Résultats d'existence pour des problèmes elliptiques superlinéaires et résonants trois approches

Mabel Cuesta¹ et Colette De Coster²

¹LMPA Université du Littoral Côte d'Opale ULCO, Calais ²LAMAV Institut des Sciences et Techniques de Valenciennes, Valenciennes

Pau, le 23 juin 2016

Let $\Omega \subset \mathbb{R}^N$ be a bounded regular domain, $N \geq 3$ and $f \in L^2(\Omega)$. <u>Problem 1</u>:

$$\begin{cases} -\Delta u = \lambda_1 u + (u^+)^q + f(x) & \text{in } \Omega, \\ u \in H^1_0(\Omega) \end{cases}$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\Omega \subset \mathbb{R}^N$ be a bounded regular domain, $N \ge 3$ and $f \in L^2(\Omega)$. <u>Problem I</u> :

$$\begin{cases} -\Delta u = \lambda_1 u + (u^+)^q + f(x) & \text{in } \Omega, \\ u \in H_0^1(\Omega) \end{cases}$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\lambda_1 = \text{first eigenvalue of } -\Delta \text{ in } H^1_0(\Omega)$
- q > 1 (superlinear problem)

Problem (1) is **resonant and superlinear** in the sense that $g(s) = (s^+)^q$ (q > 1) satisfies

$$\lim_{s\to -\infty} g(s) = 0, \quad \lim_{s\to +\infty} \frac{g(s)}{s} = +\infty,$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Problem (1) is **resonant and superlinear** in the sense that $g(s) = (s^+)^q$ (q > 1) satisfies

$$\lim_{s\to -\infty} g(s) = 0, \quad \lim_{s\to +\infty} \frac{g(s)}{s} = +\infty,$$

We assume that the exponent q is **sub-critical or critical** :

$$q \leq 2^* - 1 := \frac{2N}{N-2} - 1 = \frac{N+2}{N-2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem (1) is **resonant and superlinear** in the sense that $g(s) = (s^+)^q$ (q > 1) satisfies

$$\lim_{s\to-\infty}g(s)=0,\quad \lim_{s\to+\infty}\frac{g(s)}{s}=+\infty,$$

We assume that the exponent q is **sub-critical or critical** :

$$q \leq 2^* - 1 := \frac{2N}{N-2} - 1 = \frac{N+2}{N-2}$$

<u>Problem II</u> :

$$\begin{cases} -\Delta_{\rho}u = \lambda_1 |u|^{\rho-2}u + (u^+)^q + f(x) & \text{in } \Omega, \\ u \in W_0^{1,\rho}(\Omega) \end{cases}$$
(2)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

A necessary condition for the existence is

$$\int_\Omega f arphi_1 \, (= - \int_\Omega (u^+)^q arphi_1 \,\,) \leq 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A necessary condition for the existence is

$$\int_\Omega f arphi_1 \, (= -\int_\Omega (u^+)^q arphi_1 \,\,) \leq 0$$

Sufficient condition : If $\int_{\Omega} f \varphi_1 = 0$

 $(R) \quad f \in L^r(\Omega) \text{ for some } r > N$

and v is the unique solution $v \in \langle \varphi_1 \rangle^{\perp}$ of

(L)
$$\begin{aligned} -\Delta v &= \lambda_1 v + f(x) & \text{ in } \Omega, \\ v &= 0 & \text{ on } \partial \Omega \end{aligned}$$

 $u = v + t\varphi_1$ with t s.t. $u \leq 0$ is a solution of Problem (1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

First approch : degree theory

Theorem (De Figueiredo-Cuesta-Srikanth (2003))

Let $1 < q < \frac{N+1}{N-1}$ and $f \in L^r(\Omega)$ for some r > N with

$$\int_{\Omega} f\varphi_1 < 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then the Problem (1) has at least one solution.

First approch : degree theory

Theorem (De Figueiredo-Cuesta-Srikanth (2003))

Let $1 < q < \frac{N+1}{N-1}$ and $f \in L^r(\Omega)$ for some r > N with

$$\int_{\Omega} f\varphi_1 < 0.$$

Then the Problem (1) has at least one solution.

