Résultats d'existence pour des problèmes elliptiques superlinéaires et résonants trois approches

Mabel Cuesta ${ }^{1}$ et Colette De Coster ${ }^{2}$
${ }^{1}$ LMPA Université du Littoral Côte d'Opale ULCO, Calais
${ }^{2}$ LAMAV Institut des Sciences et Techniques de Valenciennes, Valenciennes

Pau, le 23 juin 2016

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded regular domain, $N \geq 3$ and $f \in L^{2}(\Omega)$.
Problem I:

$$
\left\{\begin{array}{c}
-\Delta u=\lambda_{1} u+\left(u^{+}\right)^{q}+f(x) \quad \text { in } \Omega, \tag{1}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded regular domain, $N \geq 3$ and $f \in L^{2}(\Omega)$.
Problem I:

$$
\left\{\begin{array}{c}
-\Delta u=\lambda_{1} u+\left(u^{+}\right)^{q}+f(x) \quad \text { in } \Omega, \tag{1}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

- $\lambda_{1}=$ first eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega)$
- $q>1$ (superlinear problem)

Problem (1) is resonant and superlinear in the sense that $g(s)=\left(s^{+}\right)^{q}(q>1)$ satisfies

$$
\lim _{s \rightarrow-\infty} g(s)=0, \quad \lim _{s \rightarrow+\infty} \frac{g(s)}{s}=+\infty
$$

Problem (1) is resonant and superlinear in the sense that $g(s)=\left(s^{+}\right)^{q}(q>1)$ satisfies

$$
\lim _{s \rightarrow-\infty} g(s)=0, \quad \lim _{s \rightarrow+\infty} \frac{g(s)}{s}=+\infty
$$

We assume that the exponent q is sub-critical or critical :

$$
q \leq 2^{*}-1:=\frac{2 N}{N-2}-1=\frac{N+2}{N-2} .
$$

Problem (1) is resonant and superlinear in the sense that $g(s)=\left(s^{+}\right)^{q}(q>1)$ satisfies

$$
\lim _{s \rightarrow-\infty} g(s)=0, \quad \lim _{s \rightarrow+\infty} \frac{g(s)}{s}=+\infty
$$

We assume that the exponent q is sub-critical or critical :

$$
q \leq 2^{*}-1:=\frac{2 N}{N-2}-1=\frac{N+2}{N-2} .
$$

Problem II :

$$
\left\{\begin{array}{c}
-\Delta_{p} u=\lambda_{1}|u|^{p-2} u+\left(u^{+}\right)^{q}+f(x) \quad \text { in } \Omega, \tag{2}\\
u \in W_{0}^{1, p}(\Omega)
\end{array}\right.
$$

A necessary condition for the existence is

$$
\int_{\Omega} f \varphi_{1}\left(=-\int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}\right) \leq 0
$$

A necessary condition for the existence is

$$
\int_{\Omega} f \varphi_{1}\left(=-\int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}\right) \leq 0
$$

Sufficient condition : If $\int_{\Omega} f \varphi_{1}=0$
(R) $f \in L^{r}(\Omega)$ for some $r>N$
and v is the unique solution $v \in\left\langle\varphi_{1}\right\rangle^{\perp}$ of
(L)

$$
\begin{array}{cl}
-\Delta v=\lambda_{1} v+f(x) & \text { in } \Omega, \\
v=0 & \text { on } \partial \Omega
\end{array}
$$

$u=v+t \varphi_{1}$ with t s.t. $u \leq 0$ is a solution of Problem (1).

First approch : degree theory

Theorem (De Figueiredo-Cuesta-Srikanth (2003))
Let $1<q<\frac{N+1}{N-1}$ and $f \in L^{r}(\Omega)$ for some $r>N$ with

$$
\int_{\Omega} f \varphi_{1}<0 .
$$

Then the Problem (1) has at least one solution.

