as $k-\mathscr{E}$.

Let $M=(t, x) \in D$, and denote

For simplicity, we also denote

Discussion about Homogeneity

Let $D=I \times \omega \subset Q$ open and connected subset, such that $I \subset] 0, T_{\mathbb{K}}[$ and $\bar{\omega} \subset \Omega$.

Aim To introduce different concepts of homogeneity in D, reflected in the local invariance under spatial translations of the correlation tensors based on the families \mathcal{G} and/or $\mathcal{F}=\mathcal{G} \cup \mathcal{H}$, which is essential in the derivation of models such as $k-\mathscr{E}$.

Let $M=(t, \mathbf{x}) \in D$, and denote

$$
\left(\tau_{t}, r_{\mathbf{x}}\right)=\sup \{(t, r) /] t-\tau, t+\tau[\times B(\mathbf{x}, r) \subset D\}
$$

For simplicity, we also denote

$$
(t+\tau, \mathbf{x}+\mathbf{r})=M+(\tau, \mathbf{r}), \quad(t, \mathbf{x}+\mathbf{r})=M+\mathbf{r} .
$$

Discussion about Homogeneity

Definition

We say that the flow is 1) homogeneous (standard definition), 2) strongly homogeneous (extended definition, suitable for $k-\mathscr{E}$) in D, if $\forall n \in \mathbb{N}$,

$$
\text { 1) } \forall M_{1}, \ldots, M_{n} \in D, \quad \forall \psi_{1}, \ldots, \psi_{n} \in \mathcal{G}, \quad \forall \mathbf{r} \in \mathbb{R}^{3}
$$

$$
\text { 2) } \forall M_{1}, \ldots, M_{n} \in D, \quad \forall \psi_{1}, \ldots, \psi_{n} \in \mathcal{F}, \quad \forall \mathbf{r} \in \mathbb{R}^{3}
$$

such that $|\mathbf{r}| \leq \inf _{1 \leq i \leq n} r_{\mathrm{x}_{\mathrm{i}}}$, we have
$B\left(\psi_{1}, \ldots, \psi_{n}\right)\left(M_{1}+\mathbf{r}, \ldots, M_{n}+\mathbf{r}\right)=B\left(\psi_{1}, \ldots, \psi_{n}\right)\left(M_{1}, \ldots, M_{n}\right)$,
where

$$
B\left(\psi_{1}, \ldots, \psi_{n}\right)\left(M_{1}, \ldots, M_{n}\right)=\overline{\psi_{1}\left(M_{1}\right) \cdots \psi_{n}\left(M_{n}\right)},
$$

Discussion about Homogeneity

Lemma

Assume that the flow is homogeneous (resp. strongly hom.). Let

$$
\psi_{1}, \ldots, \psi_{n} \in \mathcal{G}(r e s p \in \mathcal{F}), \quad M_{1}, \ldots, M_{n} \in D, \quad M_{i}=\left(t_{i}, \mathbf{r}_{i}\right),
$$

such that

$$
\forall i=1, \cdots, n, \quad t_{i}=t
$$

Let \mathbf{r}_{i} denotes the vector such that $M_{i}=M_{1}+\mathbf{r}_{i-1}(i \geq 2)$. Then, $B\left(\psi_{1}, \ldots, \psi_{n}\right)\left(M_{1}, \ldots, M_{n}\right)$ only depends on t and $\mathbf{r}_{1}, \cdots, \mathbf{r}_{n-1}$.

Discussion about Homogeneity

Theorem

Assume that \mathbf{f} satisfies the compatibility condition $\nabla \mathbf{f}=0$ in D, and the flow is strongly homogeneous in D. Then
(1) $\forall \psi \in \mathcal{F}, \nabla \bar{\psi}=0$ in D,
(2) $\nabla \sigma^{(\mathrm{R})}=0$ in D,
(3) and we have $\forall t \in I$,

$$
\overline{\mathbf{v}}=\overline{\mathbf{v}}(t)=\overline{\mathbf{v}}\left(t_{0}\right)+\int_{t_{0}}^{t} \mathbf{f}(s) d s \text { in } D
$$

by noting $t_{0}=\inf I$.