 $p_{BT} := \frac{N+1}{N-1}$ is the "exponent of Brézis-Turner"

A-priori bounds

• $u \text{ solution} \Rightarrow \int_{\Omega} (u^+)^q \varphi_1 = -\int_{\Omega} f \varphi_1 \leq C$

A-priori bounds

- $u \text{ solution} \Rightarrow \int_{\Omega} (u^+)^q \varphi_1 = -\int_{\Omega} f \varphi_1 \leq C$
- We write $u = t \varphi_1 + w$ with $w \in \langle \varphi_1 \rangle^{\perp}$

$$t = \int_{\Omega} u^+ \varphi_1 - \int_{\Omega} u^- \varphi_1 \, dx \leq C (\int_{\Omega} (u^+)^q \varphi_1)^{1/q} \leq C$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A-priori bounds

- $u \text{ solution} \Rightarrow \int_{\Omega} (u^+)^q \varphi_1 = -\int_{\Omega} f \varphi_1 \leq C$
- We write $u = t \varphi_1 + w$ with $w \in \langle \varphi_1 \rangle^{\perp}$

$$t = \int_{\Omega} u^+ \varphi_1 - \int_{\Omega} u^- \varphi_1 \, dx \leq C (\int_{\Omega} (u^+)^q \varphi_1)^{1/q} \leq C$$

As $u^+ \not\equiv 0$ we have $t \ge -C \|w\|_{C_0^1}$.

• Using the Wirtinger inequality

$$(1-\frac{\lambda_1}{\lambda_2})\|\nabla w\|_2^2 \leq C\|f\|_r\|\nabla w\|_2 + |\int_{\Omega} (u^+)^q w dx|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A-priori bounds

- $u \text{ solution} \Rightarrow \int_{\Omega} (u^+)^q \varphi_1 = \int_{\Omega} f \varphi_1 \leq C$
- We write $u = t \varphi_1 + w$ with $w \in \langle \varphi_1 \rangle^{\perp}$

$$t = \int_{\Omega} u^+ \varphi_1 - \int_{\Omega} u^- \varphi_1 \, dx \leq C (\int_{\Omega} (u^+)^q \varphi_1)^{1/q} \leq C$$

As $u^+ \not\equiv 0$ we have $t \geq -C \|w\|_{C_0^1}$.

• Using the Wirtinger inequality

$$(1-\frac{\lambda_1}{\lambda_2})\|\nabla w\|_2^2 \leq C\|f\|_r\|\nabla w\|_2 + |\int_{\Omega} (u^+)^q w dx|.$$

It remains to estimate $|\int_{\Omega} (u^+)^q w dx|$.

$$\int_{\Omega} \frac{|\mathbf{v}|^{t}}{\varphi_{1}^{\tau t}} \leq C \|\mathbf{v}\|^{t}$$

$$1 \quad 1 \quad 1 - \tau$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

for every $0 \le \tau \le 1$ and t > 1 such that $\frac{1}{t} = \frac{1}{2} - \frac{1}{N}$.

$$\int_{\Omega} \frac{|v|^t}{\varphi_1^{\tau t}} \leq C \|v\|^t$$

for every $0 \le \tau \le 1$ and t > 1 such that $\frac{1}{t} = \frac{1}{2} - \frac{1 - \tau}{N}$.

By Hardy-Sobolev, we see

$$|\int_{\Omega} (u^+)^q w| \leq C (\int_{\Omega} (u^+)^q \varphi_1)^{lpha} ||w||^{\delta}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\int_{\Omega} \frac{|\mathbf{v}|^t}{\varphi_1^{\tau t}} \leq C \|\mathbf{v}\|^t$$

for every $0 \le \tau \le 1$ and t > 1 such that $\frac{1}{t} = \frac{1}{2} - \frac{1 - \tau}{N}$. By Hardy-Sobolev, we see

$$|\int_{\Omega} (u^+)^q w| \leq C (\int_{\Omega} (u^+)^q \varphi_1)^{\alpha} ||w||^{\delta}.$$

and hence

$$\|w\|^2 \le C(\|f\|_{L^s})(1 + \|w\|^{\delta} + \|w\|)$$

with $\delta \in]1, 2[$ as $1 < q < \frac{N+1}{N-1}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

$$\int_{\Omega} \frac{|\mathbf{v}|^t}{\varphi_1^{\tau t}} \leq C \|\mathbf{v}\|^t$$

for every $0 \le \tau \le 1$ and t > 1 such that $\frac{1}{t} = \frac{1}{2} - \frac{1 - \tau}{N}$. By Hardy-Sobolev, we see

$$|\int_{\Omega} (u^+)^q w| \leq C (\int_{\Omega} (u^+)^q \varphi_1)^{lpha} ||w||^{\delta}.$$

and hence

$$\|w\|^2 \leq C(\|f\|_{L^s})(1+\|w\|^{\delta}+\|w\|)$$

with $\delta \in]1,2[$ as $1 < q < rac{N+1}{N-1}.$

Hence ||w|| is bounded and by bootstrap $||w||_{C_0^1}$ also.

Second approach : lower and upper solutions

Theorem (Cuesta-C.D. (2013))

Let $1 < q < \frac{N+1}{N-1}$ and $f \in L^r(\Omega)$ for r > N such that

$$\int_{\Omega} f\varphi_1 < 0.$$

Then the Problem (1) has at least one solution.