First approch : degree theory

Theorem (De Figueiredo-Cuesta-Srikanth (2003))

Let $1<q<\frac{N+1}{N-1}$ and $f \in L^{r}(\Omega)$ for some $r>N$ with

$$
\int_{\Omega} f \varphi_{1}<0 .
$$

Then the Problem (1) has at least one solution.
$p_{B T}:=\frac{N+1}{N-1}$ is the "exponent of Brézis-Turner"

A-priori bounds

- u solution $\Rightarrow \int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}=-\int_{\Omega} f \varphi_{1} \leq C$

A-priori bounds

- u solution $\Rightarrow \int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}=-\int_{\Omega} f \varphi_{1} \leq C$
- We write $u=t \varphi_{1}+w$ with $w \in\left\langle\varphi_{1}\right\rangle^{\perp}$

$$
t=\int_{\Omega} u^{+} \varphi_{1}-\int_{\Omega} u^{-} \varphi_{1} d x \leq C\left(\int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}\right)^{1 / q} \leq C
$$

A-priori bounds

- u solution $\Rightarrow \int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}=-\int_{\Omega} f \varphi_{1} \leq C$
- We write $u=t \varphi_{1}+w$ with $w \in\left\langle\varphi_{1}\right\rangle^{\perp}$

$$
t=\int_{\Omega} u^{+} \varphi_{1}-\int_{\Omega} u^{-} \varphi_{1} d x \leq C\left(\int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}\right)^{1 / q} \leq C
$$

As $u^{+} \not \equiv 0$ we have $t \geq-C\|w\|_{C_{0}^{1}}$.

- Using the Wirtinger inequality

$$
\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right)\|\nabla w\|_{2}^{2} \leq C\|f\|_{r}\|\nabla w\|_{2}+\left|\int_{\Omega}\left(u^{+}\right)^{q} w d x\right| .
$$

A-priori bounds

- u solution $\Rightarrow \int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}=-\int_{\Omega} f \varphi_{1} \leq C$
- We write $u=t \varphi_{1}+w$ with $w \in\left\langle\varphi_{1}\right\rangle^{\perp}$

$$
t=\int_{\Omega} u^{+} \varphi_{1}-\int_{\Omega} u^{-} \varphi_{1} d x \leq C\left(\int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}\right)^{1 / q} \leq C
$$

As $u^{+} \not \equiv 0$ we have $t \geq-C\|w\|_{C_{0}^{1}}$.

- Using the Wirtinger inequality

$$
\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right)\|\nabla w\|_{2}^{2} \leq C\|f\|_{r}\|\nabla w\|_{2}+\left|\int_{\Omega}\left(u^{+}\right)^{q} w d x\right| .
$$

It remains to estimate $\left|\int_{\Omega}\left(u^{+}\right)^{q} w d x\right|$.

Hardy-Sobolev inequality :

$$
\int_{\Omega} \frac{|v|^{t}}{\varphi_{1}^{\tau t}} \leq C\|v\|^{t}
$$

for every $0 \leq \tau \leq 1$ and $t>1$ such that $\frac{1}{t}=\frac{1}{2}-\frac{1-\tau}{N}$.

Hardy-Sobolev inequality :

$$
\int_{\Omega} \frac{|v|^{t}}{\varphi_{1}^{\tau t}} \leq C\|v\|^{t}
$$

for every $0 \leq \tau \leq 1$ and $t>1$ such that $\frac{1}{t}=\frac{1}{2}-\frac{1-\tau}{N}$.
By Hardy-Sobolev, we see

$$
\left|\int_{\Omega}\left(u^{+}\right)^{q} w\right| \leq C\left(\int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}\right)^{\alpha}\|w\|^{\delta} .
$$

Hardy-Sobolev inequality :

$$
\int_{\Omega} \frac{|v|^{t}}{\varphi_{1}^{t}} \leq C\|v\|^{t}
$$

for every $0 \leq \tau \leq 1$ and $t>1$ such that $\frac{1}{t}=\frac{1}{2}-\frac{1-\tau}{N}$.
By Hardy-Sobolev, we see

$$
\left|\int_{\Omega}\left(u^{+}\right)^{q} w\right| \leq C\left(\int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}\right)^{\alpha}\|w\|^{\delta} .
$$

and hence

$$
\|w\|^{2} \leq C\left(\|f\|_{L^{s}}\right)\left(1+\|w\|^{\delta}+\|w\|\right)
$$

with $\delta \in] 1,2\left[\right.$ as $1<q<\frac{N+1}{N-1}$.

