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e \; = first eigenvalue of —A in H}(Q)

@ g > 1 (superlinear problem)
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We assume that the exponent g is sub-critical or critical :
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A necessary condition for the existence is

[ for== [ @) <o

Sufficient condition : If/ for =0
Q

(R) f e L"(R) for some r > N
and v is the unique solution v € (p;)! of

(L) —Av=Mv+f(x) inQ,
v=20 on 082

u= v+ ty; with t s.t. u <0 is a solution of Problem (1).
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First approch : degree theory

Theorem (De Figueiredo-Cuesta-Srikanth (2003) )
Let 1< q < Nt} and f € L(Q) for some r > N with

/f(pl < 0.

Q

Then the Problem (1) has at least one solution.
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Let 1< q < Nt} and f € L(Q) for some r > N with

/f(pl < 0.

Q

Then the Problem (1) has at least one solution.

pBT = % is the "exponent of Brézis-Turner”
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A-priori bounds

e u solution = [o(uT)9p =— [ o1 <C

e We write u = to; + w with w € (1) *

t:/ utr —/ u g dx < C(/(u+)q<,01)1/q§ C
Q Q Q

As ut #£ 0 we have t > —Cllwll -

e Using the Wirtinger inequality
M
(1- E)HVWH% < Clfll AV w2 + | /Q(lﬁ)qdeI-

It remains to estimate | [,(u™)%wdx|.
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Hardy-Sobolev inequality :

vt
/Q L <l
1

1
for every 0 <7 <1 and t>1suchthat;z§—

By Hardy-Sobolev, we see

| / Jw] < C( /Q ()00 ) .

Iwl> < C(IIflles)(L + [lwll® + [[wl]])
with § €]1,2[ as 1 < g < N+

and hence

Hence ||w|| is bounded and by bootstrap ||W||C& also.
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Second approach : lower and upper solutions

Theorem (Cuesta-C.D. (2013) )

Let1l < g < NMtL and f € L(Q) for r > N such that
N—1

/f(pl < 0.

Q

Then the Problem (1) has at least one solution.

e The problem (1) has a lower solution a > 0.
e The problem (1) has an upper solution § < 0.
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Theorem (non well ordered lower and upper solutions (C.D.
2009))

If da and 8 lower and upper solutions with o £ (3, let
Co={veC@Q|u>a}, CP={uecd@)]u<p}
= {7 €C([0,1],C5()) [ 7(0) € C”, 1(1) € Ca},
Ty ={s €[0,1] [ 7(s) € C3() \ (C? U Ca)},

c := infyer maxser, ®((s))

o(u) = ;/Q (Va2 = ArJul?] - q+1/9(u+)q+1 _/qu.

If c € R and ® satisfies the Palais-Smale condition,
then there exists u € C3(Q) \ (CP U C,) solution of (1) with
d(u) =c.
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Problem : ¢ = —oo! The problem comes from the "negative”.
First modified problem :
For r > 1 — min 3, consider the problem

—Au= (A —Lh(u))u+ (uM)+f(x) = g(x,u), inQ,

u=0, on 09,
(3)

where
he(u) = 0, if u>—r,
= —(u+r), fue[-r—1,-r],
= 1, ifu<—r—1.

a and [ are still lower and upper solutions of (3).
(3) has a lower solution a, < f.



Approach 2 : lower upper solutions

We use «, in order to modify the problem.



Approach 2 : lower upper solutions

We use «, in order to modify the problem.
Second modified problem :

—AU:gr(X,’}/r(X7 U))7 in Q7 (4)
u=20, on 09,

where
Ye(x,u) = u, if u> a,(x),
= a/(x), if u<a(x).
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We use «, in order to modify the problem.
Second modified problem :

—AU:gr(X,’}/r(X7 U))7 in Q7 (4)
u=20, on 09,

where
Ye(x,u) = u, if u> a,(x),
= a/(x), if u<a(x).

By the maximum principle, every solution u of (4) satisfies u > «,.
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Approach 2 : lower upper solutions

Proposition
For all r > ry, Ju, solution of (3) with

ur £ Byuy Foyur > ap and ®,(u,) = ¢ (5)

where

% = [mf Fe @, (7(s))-

Moreover, exists d > 0 such that, for all r > rg, we have ¢, < d.

Claim : There exists K > rg such that, for all r > K, every solution
uy of (3) verifying (5) is such that u, > —K.
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Approach 2 : lower upper solutions

By contradiction min u, — —o0, we prove

Hl
— —1, ‘;"—: =3 0 where u, = anyp1 + wy and / wpp1 = 0.

an
Tenl 0

Cl
If we prove ';"—: -3 0 then, for n large enough

Whn

|an|

) <~

Un = |an|(—sp1 +

which contradicts u, £ .
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Approach 2 : lower upper solutions

To this aim, let us show
|Wallwas S lan| +1 with s > N.