Discussion about Homogeneity

Definition

We say that a flow is mildly homogneous in $D=I \times \omega$, if $\forall \psi, \varphi \in \mathcal{H}$ (fluctuations family), we have

$$
\forall M=(t, \mathbf{x}) \in D, \quad \overline{\psi(t, \mathbf{x}) \partial_{i} \varphi(t, \mathbf{x})}=-\overline{\partial_{i} \psi(t, \mathbf{x}) \varphi(t, \mathbf{x})} .
$$

This definition is motivated by:

Lemma

Any strongly homogeneous flow is mildly homogeneous.

Equations for the TKE and the turbulent dissipation

The turbulent kinetic energy k (TKE) and the turbulent dissipation \mathscr{E} are defined by:

$$
k=\frac{1}{2} \operatorname{tr} \sigma^{(\mathrm{R})}=\frac{1}{2} \overline{\left|\mathbf{v}^{\prime}\right|^{2}}, \quad \mathscr{E}=2 \nu \overline{\mid \overline{\left.\mathbf{v}^{\prime}\right|^{2}}} .
$$

Equations for the TKE and the turbulent dissipation

The turbulent kinetic energy k (TKE) and the turbulent dissipation \mathscr{E} are defined by:

$$
k=\frac{1}{2} \operatorname{tr} \sigma^{(\mathrm{R})}=\frac{1}{2} \overline{\left|\mathbf{v}^{\prime}\right|^{2}}, \quad \mathscr{E}=2 \nu \overline{\left|D \mathbf{v}^{\prime}\right|^{2}} .
$$

Question: What equation can we find out for k and \mathscr{E} ?

Equations for the TKE and the turbulent dissipation

Theorem

Assume that the flow is mildly homogeneous in D
(1) The TKE k satisfies in D:

$$
\partial_{t} k+\overline{\mathbf{v}} \cdot \nabla k+\nabla \cdot \overline{e^{\prime} \mathbf{v}^{\prime}}=-\boldsymbol{\sigma}^{(\mathrm{R})}: \nabla \overline{\mathbf{v}}-\mathscr{E}
$$

(2) The turbulent dissipation \mathscr{E} satisfies in D
where

Equations for the TKE and the turbulent dissipation

Theorem

Assume that the flow is mildly homogeneous in D
(1) The TKE k satisfies in D:

$$
\partial_{t} k+\overline{\mathbf{v}} \cdot \nabla k+\nabla \cdot \overline{e^{\prime} \mathbf{v}^{\prime}}=-\boldsymbol{\sigma}^{(\mathrm{R})}: \nabla \overline{\mathbf{v}}-\mathscr{E}
$$

(2) The turbulent dissipation \mathscr{E} satisfies in D :

$$
\begin{aligned}
\partial_{t} \mathscr{E}+\overline{\mathbf{v}} \cdot \nabla \mathscr{E}+\nabla \cdot \overline{\nu h^{\prime} \mathbf{v}^{\prime}}= & 2 \nu\left(\overline{\boldsymbol{\omega}^{\prime} \otimes \boldsymbol{\omega}^{\prime}}: \nabla \overline{\mathbf{v}}+\overline{\left(\boldsymbol{\omega}^{\prime} \otimes \boldsymbol{\omega}^{\prime}\right)^{\prime}: \nabla \mathbf{v}^{\prime}}\right) \\
& -2 \nu^{2}\left|\nabla \boldsymbol{\omega}^{\prime}\right|^{2},
\end{aligned}
$$

where

$$
\begin{array}{lll}
e=\frac{1}{2}\left|\mathbf{v}^{\prime}\right|^{2}, & \text { decomposed as } & e=\bar{e}+e^{\prime}=k+e^{\prime} \\
\boldsymbol{\omega}=\nabla \times \mathbf{v}, & \text { decomposed as } & \boldsymbol{\omega}=\overline{\boldsymbol{\omega}}+\omega^{\prime} \\
h=\left|\boldsymbol{\omega}^{\prime}\right|^{2}, & \text { decomposed as } & h=\bar{h}+h^{\prime}
\end{array}
$$