Hardy-Sobolev inequality :

$$
\int_{\Omega} \frac{|v|^{t}}{\varphi_{1}^{\tau t}} \leq C\|v\|^{t}
$$

for every $0 \leq \tau \leq 1$ and $t>1$ such that $\frac{1}{t}=\frac{1}{2}-\frac{1-\tau}{N}$.
By Hardy-Sobolev, we see

$$
\left|\int_{\Omega}\left(u^{+}\right)^{q} w\right| \leq C\left(\int_{\Omega}\left(u^{+}\right)^{q} \varphi_{1}\right)^{\alpha}\|w\|^{\delta} .
$$

and hence

$$
\|w\|^{2} \leq C\left(\|f\|_{L^{s}}\right)\left(1+\|w\|^{\delta}+\|w\|\right)
$$

with $\delta \in] 1,2\left[\right.$ as $1<q<\frac{N+1}{N-1}$.
Hence $\|w\|$ is bounded and by bootstrap $\|w\|_{C_{0}^{1}}$ also.

Second approach : lower and upper solutions

Theorem (Cuesta-C.D. (2013))

Let $1<q<\frac{N+1}{N-1}$ and $f \in L^{r}(\Omega)$ for $r>N$ such that

$$
\int_{\Omega} f \varphi_{1}<0 .
$$

Then the Problem (1) has at least one solution.

Second approach : lower and upper solutions

Theorem (Cuesta-C.D. (2013))

Let $1<q<\frac{N+1}{N-1}$ and $f \in L^{r}(\Omega)$ for $r>N$ such that

$$
\int_{\Omega} f \varphi_{1}<0 .
$$

Then the Problem (1) has at least one solution.

- The problem (1) has a lower solution $\alpha \gg 0$.

Second approach : lower and upper solutions

Theorem (Cuesta-C.D. (2013))

Let $1<q<\frac{N+1}{N-1}$ and $f \in L^{r}(\Omega)$ for $r>N$ such that

$$
\int_{\Omega} f \varphi_{1}<0 .
$$

Then the Problem (1) has at least one solution.

- The problem (1) has a lower solution $\alpha \gg 0$.
- The problem (1) has an upper solution $\beta \ll 0$.

Theorem (non well ordered lower and upper solutions (C.D. 2009))

If $\exists \alpha$ and β lower and upper solutions with $\alpha \not \leq \beta$, let

Theorem (non well ordered lower and upper solutions (C.D. 2009))

If $\exists \alpha$ and β lower and upper solutions with $\alpha \not \subset \beta$, let

$$
C_{\alpha}=\left\{u \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \mid u \gg \alpha\right\}, \quad C^{\beta}=\left\{u \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \mid u \ll \beta\right\},
$$

Theorem (non well ordered lower and upper solutions (C.D. 2009))

If $\exists \alpha$ and β lower and upper solutions with $\alpha \not \leq \beta$, let

$$
\begin{gathered}
C_{\alpha}=\left\{u \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \mid u \gg \alpha\right\}, \quad C^{\beta}=\left\{u \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \mid u \ll \beta\right\}, \\
\Gamma=\left\{\gamma \in \mathcal{C}\left([0,1], \mathcal{C}_{0}^{1}(\bar{\Omega})\right) \mid \gamma(0) \in C^{\beta}, \gamma(1) \in C_{\alpha}\right\},
\end{gathered}
$$

Theorem (non well ordered lower and upper solutions (C.D. 2009))

If $\exists \alpha$ and β lower and upper solutions with $\alpha \not \leq \beta$, let

$$
\begin{gathered}
\mathcal{C}_{\alpha}=\left\{u \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \mid u \gg \alpha\right\}, \quad C^{\beta}=\left\{u \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \mid u \ll \beta\right\}, \\
\Gamma=\left\{\gamma \in \mathcal{C}\left([0,1], \mathcal{C}_{0}^{1}(\bar{\Omega})\right) \mid \gamma(0) \in C^{\beta}, \gamma(1) \in C_{\alpha}\right\}, \\
T_{\gamma}=\left\{s \in[0,1] \mid \gamma(s) \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \backslash\left(C^{\beta} \cup C_{\alpha}\right)\right\},
\end{gathered}
$$

Theorem (non well ordered lower and upper solutions (C.D. 2009))