Second approach : lower and upper solutions

Theorem (Cuesta-C.D. (2013))

Let $1 < q < \frac{N+1}{N-1}$ and $f \in L^r(\Omega)$ for r > N such that

$$\int_{\Omega} f\varphi_1 < 0.$$

Then the Problem (1) has at least one solution.

• The problem (1) has a lower solution $\alpha \gg 0$.

Second approach : lower and upper solutions

Theorem (Cuesta-C.D. (2013))

Let $1 < q < \frac{N+1}{N-1}$ and $f \in L^r(\Omega)$ for r > N such that

$$\int_{\Omega} f\varphi_1 < 0.$$

Then the Problem (1) has at least one solution.

- The problem (1) has a lower solution $\alpha \gg 0$.
- The problem (1) has an upper solution $\beta \ll 0$.

$$\mathcal{C}_{lpha} = \{ u \in \mathcal{C}^1_0(\overline{\Omega}) \mid u \gg lpha \}, \quad \mathcal{C}^{eta} = \{ u \in \mathcal{C}^1_0(\overline{\Omega}) \mid u \ll eta \},$$

$$\begin{split} \mathcal{C}_{\alpha} &= \{ u \in \mathcal{C}_0^1(\overline{\Omega}) \mid u \gg \alpha \}, \quad \mathcal{C}^{\beta} = \{ u \in \mathcal{C}_0^1(\overline{\Omega}) \mid u \ll \beta \}, \\ \mathsf{\Gamma} &= \{ \gamma \in \mathcal{C}([0,1],\mathcal{C}_0^1(\overline{\Omega})) \mid \gamma(0) \in \mathcal{C}^{\beta}, \ \gamma(1) \in \mathcal{C}_{\alpha} \}, \end{split}$$

If $\exists \alpha$ and β lower and upper solutions with $\alpha \not\leq \beta$, let

$$egin{aligned} \mathcal{L}_lpha &= \{ u \in \mathcal{C}_0^1(\overline{\Omega}) \mid u \gg lpha \}, \quad \mathcal{C}^eta &= \{ u \in \mathcal{C}_0^1(\overline{\Omega}) \mid u \ll eta \}, \ &\Gamma &= \{ \gamma \in \mathcal{C}([0,1],\mathcal{C}_0^1(\overline{\Omega})) \mid \gamma(0) \in \mathcal{C}^eta, \ \gamma(1) \in \mathcal{C}_lpha \}, \ &\mathcal{T}_\gamma &= \{ s \in [0,1] \mid \gamma(s) \in \mathcal{C}_0^1(\overline{\Omega}) \setminus (\mathcal{C}^eta \cup \mathcal{C}_lpha) \}, \end{aligned}$$

イロト 人間 ト イヨト イヨト

$$\begin{split} \mathcal{C}_{\alpha} &= \{ u \in \mathcal{C}_{0}^{1}(\overline{\Omega}) \mid u \gg \alpha \}, \quad \mathcal{C}^{\beta} = \{ u \in \mathcal{C}_{0}^{1}(\overline{\Omega}) \mid u \ll \beta \}, \\ \mathsf{\Gamma} &= \{ \gamma \in \mathcal{C}([0,1],\mathcal{C}_{0}^{1}(\overline{\Omega})) \mid \gamma(0) \in \mathcal{C}^{\beta}, \ \gamma(1) \in \mathcal{C}_{\alpha} \}, \\ \mathcal{T}_{\gamma} &= \{ s \in [0,1] \mid \gamma(s) \in \mathcal{C}_{0}^{1}(\overline{\Omega}) \setminus (\mathcal{C}^{\beta} \cup \mathcal{C}_{\alpha}) \}, \\ c &:= \inf_{\gamma \in \mathsf{\Gamma}} \max_{s \in \mathcal{T}_{\gamma}} \Phi(\gamma(s)) \\ \Phi(u) &= \frac{1}{2} \int_{\Omega} \left[|\nabla u(x)|^{2} - \lambda_{1}|u|^{2} \right] - \frac{1}{q+1} \int_{\Omega} (u^{+})^{q+1} - \int_{\Omega} fu. \end{split}$$