Discussion about isotropy

1) Basics

Throughout what follows, we assume that the flow is homogeneous (standard definition), and for simplicity stationnary ("homogeneity in time"). Let \mathcal{B}_{n} denotes all correlation tensors of the form:

$$
\begin{aligned}
& \mathbb{B}_{n}=\mathbb{B}_{n}\left(M_{1}, \ldots, M_{n}\right)=\left(B_{i_{1} \ldots i_{n}}\left(M_{1}, \ldots, M_{n}\right)\right)_{1 \leq i_{1} \ldots i_{n} \leq 3} \\
& \psi_{i_{1}}, \ldots, \psi_{i_{n}} \in \mathcal{G} \\
& B_{i_{1} \cdots i_{n}}\left(\psi_{1}, \ldots, \psi_{n}\right)\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n-1}\right)=\overline{\psi_{i_{1}}(\mathbf{x}) \psi_{i_{2}}\left(\mathbf{x}+\mathbf{r}_{1}\right) \cdots \psi_{i_{n}}\left(\mathbf{x}+\mathbf{r}_{n-1}\right)}
\end{aligned}
$$

using the Einstein summation convention.

Discussion about isotropy

1) Basics

Throughout what follows, we assume that the flow is homogeneous (standard definition), and for simplicity stationnary ("homogeneity in time"). Let \mathcal{B}_{n} denotes all correlation tensors of the form:

$$
\begin{aligned}
& \mathbb{B}_{n}=\mathbb{B}_{n}\left(M_{1}, \ldots, M_{n}\right)=\left(B_{i_{1} \ldots i_{n}}\left(M_{1}, \ldots, M_{n}\right)\right)_{1 \leq i_{1} \ldots i_{n} \leq 3} \\
& \psi_{i_{1}}, \ldots, \psi_{i_{n}} \in \mathcal{G} \\
& B_{i_{1} \ldots i_{n}}\left(\psi_{1}, \ldots, \psi_{n}\right)\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n-1}\right)=\overline{\psi_{i_{1}}(\mathbf{x}) \psi_{i_{2}}\left(\mathbf{x}+\mathbf{r}_{1}\right) \cdots \psi_{i_{n}}\left(\mathbf{x}+\mathbf{r}_{n-1}\right)}
\end{aligned}
$$

Let $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n} \in \mathbb{R}^{3}, \mathbf{a}_{i}=\left(a_{i 1}, a_{i 2}, a_{i 3}\right)$. We set
$\left[B_{n}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{n-1}\right),\left(\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right)\right]=a_{1 i_{1}} \cdots a_{n i_{n}} B_{i_{1} \cdots i_{n}}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{n-1}\right)$,
using the Einstein summation convention.

Discussion about isotropy

1) Basics

Throughout what follows, we assume that the flow is homogeneous (standard definition), and for simplicity stationnary ("homogeneity in time"). Let \mathcal{B}_{n} denotes all correlation tensors of the form:

$$
\begin{aligned}
& \mathbb{B}_{n}=\mathbb{B}_{n}\left(M_{1}, \ldots, M_{n}\right)=\left(B_{i_{1} \ldots i_{n}}\left(M_{1}, \ldots, M_{n}\right)\right)_{1 \leq i_{1} \ldots i_{n} \leq 3} \\
& \psi_{i_{1}}, \ldots, \psi_{i_{n}} \in \mathcal{G} \\
& B_{i_{1} \ldots i_{n}}\left(\psi_{1}, \ldots, \psi_{n}\right)\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n-1}\right)=\overline{\psi_{i_{1}}(\mathbf{x}) \psi_{i_{2}}\left(\mathbf{x}+\mathbf{r}_{1}\right) \cdots \psi_{i_{n}}\left(\mathbf{x}+\mathbf{r}_{n-1}\right)}
\end{aligned}
$$

Let $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n} \in \mathbb{R}^{3}, \mathbf{a}_{i}=\left(a_{i 1}, a_{i 2}, a_{i 3}\right)$. We set

$$
\left[\mathbb{B}_{n}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{n-1}\right),\left(\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right)\right]=a_{1 i_{1}} \cdots a_{n i_{n}} B_{i_{1} \cdots i_{n}}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{n-1}\right),
$$

using the Einstein summation convention.
We denote by $\mathrm{O}_{3}(\mathbb{R})$ an orthogonal group, which means that $Q \in O_{3}(\mathbb{R})$ if and only if $Q Q^{t}=Q^{t} Q=\mathrm{I}$.