If $\exists \alpha$ and β lower and upper solutions with $\alpha \not \leq \beta$, let

$$
\begin{gathered}
C_{\alpha}=\left\{u \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \mid u \gg \alpha\right\}, \quad C^{\beta}=\left\{u \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \mid u \ll \beta\right\}, \\
\Gamma=\left\{\gamma \in \mathcal{C}\left([0,1], \mathcal{C}_{0}^{1}(\bar{\Omega})\right) \mid \gamma(0) \in C^{\beta}, \gamma(1) \in C_{\alpha}\right\}, \\
T_{\gamma}=\left\{s \in[0,1] \mid \gamma(s) \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \backslash\left(C^{\beta} \cup C_{\alpha}\right)\right\}, \\
C:=\inf _{\gamma \in \Gamma} \max _{s \in T_{\gamma}} \Phi(\gamma(s)) \\
\Phi(u)=\frac{1}{2} \int_{\Omega}\left[|\nabla u(x)|^{2}-\lambda_{1}|u|^{2}\right]-\frac{1}{q+1} \int_{\Omega}\left(u^{+}\right)^{q+1}-\int_{\Omega} f u .
\end{gathered}
$$

Theorem (non well ordered lower and upper solutions (C.D. 2009))

If $\exists \alpha$ and β lower and upper solutions with $\alpha \not \leq \beta$, let

$$
\begin{gathered}
C_{\alpha}=\left\{u \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \mid u \gg \alpha\right\}, \quad C^{\beta}=\left\{u \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \mid u \ll \beta\right\}, \\
\Gamma=\left\{\gamma \in \mathcal{C}\left([0,1], \mathcal{C}_{0}^{1}(\bar{\Omega})\right) \mid \gamma(0) \in C^{\beta}, \gamma(1) \in C_{\alpha}\right\}, \\
T_{\gamma}=\left\{s \in[0,1] \mid \gamma(s) \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \backslash\left(C^{\beta} \cup C_{\alpha}\right)\right\}, \\
c:=\inf _{\gamma \in \Gamma} \max _{s \in T_{\gamma}} \Phi(\gamma(s)) \\
\Phi(u)=\frac{1}{2} \int_{\Omega}\left[|\nabla u(x)|^{2}-\lambda_{1}|u|^{2}\right]-\frac{1}{q+1} \int_{\Omega}\left(u^{+}\right)^{q+1}-\int_{\Omega} f u .
\end{gathered}
$$

If $c \in \mathbb{R}$ and Φ satisfies the Palais-Smale condition, then there exists $u \in \mathcal{C}_{0}^{1}(\bar{\Omega}) \backslash\left(C^{\beta} \cup C_{\alpha}\right)$ solution of (1) with $\Phi(u)=c$.

Problem : $c=-\infty$!

Problem : $c=-\infty$! The problem comes from the "negative".

Problem : $c=-\infty$! The problem comes from the "negative".
First modified problem :
For $r>1-\min \beta$, consider the problem

$$
\begin{array}{cc}
-\Delta u=\left(\lambda_{1}-\frac{1}{r} h_{r}(u)\right) u+\left(u^{+}\right)^{q}+f(x)=: g_{r}(x, u), & \text { in } \Omega, \\
u=0, & \text { on } \partial \Omega, \tag{3}
\end{array}
$$

where

$$
\begin{aligned}
h_{r}(u) & =0, & & \text { if } u>-r, \\
& =-(u+r), & & \text { if } u \in[-r-1,-r], \\
& =1, & & \text { if } u<-r-1 .
\end{aligned}
$$

Problem : $c=-\infty$! The problem comes from the "negative".
First modified problem :
For $r>1-\min \beta$, consider the problem

$$
\begin{array}{cc}
-\Delta u=\left(\lambda_{1}-\frac{1}{r} h_{r}(u)\right) u+\left(u^{+}\right)^{q}+f(x)=: g_{r}(x, u), & \text { in } \Omega, \tag{3}\\
u=0, & \text { on } \partial \Omega,
\end{array}
$$

where

$$
\begin{aligned}
h_{r}(u) & =0, & & \text { if } u>-r, \\
& =-(u+r), & & \text { if } u \in[-r-1,-r], \\
& =1, & & \text { if } u<-r-1 .
\end{aligned}
$$

α and β are still lower and upper solutions of (3).