In that case ||wp|lc1.e < |an| 4+ 1 with @ > 0 and by the compact
imbedding in C&, up to a subsequence,

LIS

dp

H} )
As '2’—: -2 0, we obtain w = 0.
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w, is solution of

—Aw, — Aiwy = hp(up)u, +(uf)?+f(x), in  Q,
wy = 0, on 01,

/ wnp1 = 0.
Q

By regularity, if hp(up)u, + (uf)?+ f € L5(S2), then
wn, € W2S(Q) and

lwallwe.s Slha(un)uy + (ug)? + Flles S M1(uy) s + 1. (6)

Hence, we need to estimate ||(u})9]|s pour s > N.
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Summary :
We want to prove that ||wp||py2s < |an| + 1 with s > N.
We have, for s for which it is meaningfull,

Iwallwe.s < 1l (up )7 ls + 1. (7)
2N

1/2
We prove HurTHH& < CHU"”H/é hence, for s; = %,
q
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Approach 2 : lower upper solutions

Summary :
We want to prove that ||wp||py2s < |an| + 1 with s > N.
We have, for s for which it is meaningfull,

Iwallwes S 11(ud) s + 1. (7)
We prove || ||z < CHu,,H}_I/é2 hence, for s; = 2%,
1)l 5 S lanl2, (8)
and [o(uf)9tt < C||Un||Hg Ie.
1)l e S lanl 1. (9)

(8) is better for the regularity, (9) is better for the exponent.

Hence, we make a bootstrap, "combining” both in order to gain

regularity but keeping an exponent smaller than 1.

To this aim we need the condition g < %
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Third approach : Nehari

Theorem (Cuesta-C.D. (2015))

For all f € L?(Q) s.t. [y 1 <0 and 1 < q < NE2, there exists

N—2’
e>0st, forall0 < t<e,
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Third approach : Nehari

Theorem (Cuesta-C.D. (2015))

For all f € L?(Q) s.t. [, fi1 <0 and 1< q < §E2, there exists

21
e>0st, forall0 < t<e,

—Au=X u+ (uT)I+tf inQ,
u=20 on 052

has at least one solution s.t. [ fu < 0.

Observe that here f € L?(Q) (even f € LN%(Q))
* _ N+2
1<q<2—1=M2)
But t||f]|;2 small.
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The functional corresponding to the problem is

J(u) = %N(u) _ qi15(u) ~ tL(u)

2. S(u) = /Q(u+)q+1; L(u) ::/qu.

The Nehari manifold associated is

N(u) ;:/ Vo2 = Au
Q

N :={ue H}Q) | (J(u),u) = N(u) — S(u) — t L(u) = 0}.

Let us set Vu #0, s > 0,
_ §2 ga+1 s ,
Jils) = Jsu) = 5 N(w) = = S(u) — seL(w),

We then have N = {u € H}(Q) | ji(1) = 0}.
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The maximum of J on N/
N= = {ue HJ(Q) | ji(1)=0,j(1) <0}
= {ueN| Nu)<qgS)};

We denote
£ ={ue Q)| L(u) <0},

Lo ={u€ Hy(Q)| L(u) =0},
Ly =L ULy

Lemma (Projection on Nehari)

If S(u) >0, L(u) <0 and L(u) < 0 in case N(u) = 0, then there
exists a unique t; = t;(u) > 0 such that tyju € N'. Moreover
tiu € N~ and j, has a global maximum in t;.
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Proposition

If g €]1, ¥+2] and f € L3(Q) satisfies/ fir <0.
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Then

(i) infyrnps > 0;
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Proposition

If g €]1, ¥+2] and f € L3(Q) satisfies/ fir <0.
Q

Then
(1) ianMO_ J>0;
(i) If inf  J(u)< inf  J(u),

UENOEO_ ueNNLy
then dug € N'N L~ solution of (1) such that

Jw)= inf J(u)= inf J(u).
ueNNLy ueN-NLy
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Proof of the Theorem.
We need to see : infuej\mﬁ(? J(u) < infuenne, J(u)

For u € N'N Ly, we have S(u) = N(u) and L(u) = 0. Hence

J(u) = (3 — g17)N(u). We prove that, for every t, we have

inf - J(u) = (). (10)

Moreover typ; € N~ N L™ with t; = (t%)l/q and hence

inf J(u)gJ(tlgol):qttl‘/ fgol‘. (11)
ueENNLY q+1 Q
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Proof of the Theorem.

We need to see : infuej\mﬁ(? J(u) < infuenne, J(u)

For u € N'N Ly, we have S(u) = N(u) and L(u) = 0. Hence
Jw)=(3 L_)N(u). We prove that, for every t, we have

27 g+l

inf > c(f).

et J(u) > c(f) (10)
Moreover typ; € N~ N L™ with t; = (t‘ffﬂ(’%)l/q and hence
Q1
. q

inf J(u) < J(t :tt‘/f ‘ 11
uecho—() (tip1) g1l fer (11)

Hence, from (10) and (11), we will have our result if ¢ is small
enough.
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