Discussion about isotropy

Definition

We say that the flow is isotropic in D if and only if,

$$
\begin{aligned}
& \forall n \geq 1, \quad \forall \mathbb{B}_{n} \in \mathcal{B}_{n}, \\
& \forall Q \in O_{3}(\mathbb{R}), \quad \forall \mathbf{a}_{1}, \cdots, \mathbf{a}_{n} \in \mathbb{R}^{3}, \\
& \forall \mathbf{x} \in \omega, \quad \forall\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{n-1}\right) \in B\left(0, r_{\mathbf{x}}\right)^{n-1},
\end{aligned}
$$

then we have

$$
\begin{aligned}
& {\left[\mid B_{n}\left(Q \mathbf{r}_{1}, \cdots, Q \mathbf{r}_{n-1}\right),\left(Q \mathbf{a}_{1}, \cdots, Q \mathbf{a}_{n}\right)\right]=} \\
& {\left[B_{n}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{n-1}\right),\left(\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right)\right] .}
\end{aligned}
$$

Discussion about isotropy

2) Two order tensor

We fix δ_{0} once and for all and \mathbf{x} satisfies $d(\mathbf{x}, \partial \omega) \geq \delta_{0}$ so that $\mathbb{B}_{2}(\mathbf{r})$ is well defined for $|\mathbf{r}| \leq \delta_{0}$ and at least of class C^{1} with respect to \mathbf{r} (and does not depend on \mathbf{x}).

Theorem

Assume the flow isotropic in D. Then there exist two C^{1} scalar functions $B_{d}=B_{d}(r)$ and $B_{n}=B_{n}(r)$ on $\left[0, \delta_{0}[\right.$ and such that

$$
\forall \mathbf{r} \in B\left(0, \delta_{0}\right), \quad \mathbb{B}_{2}(\mathbf{r})=\left(B_{d}(r)-B_{n}(r)\right) \frac{\mathbf{r} \otimes \mathbf{r}}{r^{2}}+B_{n}(r) I_{3}
$$

where $r=|\mathbf{r}|, \mathbf{r} \otimes \mathbf{r}=\left(r_{i} r_{j}\right)_{1 \leq i, j \leq 3}$. Moreover, B_{d} and B_{n} are linked through the following differential relation.

Discussion about isotropy

2) Two order tensor

We fix δ_{0} once and for all and \mathbf{x} satisfies $d(\mathbf{x}, \partial \omega) \geq \delta_{0}$ so that $\mathbb{B}_{2}(\mathbf{r})$ is well defined for $|\mathbf{r}| \leq \delta_{0}$ and at least of class C^{1} with respect to \mathbf{r} (and does not depend on \mathbf{x}).

Theorem

Assume the flow isotropic in D. Then there exist two C^{1} scalar functions $B_{d}=B_{d}(r)$ and $B_{n}=B_{n}(r)$ on $\left[0, \delta_{0}[\right.$ and such that

$$
\forall \mathbf{r} \in B\left(0, \delta_{0}\right), \quad \mathbb{B}_{2}(\mathbf{r})=\left(B_{d}(r)-B_{n}(r)\right) \frac{\mathbf{r} \otimes \mathbf{r}}{r^{2}}+B_{n}(r) I_{3},
$$

where $r=|\mathbf{r}|, \mathbf{r} \otimes \mathbf{r}=\left(r_{i} r_{j}\right)_{1 \leq i, j \leq 3}$. Moreover, B_{d} and B_{n} are linked through the following differential relation:

$$
\forall r \in\left[0, \delta_{0}\left[, \quad r B_{d}^{\prime}(r)+2\left(B_{d}(r)-B_{n}(r)\right)=0\right.\right.
$$

where $B_{d}^{\prime}(r)$ is the derivative of B_{d}.

Energy spectrum

Energy spectrum for isotropic flows Let

$$
\mathbb{E}=\left.\frac{1}{2} \operatorname{tr} \mathbb{B}_{2}\right|_{\mathbf{r}=0}=\frac{1}{2} \overline{|\mathbf{v}|^{2}},
$$

be the total mean kinetic energy

Theorem
 There exists a measurable function $E=E(k)$, defined over \mathbb{R}_{-} the integral of which over \mathbb{R}_{+}is finite, and such that