Problem : $c=-\infty$! The problem comes from the "negative".

First modified problem :

For $r>1-\min \beta$, consider the problem

$$
\begin{array}{cc}
-\Delta u=\left(\lambda_{1}-\frac{1}{r} h_{r}(u)\right) u+\left(u^{+}\right)^{q}+f(x)=: g_{r}(x, u), & \text { in } \Omega, \tag{3}\\
u=0, & \text { on } \partial \Omega,
\end{array}
$$

where

$$
\begin{aligned}
h_{r}(u) & =0, & & \text { if } u>-r, \\
& =-(u+r), & & \text { if } u \in[-r-1,-r], \\
& =1, & & \text { if } u<-r-1 .
\end{aligned}
$$

α and β are still lower and upper solutions of (3).
(3) has a lower solution $\alpha_{r} \ll \beta$.

We use α_{r} in order to modify the problem.

We use α_{r} in order to modify the problem.

Second modified problem :

$$
\begin{array}{ccc}
-\Delta u=g_{r}\left(x, \gamma_{r}(x, u)\right), & \text { in } \quad \Omega, \tag{4}\\
u=0, & \text { on } \quad \partial \Omega,
\end{array}
$$

where

$$
\begin{aligned}
\gamma_{r}(x, u) & =u, & & \text { if } u \geq \alpha_{r}(x), \\
& =\alpha_{r}(x), & & \text { if } u<\alpha_{r}(x) .
\end{aligned}
$$

We use α_{r} in order to modify the problem.

Second modified problem :

$$
\begin{array}{ccc}
-\Delta u=g_{r}\left(x, \gamma_{r}(x, u)\right), & \text { in } \quad \Omega, \tag{4}\\
u=0, & \text { on } \quad \partial \Omega,
\end{array}
$$

where

$$
\begin{aligned}
\gamma_{r}(x, u) & =u, & & \text { if } u \geq \alpha_{r}(x), \\
& =\alpha_{r}(x), & & \text { if } u<\alpha_{r}(x) .
\end{aligned}
$$

By the maximum principle, every solution u of (4) satisfies $u \geq \alpha_{r}$.

Proposition

For all $r>r_{0}, \exists u_{r}$ solution of (3) with

$$
\begin{equation*}
u_{r} \not \leq \beta, u_{r} \not \geq \alpha, u_{r} \geq \alpha_{r} \text { and } \bar{\Phi}_{r}\left(u_{r}\right)=c_{r} \tag{5}
\end{equation*}
$$

where

$$
c_{r}=\inf _{\gamma \in \Gamma} \max _{s \in T_{\gamma}} \bar{\Phi}_{r}(\gamma(s)) .
$$

Moreover, exists $d>0$ such that, for all $r>r_{0}$, we have $c_{r} \leq d$.

Proposition

For all $r>r_{0}, \exists u_{r}$ solution of (3) with

$$
\begin{equation*}
u_{r} \not \leq \beta, u_{r} \nsupseteq \alpha, u_{r} \geq \alpha_{r} \quad \text { and } \quad \bar{\Phi}_{r}\left(u_{r}\right)=c_{r} \tag{5}
\end{equation*}
$$

where

$$
c_{r}=\inf _{\gamma \in \Gamma} \max _{s \in T_{\gamma}} \bar{\Phi}_{r}(\gamma(s)) .
$$

Moreover, exists $d>0$ such that, for all $r>r_{0}$, we have $c_{r} \leq d$.

Claim : There exists $K>r_{0}$ such that, for all $r>K$, every solution u_{r} of (3) verifying (5) is such that $u_{r}>-K$.

By contradiction $\min u_{n} \rightarrow-\infty$, we prove

By contradiction $\min u_{n} \rightarrow-\infty$, we prove

- $\frac{a_{n}}{\left\|u_{n}\right\|_{H_{0}^{1}}} \rightarrow-1, \quad \frac{w_{n}}{a_{n}} \xrightarrow{H_{0}^{1}} 0$ where $u_{n}=a_{n} \varphi_{1}+w_{n}$ and $\int_{\Omega} w_{n} \varphi_{1}=0$.