If $\exists \alpha$ and β lower and upper solutions with $\alpha \not\leq \beta$, let

$$\begin{split} \mathcal{C}_{\alpha} &= \{ u \in \mathcal{C}_{0}^{1}(\overline{\Omega}) \mid u \gg \alpha \}, \quad \mathcal{C}^{\beta} = \{ u \in \mathcal{C}_{0}^{1}(\overline{\Omega}) \mid u \ll \beta \}, \\ \mathcal{\Gamma} &= \{ \gamma \in \mathcal{C}([0,1],\mathcal{C}_{0}^{1}(\overline{\Omega})) \mid \gamma(0) \in \mathcal{C}^{\beta}, \ \gamma(1) \in \mathcal{C}_{\alpha} \}, \\ \mathcal{T}_{\gamma} &= \{ s \in [0,1] \mid \gamma(s) \in \mathcal{C}_{0}^{1}(\overline{\Omega}) \setminus (\mathcal{C}^{\beta} \cup \mathcal{C}_{\alpha}) \}, \\ c &:= \inf_{\gamma \in \Gamma} \max_{s \in \mathcal{T}_{\gamma}} \Phi(\gamma(s)) \\ \Phi(u) &= \frac{1}{2} \int_{\Omega} \left[|\nabla u(x)|^{2} - \lambda_{1}|u|^{2} \right] - \frac{1}{q+1} \int_{\Omega} (u^{+})^{q+1} - \int_{\Omega} fu. \end{split}$$

If $c \in \mathbb{R}$ and Φ satisfies the Palais-Smale condition, then there exists $u \in C_0^1(\overline{\Omega}) \setminus (C^\beta \cup C_\alpha)$ solution of (1) with $\Phi(u) = c$. Problem : $c = -\infty$!

First modified problem :

For $r > 1 - \min \beta$, consider the problem

$$-\Delta u = (\lambda_1 - \frac{1}{r}h_r(u))u + (u^+)^q + f(x) =: g_r(x, u), \quad \text{in } \Omega,$$

$$u = 0, \qquad \qquad \text{on } \partial\Omega,$$

(3)

where

$$egin{array}{rcl} h_r(u) &=& 0, & ext{if } u > -r, \ &=& -(u+r), & ext{if } u \in [-r-1,-r], \ &=& 1, & ext{if } u < -r-1. \end{array}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

First modified problem :

For $r > 1 - \min \beta$, consider the problem

$$-\Delta u = (\lambda_1 - \frac{1}{r}h_r(u))u + (u^+)^q + f(x) =: g_r(x, u), \quad \text{in } \Omega,$$

$$u = 0, \qquad \qquad \text{on } \partial\Omega,$$

(3)

where

$$egin{array}{rcl} h_r(u) &=& 0, & ext{if } u > -r, \ &=& -(u+r), & ext{if } u \in [-r-1,-r], \ &=& 1, & ext{if } u < -r-1. \end{array}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 α and β are still lower and upper solutions of (3).

First modified problem :

For $r > 1 - \min \beta$, consider the problem

$$-\Delta u = (\lambda_1 - \frac{1}{r}h_r(u))u + (u^+)^q + f(x) =: g_r(x, u), \quad \text{in } \Omega,$$

$$u = 0, \qquad \qquad \text{on } \partial\Omega,$$

(3)

where

$$h_r(u) = 0,$$
 if $u > -r,$
= $-(u+r),$ if $u \in [-r-1, -r],$
= $1,$ if $u < -r-1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 α and β are still lower and upper solutions of (3). (3) has a lower solution $\alpha_r \ll \beta$. We use α_r in order to modify the problem.

We use α_r in order to modify the problem.

Second modified problem :

$$-\Delta u = g_r(x, \gamma_r(x, u)), \quad \text{in} \quad \Omega, \ u = 0, \quad \text{on} \quad \partial \Omega,$$

(4)

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

where

$$\gamma_r(x, u) = u, \quad \text{if } u \ge \alpha_r(x), \\ = \alpha_r(x), \quad \text{if } u < \alpha_r(x).$$

We use α_r in order to modify the problem.

Second modified problem :

$$-\Delta u = g_r(x, \gamma_r(x, u)), \quad ext{in} \quad \Omega, \ u = 0, \quad ext{on} \quad \partial \Omega,$$

(4)

where

$$\gamma_r(x, u) = u, \quad \text{if } u \ge \alpha_r(x), \\ = \alpha_r(x), \quad \text{if } u < \alpha_r(x).$$

By the maximum principle, every solution u of (4) satisfies $u \ge \alpha_r$.

Proposition

For all
$$r > r_0$$
, $\exists u_r$ solution of (3) with

$$u_r \not\leq eta, u_r
eq lpha, u_r \geq lpha_r \quad and \quad \overline{\Phi}_r(u_r) = c_r \tag{5}$$

where

$$c_r = \inf_{\gamma \in \Gamma} \max_{s \in T_\gamma} \overline{\Phi}_r(\gamma(s)).$$

Moreover, exists d > 0 such that, for all $r > r_0$, we have $c_r \leq d$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 • ⊙へ⊙

Proposition

For all
$$r > r_0$$
, $\exists u_r$ solution of (3) with

$$u_r \not\leq \beta, u_r \not\geq \alpha, u_r \geq \alpha_r \quad and \quad \overline{\Phi}_r(u_r) = c_r$$
 (5)

where

$$c_r = \inf_{\gamma \in \Gamma} \max_{s \in T_\gamma} \overline{\Phi}_r(\gamma(s)).$$

Moreover, exists d > 0 such that, for all $r > r_0$, we have $c_r \leq d$.