Energy spectrum

Energy spectrum for isotropic flows Let

$$
\mathbb{E}=\left.\frac{1}{2} \operatorname{tr} \mathbb{B}_{2}\right|_{\mathbf{r}=0}=\frac{1}{2} \overline{|\mathbf{v}|^{2}},
$$

be the total mean kinetic energy

Theorem

There exists a measurable function $E=E(k)$, defined over \mathbb{R}_{+}, the integral of which over \mathbb{R}_{+}is finite, and such that

$$
\mathbb{E}=\int_{0}^{\infty} E(k) d k
$$

Remark
$E(k)$ is the amount of kinetic energy in the sphere $S_{k}=\{|k|=k$
which physically means $E \geq 0$ in \mathbb{R}_{+}, and therefore $E \in L^{1}\left(\mathbb{R}_{+}\right)$. We cannot rigorously prove $E \geq 0$ which remains an open problem.

Energy spectrum

Energy spectrum for isotropic flows Let

$$
\mathbb{E}=\left.\frac{1}{2} \operatorname{tr} \mathbb{B}_{2}\right|_{\mathbf{r}=0}=\frac{1}{2} \overline{|\mathbf{v}|^{2}},
$$

be the total mean kinetic energy

Theorem

There exists a measurable function $E=E(k)$, defined over \mathbb{R}_{+}, the integral of which over \mathbb{R}_{+}is finite, and such that

$$
\mathbb{E}=\int_{0}^{\infty} E(k) d k
$$

Remark

$E(k)$ is the amount of kinetic energy in the sphere $S_{k}=\{|\mathbf{k}|=k\}$, which physically means $E \geq 0$ in \mathbb{R}_{+}, and therefore $E \in L^{1}\left(\mathbb{R}_{+}\right)$. We cannot rigorously prove $E \geq 0$ which remains an open problem.

Energy spectrum

Lemma

The turbulent dissipation \mathscr{E} is deduced from the energy spectrum from the formula:

$$
\mathscr{E}=\nu \int_{0}^{\infty} k^{2} E(k) d k,
$$

which also states that when $E \geq 0$, then $k^{2} E(k) \in L^{1}\left(\mathbb{R}_{+}\right)$.

The issue is the determination of the profil of E

Energy spectrum

Lemma

The turbulent dissipation \mathscr{E} is deduced from the energy spectrum from the formula:

$$
\mathscr{E}=\nu \int_{0}^{\infty} k^{2} E(k) d k,
$$

which also states that when $E \geq 0$, then $k^{2} E(k) \in L^{1}\left(\mathbb{R}_{+}\right)$.

The issue is the determination of the profil of E

Similarity

1) Dimensional bases

Only length and time are involved in this frame, heat being not considered and the fluid being incompressible.

Definition

A length-time basis is a couple $b=(\lambda, \tau)$, where λ a given constant length and τ a constant time.

Definition

Let $\psi=\psi(t, x)$ (constant, scalar, vector, tensor...) be defined on
 Ω. The couple $\left(d_{\ell}(\psi), d_{\tau}(\psi)\right) \in \mathbb{Q}^{2}$ is such that

is the b-dimensionless field deduced from ψ.

Similarity

1) Dimensional bases

Only length and time are involved in this frame, heat being not considered and the fluid being incompressible.

Definition

A length-time basis is a couple $b=(\lambda, \tau)$, where λ a given constant length and τ a constant time.

Definition

Let $\psi=\psi(t, \mathbf{x})$ (constant, scalar, vector, tensor...) be defined on $Q=\left[0, T_{\mathbb{K}}\right] \times \Omega$. The couple $\left(d_{\ell}(\psi), d_{\tau}(\psi)\right) \in \mathbb{Q}^{2}$ is such that

$$
\psi_{b}\left(t^{\prime}, \mathbf{x}^{\prime}\right)=\lambda^{-d_{\ell}(\psi)} \tau^{-d_{\tau}(\psi)} \psi\left(\tau t^{\prime}, \lambda \mathbf{x}^{\prime}\right)
$$

where $\left(t^{\prime}, \mathbf{x}^{\prime}\right) \in Q_{b}=\left[0, \frac{T_{\mathbb{K}}}{\tau}\right] \times \frac{1}{\lambda} \Omega$, is dimensionless. We say that $\psi_{b}=\psi_{b}\left(t^{\prime}, \mathbf{x}^{\prime}\right)$ is the b-dimensionless field deduced from ψ.