By contradiction $\min u_{n} \rightarrow-\infty$, we prove

- $\frac{a_{n}}{\left\|u_{n}\right\|_{H_{0}^{1}}} \rightarrow-1, \quad \frac{w_{n}}{a_{n}} \xrightarrow{H_{0}^{1}} 0$ where $u_{n}=a_{n} \varphi_{1}+w_{n}$ and $\int_{\Omega} w_{n} \varphi_{1}=0$.

If we prove $\frac{w_{n}}{a_{n}} \xrightarrow{C_{0}^{1}} 0$ then, for n large enough

$$
u_{n}=\left|a_{n}\right|\left(-\varphi_{1}+\frac{w_{n}}{\left|a_{n}\right|}\right) \leq-\frac{\left|a_{n}\right|}{2} \varphi_{1} \ll \beta
$$

which contradicts $u_{n} \not \leq \beta$.

To this aim, let us show

$$
\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left|a_{n}\right|+1 \quad \text { with } s>N .
$$

To this aim, let us show

$$
\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left|a_{n}\right|+1 \quad \text { with } s>N .
$$

In that case $\left\|w_{n}\right\|_{C^{1, \alpha}} \lesssim\left|a_{n}\right|+1$ with $\alpha>0$ and by the compact imbedding in C_{0}^{1}, up to a subsequence,

$$
\frac{w_{n}}{a_{n}} \xrightarrow{C_{0}^{1}} w .
$$

As $\frac{w_{n}}{a_{n}} \xrightarrow{H_{0}^{1}} 0$, we obtain $w=0$.
w_{n} is solution of

$$
\begin{array}{cc}
-\Delta w_{n}-\lambda_{1} w_{n}=h_{n}\left(u_{n}\right) u_{n}^{-}+\left(u_{n}^{+}\right)^{q}+f(x), & \text { in } \Omega, \\
w_{n}=0, & \text { on } \partial \Omega, \\
\int_{\Omega} \varphi_{1}=0 . &
\end{array}
$$

w_{n} is solution of

$$
\begin{array}{cc}
-\Delta w_{n}-\lambda_{1} w_{n}=h_{n}\left(u_{n}\right) u_{n}^{-}+\left(u_{n}^{+}\right)^{q}+f(x), & \text { in } \Omega, \\
w_{n}=0, & \text { on } \partial \Omega, \\
\int_{\Omega} \varphi_{1}=0 . &
\end{array}
$$

By regularity, if $h_{n}\left(u_{n}\right) u_{n}^{-}+\left(u_{n}^{+}\right)^{q}+f \in L^{s}(\Omega)$, then
$w_{n} \in W^{2, s}(\Omega)$ and

$$
\begin{equation*}
\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left\|h_{n}\left(u_{n}\right) u_{n}^{-}+\left(u_{n}^{+}\right)^{q}+f\right\|_{L^{s}} \lesssim\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{s}}+1 . \tag{6}
\end{equation*}
$$

w_{n} is solution of

$$
\begin{array}{cc}
-\Delta w_{n}-\lambda_{1} w_{n}=h_{n}\left(u_{n}\right) u_{n}^{-}+\left(u_{n}^{+}\right)^{q}+f(x), & \text { in } \Omega, \\
w_{n}=0, & \text { on } \partial \Omega, \\
\int_{\Omega} w_{n} \varphi_{1}=0 . &
\end{array}
$$

By regularity, if $h_{n}\left(u_{n}\right) u_{n}^{-}+\left(u_{n}^{+}\right)^{q}+f \in L^{s}(\Omega)$, then
$w_{n} \in W^{2, s}(\Omega)$ and

$$
\begin{equation*}
\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left\|h_{n}\left(u_{n}\right) u_{n}^{-}+\left(u_{n}^{+}\right)^{q}+f\right\|_{L^{s}} \lesssim\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{s}}+1 . \tag{6}
\end{equation*}
$$

Hence, we need to estimate $\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{s}}$ pour $s>N$.

Summary :

We want to prove that $\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left|a_{n}\right|+1$ with $s>N$.