Claim : There exists $K > r_0$ such that, for all r > K, every solution u_r of (3) verifying (5) is such that $u_r > -K$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

By contradiction min $u_n \rightarrow -\infty$, we prove

By contradiction min
$$u_n \to -\infty$$
, we prove
• $\frac{a_n}{\|u_n\|_{H_0^1}} \to -1$, $\frac{w_n}{a_n} \stackrel{H_0^1}{\to} 0$ where $u_n = a_n \varphi_1 + w_n$ and $\int_{\Omega} w_n \varphi_1 = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

By contradiction min
$$u_n \to -\infty$$
, we prove
• $\frac{a_n}{\|\|u_n\|\|_{H_0^1}} \to -1$, $\frac{w_n}{a_n} \stackrel{H_0^1}{\to} 0$ where $u_n = a_n \varphi_1 + w_n$ and $\int_{\Omega} w_n \varphi_1 = 0$.
If we prove $\frac{w_n}{a_n} \stackrel{C_0^1}{\to} 0$ then, for *n* large enough

$$u_n = |a_n|(-\varphi_1 + \frac{w_n}{|a_n|}) \le -\frac{|a_n|}{2}\varphi_1 \ll \beta$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

which contradicts $u_n \not\leq \beta$.

To this aim, let us show

$$\|w_n\|_{W^{2,s}} \lesssim |a_n| + 1 \qquad \text{with } s > N.$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

To this aim, let us show

$$\|w_n\|_{W^{2,s}} \lesssim |a_n| + 1$$
 with $s > N$.

In that case $||w_n||_{C^{1,\alpha}} \leq |a_n| + 1$ with $\alpha > 0$ and by the compact imbedding in C_0^1 , up to a subsequence,

$$\frac{W_n}{a_n} \stackrel{C_0^1}{\to} W.$$

As $\frac{w_n}{a_n} \stackrel{H_0^1}{\to} 0$, we obtain w = 0.

 w_n is solution of

$$-\Delta w_n - \lambda_1 w_n = h_n(u_n)u_n^- + (u_n^+)^q + f(x), \quad \text{in} \quad \Omega,$$

$$w_n = 0, \qquad \text{on} \quad \partial\Omega,$$

$$\int_{\Omega} w_n \varphi_1 = 0.$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 w_n is solution of

$$-\Delta w_n - \lambda_1 w_n = h_n(u_n)u_n^- + (u_n^+)^q + f(x), \quad \text{in} \quad \Omega, \\ w_n = 0, \qquad \text{on} \quad \partial\Omega, \\ \int_{\Omega} w_n \varphi_1 = 0.$$

By regularity, if $h_n(u_n)u_n^- + (u_n^+)^q + f \in L^s(\Omega)$, then $w_n \in W^{2,s}(\Omega)$ and

 $\|w_n\|_{W^{2,s}} \lesssim \|h_n(u_n)u_n^- + (u_n^+)^q + f\|_{L^s} \lesssim \|(u_n^+)^q\|_{L^s} + 1.$ (6)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 w_n is solution of

$$-\Delta w_n - \lambda_1 w_n = h_n(u_n)u_n^- + (u_n^+)^q + f(x), \quad \text{in} \quad \Omega, \\ w_n = 0, \qquad \text{on} \quad \partial\Omega, \\ \int_{\Omega} w_n \varphi_1 = 0.$$

By regularity, if $h_n(u_n)u_n^- + (u_n^+)^q + f \in L^s(\Omega)$, then $w_n \in W^{2,s}(\Omega)$ and

 $\|w_n\|_{W^{2,s}} \lesssim \|h_n(u_n)u_n^- + (u_n^+)^q + f\|_{L^s} \lesssim \|(u_n^+)^q\|_{L^s} + 1.$ (6)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Hence, we need to estimate $||(u_n^+)^q||_{L^s}$ pour s > N.

Summary : We want to prove that $||w_n||_{W^{2,s}} \leq |a_n| + 1$ with s > N.