Similarity

2) Kolmogorov scales

Let us consider the length-time basis $b_{0}=\left(\lambda_{0}, \tau_{0}\right)$, determined by

$$
\lambda_{0}=\nu^{\frac{3}{4}} \mathscr{E}^{-\frac{1}{4}}, \quad \tau_{0}=\nu^{\frac{1}{2}} \mathscr{E}^{-\frac{1}{2}} .
$$

We recall that λ_{0} is called the Kolmogorov scale.
The important point here is that

Similarity

2) Kolmogorov scales

Let us consider the length-time basis $b_{0}=\left(\lambda_{0}, \tau_{0}\right)$, determined by

$$
\lambda_{0}=\nu^{\frac{3}{4}} \mathscr{E}^{-\frac{1}{4}}, \quad \tau_{0}=\nu^{\frac{1}{2}} \mathscr{E}^{-\frac{1}{2}} .
$$

We recall that λ_{0} is called the Kolmogorov scale. The important point here is that

$$
\mathscr{E}_{b_{0}}=\nu_{b_{0}}=1
$$

Moreover, for all wave number k,

Similarity

2) Kolmogorov scales

Let us consider the length-time basis $b_{0}=\left(\lambda_{0}, \tau_{0}\right)$, determined by

$$
\lambda_{0}=\nu^{\frac{3}{4}} \mathscr{E}^{-\frac{1}{4}}, \quad \tau_{0}=\nu^{\frac{1}{2}} \mathscr{E}^{-\frac{1}{2}} .
$$

We recall that λ_{0} is called the Kolmogorov scale. The important point here is that

$$
\mathscr{E}_{b_{0}}=\nu_{b_{0}}=1
$$

Moreover, for all wave number k,

$$
E(k)=\nu^{\frac{5}{4}} \mathscr{E}^{\frac{1}{4}} E_{b_{0}}\left(\lambda_{0} k\right),
$$

We must find out the universal profil $E_{b_{0}}$

Similarity

2) Kolmogorov scales

Let us consider the length-time basis $b_{0}=\left(\lambda_{0}, \tau_{0}\right)$, determined by

$$
\lambda_{0}=\nu^{\frac{3}{4}} \mathscr{E}^{-\frac{1}{4}}, \quad \tau_{0}=\nu^{\frac{1}{2}} \mathscr{E}^{-\frac{1}{2}} .
$$

We recall that λ_{0} is called the Kolmogorov scale. The important point here is that

$$
\mathscr{E}_{b_{0}}=\nu_{b_{0}}=1
$$

Moreover, for all wave number k,

$$
E(k)=\nu^{\frac{5}{4}} \mathscr{E}^{\frac{1}{4}} E_{b_{0}}\left(\lambda_{0} k\right),
$$

We must find out the universal profil $E_{b_{0}}$

Similarity

3) Assumptions

Scale separation. Let ℓ be the Prandtl mixing length. Then

$$
\lambda_{0} \ll \ell
$$

Similarity. There exists an interval

Similarity

3) Assumptions

Scale separation. Let ℓ be the Prandtl mixing length. Then

$$
\lambda_{0} \ll \ell .
$$

Similarity. There exists an interval

$$
\begin{gathered}
{\left[k_{1}, k_{2}\right] \subset\left[\frac{2 \pi}{\ell}, \frac{2 \pi}{\lambda_{0}}\right] \text { s.t. } k_{1} \ll k_{2} \text { and on }\left[\lambda_{0} k_{1}, \lambda_{0} k_{2}\right],} \\
\forall b_{1}=\left(\lambda_{1}, \tau_{1}\right), b_{2}=\left(\lambda_{2}, \tau_{2}\right) \text { s.t. } \mathscr{E}_{b_{1}}=\mathscr{E}_{b_{2}}, \text { then } E_{b_{1}}=E_{b_{2}}
\end{gathered}
$$

Similarity

4) Law of the $-5 / 3$

Theorem

Scale separation and Similarity Assumptions yield the existence of a constant C such that

$$
\forall k^{\prime} \in\left[\lambda_{0} k_{1}, \lambda_{0} k_{2}\right]=J_{r}, \quad E_{b_{0}}\left(k^{\prime}\right)=C\left(k^{\prime}\right)^{-\frac{5}{3}} .
$$

Corollary
 The energy spectrum satisfies the $-5 / 3$ law

where C is a dimensionless constant.