Summary :

We want to prove that $\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left|a_{n}\right|+1$ with $s>N$.
We have, for s for which it is meaningfull,

$$
\begin{equation*}
\left\|w_{n}\right\|_{w^{2}, s} \lesssim\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{s}}+1 . \tag{7}
\end{equation*}
$$

Summary :

We want to prove that $\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left|a_{n}\right|+1$ with $s>N$.
We have, for s for which it is meaningfull,

$$
\begin{equation*}
\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{s}}+1 . \tag{7}
\end{equation*}
$$

We prove $\left\|u_{n}^{+}\right\|_{H_{0}^{1}} \leq C\left\|u_{n}\right\|_{H_{0}^{1}}^{1 / 2}$ hence, for $s_{1}=\frac{2 N}{N-2}$,

$$
\begin{equation*}
\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{\frac{s_{1}}{q}}} \lesssim\left|a_{n}\right|^{\frac{q}{2}}, \tag{8}
\end{equation*}
$$

Summary :

We want to prove that $\left\|w_{n}\right\| w_{2, s} \lesssim\left|a_{n}\right|+1$ with $s>N$.
We have, for s for which it is meaningfull,

$$
\begin{equation*}
\left\|w_{n}\right\|_{w^{2}, s} \lesssim\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{s}}+1 . \tag{7}
\end{equation*}
$$

We prove $\left\|u_{n}^{+}\right\|_{H_{0}^{1}} \leq C\left\|u_{n}\right\|_{H_{0}^{1}}^{1 / 2}$ hence, for $s_{1}=\frac{2 N}{N-2}$,

$$
\begin{equation*}
\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{\frac{s_{1}^{q}}{q}}} \lesssim\left|a_{n}\right|^{\frac{q}{2}}, \tag{8}
\end{equation*}
$$

and $\int_{\Omega}\left(u_{n}^{+}\right)^{q+1} \leq C\left\|u_{n}\right\|_{H_{0}^{1}}$ i.e.

$$
\begin{equation*}
\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{\frac{q+1}{q}}} \lesssim\left|a_{n}\right|^{\frac{q}{q+1}} . \tag{9}
\end{equation*}
$$

Summary :

We want to prove that $\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left|a_{n}\right|+1$ with $s>N$.
We have, for s for which it is meaningfull,

$$
\begin{equation*}
\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{s}}+1 . \tag{7}
\end{equation*}
$$

We prove $\left\|u_{n}^{+}\right\|_{H_{0}^{1}} \leq C\left\|u_{n}\right\|_{H_{0}^{1}}^{1 / 2}$ hence, for $s_{1}=\frac{2 N}{N-2}$,

$$
\begin{equation*}
\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{\frac{s_{1}}{q}}} \lesssim\left|a_{n}\right|^{\frac{q}{2}}, \tag{8}
\end{equation*}
$$

and $\int_{\Omega}\left(u_{n}^{+}\right)^{q+1} \leq C\left\|u_{n}\right\|_{H_{0}^{1}}$ i.e.

$$
\begin{equation*}
\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{\frac{q+1}{q}}} \lesssim\left|a_{n}\right|^{\frac{q}{q+1}} . \tag{9}
\end{equation*}
$$

(8) is better for the regularity, (9) is better for the exponent.

Summary :

We want to prove that $\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left|a_{n}\right|+1$ with $s>N$.
We have, for s for which it is meaningfull,

$$
\begin{equation*}
\left\|w_{n}\right\|_{W^{2, s}} \lesssim\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{s}}+1 . \tag{7}
\end{equation*}
$$

We prove $\left\|u_{n}^{+}\right\|_{H_{0}^{1}} \leq C\left\|u_{n}\right\|_{H_{0}^{1}}^{1 / 2}$ hence, for $s_{1}=\frac{2 N}{N-2}$,

$$
\begin{equation*}
\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{\frac{s_{1}}{q}}} \lesssim\left|a_{n}\right|^{\frac{q}{2}}, \tag{8}
\end{equation*}
$$

and $\int_{\Omega}\left(u_{n}^{+}\right)^{q+1} \leq C\left\|u_{n}\right\|_{H_{0}^{1}}$ i.e.

$$
\begin{equation*}
\left\|\left(u_{n}^{+}\right)^{q}\right\|_{L^{\frac{q+1}{q}}} \lesssim\left|a_{n}\right|^{\frac{q}{q+1}} . \tag{9}
\end{equation*}
$$

(8) is better for the regularity, (9) is better for the exponent.