We want to prove that $||w_n||_{W^{2,s}} \leq |a_n| + 1$ with s > N. We have, for s for which it is meaningfull,

 $\|w_n\|_{W^{2,s}} \lesssim \|(u_n^+)^q\|_{L^s} + 1.$ (7)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We want to prove that $||w_n||_{W^{2,s}} \leq |a_n| + 1$ with s > N. We have, for s for which it is meaningfull,

 $\|w_{n}\|_{W^{2,s}} \lesssim \|(u_{n}^{+})^{q}\|_{L^{s}} + 1.$ (7) We prove $\|u_{n}^{+}\|_{H_{0}^{1}} \leq C \|u_{n}\|_{H_{0}^{1}}^{1/2}$ hence, for $s_{1} = \frac{2N}{N-2}$, $\|(u_{n}^{+})^{q}\|_{L^{\frac{s_{1}}{q}}} \lesssim |a_{n}|^{\frac{q}{2}}$, (8)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We want to prove that $||w_n||_{W^{2,s}} \leq |a_n| + 1$ with s > N. We have, for s for which it is meaningfull,

 $\|w_{n}\|_{W^{2,s}} \lesssim \|(u_{n}^{+})^{q}\|_{L^{s}} + 1.$ (7) We prove $\|u_{n}^{+}\|_{H_{0}^{1}} \leq C \|u_{n}\|_{H_{0}^{1}}^{1/2}$ hence, for $s_{1} = \frac{2N}{N-2}$, $\|(u_{n}^{+})^{q}\|_{L^{\frac{s_{1}}{q}}} \lesssim |a_{n}|^{\frac{q}{2}}$, (8) and $\int_{\Omega} (u_{n}^{+})^{q+1} \leq C \|u_{n}\|_{H_{0}^{1}}$ i.e. $\|(u_{n}^{+})^{q}\|_{L^{\frac{q+1}{q}}} \lesssim |a_{n}|^{\frac{q}{q+1}}$. (9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

We want to prove that $||w_n||_{W^{2,s}} \leq |a_n| + 1$ with s > N. We have, for s for which it is meaningfull,

$$\begin{split} \|w_{n}\|_{W^{2,s}} \lesssim \|(u_{n}^{+})^{q}\|_{L^{s}} + 1. \tag{7} \\ \text{We prove } \|u_{n}^{+}\|_{H_{0}^{1}} \leq C \|u_{n}\|_{H_{0}^{1}}^{1/2} \text{ hence, for } s_{1} = \frac{2N}{N-2}, \\ \|(u_{n}^{+})^{q}\|_{L^{\frac{s_{1}}{q}}} \lesssim |a_{n}|^{\frac{q}{2}}, \tag{8} \\ \text{and } \int_{\Omega} (u_{n}^{+})^{q+1} \leq C \|u_{n}\|_{H_{0}^{1}} \text{ i.e.} \\ \|(u_{n}^{+})^{q}\|_{L^{\frac{q+1}{q}}} \lesssim |a_{n}|^{\frac{q}{q+1}}. \tag{9} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

(8) is better for the regularity, (9) is better for the exponent.

We want to prove that $||w_n||_{W^{2,s}} \leq |a_n| + 1$ with s > N. We have, for s for which it is meaningfull,

 $\|w_{n}\|_{W^{2,s}} \lesssim \|(u_{n}^{+})^{q}\|_{L^{s}} + 1.$ (7) We prove $\|u_{n}^{+}\|_{H_{0}^{1}} \leq C \|u_{n}\|_{H_{0}^{1}}^{1/2}$ hence, for $s_{1} = \frac{2N}{N-2}$, $\|(u_{n}^{+})^{q}\|_{L^{\frac{s_{1}}{q}}} \lesssim |a_{n}|^{\frac{q}{2}}$, (8) and $\int_{\Omega} (u_{n}^{+})^{q+1} \leq C \|u_{n}\|_{H_{0}^{1}}$ i.e. $\|(u_{n}^{+})^{q}\|_{L^{\frac{q+1}{q}}} \lesssim |a_{n}|^{\frac{q}{q+1}}$. (9)

(8) is better for the regularity, (9) is better for the exponent.

Hence, we make a bootstrap, "combining" both in order to gain regularity but keeping an exponent smaller than 1. To this aim we need the condition $q < \frac{N+1}{N-1}$.

Third approach : Nehari

Theorem (Cuesta-C.D. (2015))

For all $f \in L^2(\Omega)$ s.t. $\int_{\Omega} f \varphi_1 < 0$ and $1 < q \leq \frac{N+2}{N-2}$, there exists $\epsilon > 0$ s.t., for all $0 < t < \epsilon$,

$$\begin{cases} -\Delta u = \lambda_1 u + (u^+)^q + t f & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

has at least one solution s.t. $\int_{\Omega} fu < 0$.

Third approach : Nehari

Theorem (Cuesta-C.D. (2015))

For all $f \in L^2(\Omega)$ s.t. $\int_{\Omega} f \varphi_1 < 0$ and $1 < q \leq \frac{N+2}{N-2}$, there exists $\epsilon > 0$ s.t., for all $0 < t < \epsilon$,

$$\begin{cases} -\Delta u = \lambda_1 u + (u^+)^q + t f & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

has at least one solution s.t. $\int_{\Omega} f u < 0$.

Observe that here $f \in L^2(\Omega)$ (even $f \in L^{\frac{2N}{N+2}}(\Omega)$), $1 < q \leq 2^* - 1 = \frac{N+2}{N-2}$!