Similarity

4) Law of the $-5 / 3$

Theorem

Scale separation and Similarity Assumptions yield the existence of a constant C such that

$$
\forall k^{\prime} \in\left[\lambda_{0} k_{1}, \lambda_{0} k_{2}\right]=J_{r}, \quad E_{b_{0}}\left(k^{\prime}\right)=C\left(k^{\prime}\right)^{-\frac{5}{3}} .
$$

Corollary

The energy spectrum satisfies the $-5 / 3$ law

$$
\forall k \in\left[k_{1}, k_{2}\right], \quad E(k)=C \mathscr{E}^{\frac{2}{3}} k^{-\frac{5}{3}},
$$

where C is a dimensionless constant.

Similarity

Idea of the proof Let

$$
b^{(\alpha)}=\left(\alpha^{3} \lambda_{0}, \alpha^{2} \tau_{0}\right)
$$

The similarity assumption yields

which leads to the functional equation,

Similarity

Idea of the proof Let

$$
b^{(\alpha)}=\left(\alpha^{3} \lambda_{0}, \alpha^{2} \tau_{0}\right)
$$

As

$$
\mathscr{E}_{b^{(\alpha)}}=1=\mathscr{E}_{b_{0}},
$$

The similarity assumption yields

$$
\forall k^{\prime} \in J_{r}, \quad \forall \alpha>0, \quad E_{b(\alpha)}\left(k^{\prime}\right)=E_{b_{0}}\left(k^{\prime}\right) .
$$

which leads to the functional equation,
whose unique solution is given by

Similarity

Idea of the proof Let

$$
b^{(\alpha)}=\left(\alpha^{3} \lambda_{0}, \alpha^{2} \tau_{0}\right)
$$

As

$$
\mathscr{E}_{b^{(\alpha)}}=1=\mathscr{E}_{b_{0}},
$$

The similarity assumption yields

$$
\forall k^{\prime} \in J_{r}, \quad \forall \alpha>0, \quad E_{b^{(\alpha)}}\left(k^{\prime}\right)=E_{b_{0}}\left(k^{\prime}\right)
$$

which leads to the functional equation,

$$
\forall k^{\prime} \in J_{r}, \quad \forall \alpha>0, \quad \frac{1}{\alpha^{5}} E_{b_{0}}\left(k^{\prime}\right)=E_{b_{0}}\left(\alpha^{3} k^{\prime}\right),
$$

whose unique solution is given by

$$
\forall k^{\prime} \in J_{r}, \quad E_{b_{0}}\left(k^{\prime}\right)=C\left(k^{\prime}\right)^{-\frac{5}{3}}, \quad C=\left(\frac{k_{1}}{\lambda_{0}}\right)^{\frac{5}{3}} E_{0}\left(\frac{k_{1}}{\lambda_{0}}\right),
$$

hence the result.

Consequences

Theorem

Assume:
(1) The Law of the $-5 / 3$ holds true,
(2) The turbulent dissipation holds in the inertial range, (3) The Boussinesq assumption holds true, i.e

Consequences

Theorem

Assume:
(1) The Law of the $-5 / 3$ holds true,
(2) The turbulent dissipation holds in the inertial range,
(3) The Boussinesq assumption holds true, i.e

Consequences

Theorem

Assume:

(1) The Law of the $-5 / 3$ holds true,
(2) The turbulent dissipation holds in the inertial range,
(3) The Boussinesq assumption holds true, i.e

$$
\boldsymbol{\sigma}^{(\mathrm{R})}=-\nu_{t} D \overline{\mathbf{v}}+\frac{2}{3} k \mathrm{I} .
$$

Then Smagorinsky's postulate holds true, i.e

Consequences

Theorem

Assume:

(1) The Law of the $-5 / 3$ holds true,
(2) The turbulent dissipation holds in the inertial range,
(3) The Boussinesq assumption holds true, i.e

$$
\sigma^{(\mathrm{R})}=-\nu_{t} D \overline{\mathbf{v}}+\frac{2}{3} k \mathrm{I} .
$$

Then Smagorinsky's postulate holds true, i.e

$$
\nu_{t}=C \delta^{2}|D \overline{\mathbf{v}}|
$$

[^0]: ${ }^{1}$ Chacon-Lewandowski (Springer 2014), Lewandowski (Chin.An.Maths, 2015)

[^1]: where