Third approach : Nehari

Theorem (Cuesta-C.D. (2015))

For all $f \in L^2(\Omega)$ s.t. $\int_{\Omega} f \varphi_1 < 0$ and $1 < q \leq \frac{N+2}{N-2}$, there exists $\epsilon > 0$ s.t., for all $0 < t < \epsilon$,

$$\begin{cases} -\Delta u = \lambda_1 u + (u^+)^q + t f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

has at least one solution s.t. $\int_{\Omega} f u < 0$.

Observe that here $f \in L^2(\Omega)$ (even $f \in L^{\frac{2N}{N+2}}(\Omega)$), $1 < q \leq 2^* - 1 = \frac{N+2}{N-2}$! But $t ||f||_{L^2}$ small.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ④

The functional corresponding to the problem is

$$J(u) := rac{1}{2}N(u) - rac{1}{q+1}S(u) - tL(u)$$
 $N(u) := \int_{\Omega} |\nabla u|^2 - \lambda_1 |u|^2; \quad S(u) := \int_{\Omega} (u^+)^{q+1}; \quad L(u) := \int_{\Omega} fu.$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The functional corresponding to the problem is

$$J(u) := \frac{1}{2}N(u) - \frac{1}{q+1}S(u) - tL(u)$$
$$N(u) := \int_{\Omega} |\nabla u|^2 - \lambda_1 |u|^2; \quad S(u) := \int_{\Omega} (u^+)^{q+1}; \quad L(u) := \int_{\Omega} fu.$$

The Nehari manifold associated is

$$\mathcal{N} := \{ u \in H^1_0(\Omega) \mid \langle J'(u), u \rangle = N(u) - S(u) - t L(u) = 0 \}.$$

Let us set
$$\forall u \neq 0, \ s \geq 0,$$

 $j_u(s) := J(su) = \frac{s^2}{2}N(u) - \frac{s^{q+1}}{q+1}S(u) - s \ t \ L(u),$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The functional corresponding to the problem is

$$J(u) := \frac{1}{2}N(u) - \frac{1}{q+1}S(u) - tL(u)$$
$$N(u) := \int_{\Omega} |\nabla u|^2 - \lambda_1 |u|^2; \quad S(u) := \int_{\Omega} (u^+)^{q+1}; \quad L(u) := \int_{\Omega} fu.$$

The Nehari manifold associated is

$$\mathcal{N} := \{ u \in H^1_0(\Omega) \mid \langle J'(u), u \rangle = N(u) - S(u) - t L(u) = 0 \}.$$

Let us set
$$\forall u \neq 0, s \geq 0$$
,
 $j_u(s) := J(su) = \frac{s^2}{2}N(u) - \frac{s^{q+1}}{q+1}S(u) - s t L(u)$,
We then have $\mathcal{N} = \{u \in H_0^1(\Omega) \mid j'_u(1) = 0\}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The maximum of J on \mathcal{N}

$$\begin{aligned} \mathcal{N}^{-} &:= \{ u \in H^{1}_{0}(\Omega) \mid j'_{u}(1) = 0, j''_{u}(1) < 0 \} \\ &= \{ u \in \mathcal{N} \mid N(u) < q S(u) \}; \end{aligned}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The maximum of J on \mathcal{N}

$$\begin{aligned} \mathcal{N}^{-} &:= \{ u \in H^{1}_{0}(\Omega) \mid j'_{u}(1) = 0, j''_{u}(1) < 0 \} \\ &= \{ u \in \mathcal{N} \mid N(u) < q S(u) \}; \end{aligned}$$

We denote

$$\begin{split} \mathcal{L}^{-} &= \{ u \in H_{0}^{1}(\Omega) \mid \ L(u) < 0 \}, \\ \mathcal{L}_{0} &= \{ u \in H_{0}^{1}(\Omega) \mid \ L(u) = 0 \}, \\ \mathcal{L}_{0}^{-} &:= \mathcal{L}^{-} \cup \mathcal{L}_{0}. \end{split}$$

Lemma (Projection on Nehari)

If S(u) > 0, $L(u) \le 0$ and L(u) < 0 in case N(u) = 0, then there exists a unique $t_1 = t_1(u) > 0$ such that $t_1u \in \mathcal{N}$. Moreover $t_1u \in \mathcal{N}^-$ and j_u has a global maximum in t_1 .

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Proposition

If
$$q\in]1,rac{N+2}{N-2}]$$
 and $f\in L^2(\Omega)$ satisfies $\int_\Omega farphi_1<0$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Proposition

If
$$q \in]1, rac{N+2}{N-2}]$$
 and $f \in L^2(\Omega)$ satisfies $\int_\Omega f arphi_1 < 0$.

Then

(i)
$$\inf_{\mathcal{N}\cap\mathcal{L}_0^-} J > 0$$
;

Proposition

If
$$q \in]1, rac{N+2}{N-2}]$$
 and $f \in L^2(\Omega)$ satisfies $\int_\Omega f arphi_1 < 0$.

Then

(i)
$$\inf_{\mathcal{N}\cap\mathcal{L}_0^-} J > 0$$
;
(ii) If $\inf_{u\in\mathcal{N}\cap\mathcal{L}_0^-} J(u) < \inf_{u\in\mathcal{N}\cap\mathcal{L}_0} J(u)$,
then $\exists u_0 \in \mathcal{N} \cap \mathcal{L}^-$ solution of (1) such that
 $J(u_0) = \inf_{u\in\mathcal{N}\cap\mathcal{L}_0^-} J(u) = \inf_{u\in\mathcal{N}^-\cap\mathcal{L}_0^-} J(u)$.

(ロ)、(型)、(E)、(E)、 E) の(()

Proof of the Theorem.

We need to see : $\inf_{u \in \mathcal{N} \cap \mathcal{L}_0^-} J(u) < \inf_{u \in \mathcal{N} \cap \mathcal{L}_0} J(u)$

We need to see : $\inf_{u \in \mathcal{N} \cap \mathcal{L}_0^-} J(u) < \inf_{u \in \mathcal{N} \cap \mathcal{L}_0} J(u)$

For $u \in \mathcal{N} \cap \mathcal{L}_0$, we have S(u) = N(u) and L(u) = 0. Hence $J(u) = (\frac{1}{2} - \frac{1}{q+1})N(u)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We need to see : $\inf_{u \in \mathcal{N} \cap \mathcal{L}_0^-} J(u) < \inf_{u \in \mathcal{N} \cap \mathcal{L}_0} J(u)$

For $u \in \mathcal{N} \cap \mathcal{L}_0$, we have S(u) = N(u) and L(u) = 0. Hence $J(u) = (\frac{1}{2} - \frac{1}{q+1})N(u)$. We prove that, for every t, we have

$$\inf_{u\in\mathcal{N}\cap\mathcal{L}_0}J(u)\geq c(f). \tag{10}$$

We need to see : $\inf_{u \in \mathcal{N} \cap \mathcal{L}_0^-} J(u) < \inf_{u \in \mathcal{N} \cap \mathcal{L}_0} J(u)$ For $u \in \mathcal{N} \cap \mathcal{L}_0$, we have S(u) = N(u) and L(u) = 0. Hence $J(u) = (\frac{1}{2} - \frac{1}{q+1})N(u)$. We prove that, for every t, we have $\inf_{u \in \mathcal{N} \cap \mathcal{L}_0} J(u) \ge c(f)$. (10)

Moreover $t_1\varphi_1 \in \mathcal{N}^- \cap \mathcal{L}^-$ with $t_1 = (t \frac{|\int_{\Omega} f\varphi_1|}{\int_{\Omega} \varphi_1^{q+1}})^{1/q}$ and hence

$$\inf_{u\in\mathcal{N}\cap\mathcal{L}_0^-}J(u)\leq J(t_1\varphi_1)=\frac{q}{q+1}t\,t_1\Big|\int_{\Omega}f\varphi_1\Big|.$$
 (11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

We need to see : $\inf_{u \in \mathcal{N} \cap \mathcal{L}_0^-} J(u) < \inf_{u \in \mathcal{N} \cap \mathcal{L}_0} J(u)$ For $u \in \mathcal{N} \cap \mathcal{L}_0$, we have S(u) = N(u) and L(u) = 0. Hence $J(u) = (\frac{1}{2} - \frac{1}{q+1})N(u)$. We prove that, for every t, we have $\inf_{u \in \mathcal{N} \cap \mathcal{L}_0} J(u) \ge c(f)$. (10)

Moreover $t_1\varphi_1 \in \mathcal{N}^- \cap \mathcal{L}^-$ with $t_1 = (t \frac{|\int_{\Omega} f\varphi_1|}{\int_{\Omega} \varphi_1^{q+1}})^{1/q}$ and hence

$$\inf_{u\in\mathcal{N}\cap\mathcal{L}_0^-}J(u)\leq J(t_1\varphi_1)=\frac{q}{q+1}t\,t_1\Big|\int_{\Omega}f\varphi_1\Big|.$$
 (11)

Hence, from (10) and (11), we will have our result if t is small enough.

Superlinear and resonant Necessary condition Approach 1 : degree Approach 2 : lower upper solutions Approach 3 : Nehari

Thank you for your attention.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Superlinear and resonant Necessary condition Approach 1 : degree Approach 2 : lower upper solutions Approach 3 : Nehari

Thank you for your attention.

Questions :???

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○