Hence, we make a bootstrap, "combining" both in order to gain regularity but keeping an exponent smaller than 1.
To this aim we need the condition $q<\frac{N+1}{N-1}$.

Third approach : Nehari

Theorem (Cuesta-C.D. (2015))

For all $f \in L^{2}(\Omega)$ s.t. $\int_{\Omega} f \varphi_{1}<0$ and $1<q \leq \frac{N+2}{N-2}$, there exists $\epsilon>0$ s.t., for all $0<t<\epsilon$,

$$
\left\{\begin{array}{lr}
-\Delta u=\lambda_{1} u+\left(u^{+}\right)^{q}+t f & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

has at least one solution s.t. $\int_{\Omega} f u<0$.

Third approach : Nehari

Theorem (Cuesta-C.D. (2015))

For all $f \in L^{2}(\Omega)$ s.t. $\int_{\Omega} f \varphi_{1}<0$ and $1<q \leq \frac{N+2}{N-2}$, there exists $\epsilon>0$ s.t., for all $0<t<\epsilon$,

$$
\left\{\begin{array}{lr}
-\Delta u=\lambda_{1} u+\left(u^{+}\right)^{q}+t f & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

has at least one solution s.t. $\int_{\Omega} f u<0$.
Observe that here $f \in L^{2}(\Omega) \quad$ (even $f \in L^{\frac{2 N}{N+2}}(\Omega)$),

$$
1<q \leq 2^{*}-1=\frac{N+2}{N-2}!
$$

Third approach : Nehari

Theorem (Cuesta-C.D. (2015))

For all $f \in L^{2}(\Omega)$ s.t. $\int_{\Omega} f \varphi_{1}<0$ and $1<q \leq \frac{N+2}{N-2}$, there exists $\epsilon>0$ s.t., for all $0<t<\epsilon$,

$$
\left\{\begin{array}{lr}
-\Delta u=\lambda_{1} u+\left(u^{+}\right)^{q}+t f & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

has at least one solution s.t. $\int_{\Omega} f u<0$.
Observe that here $f \in L^{2}(\Omega) \quad$ (even $f \in L^{\frac{2 N}{N+2}}(\Omega)$),

$$
1<q \leq 2^{*}-1=\frac{N+2}{N-2}!
$$

But $t\|f\|_{L^{2}}$ small.

The functional corresponding to the problem is

$$
\begin{gathered}
J(u):=\frac{1}{2} N(u)-\frac{1}{q+1} S(u)-t L(u) \\
N(u):=\int_{\Omega}|\nabla u|^{2}-\lambda_{1}|u|^{2} ; \quad S(u):=\int_{\Omega}\left(u^{+}\right)^{q+1} ; \quad L(u):=\int_{\Omega} f u .
\end{gathered}
$$

The functional corresponding to the problem is

$$
\begin{gathered}
J(u):=\frac{1}{2} N(u)-\frac{1}{q+1} S(u)-t L(u) \\
N(u):=\int_{\Omega}|\nabla u|^{2}-\lambda_{1}|u|^{2} ; \quad S(u):=\int_{\Omega}\left(u^{+}\right)^{q+1} ; \quad L(u):=\int_{\Omega} f u .
\end{gathered}
$$

The Nehari manifold associated is

$$
\mathcal{N}:=\left\{u \in H_{0}^{1}(\Omega) \mid\left\langle J^{\prime}(u), u\right\rangle=N(u)-S(u)-t L(u)=0\right\} .
$$

Let us set $\forall u \neq 0, s \geq 0$,

$$
j_{u}(s):=J(s u)=\frac{s^{2}}{2} N(u)-\frac{s^{q+1}}{q+1} S(u)-s t L(u),
$$

The functional corresponding to the problem is

$$
\begin{gathered}
J(u):=\frac{1}{2} N(u)-\frac{1}{q+1} S(u)-t L(u) \\
N(u):=\int_{\Omega}|\nabla u|^{2}-\lambda_{1}|u|^{2} ; \quad S(u):=\int_{\Omega}\left(u^{+}\right)^{q+1} ; \quad L(u):=\int_{\Omega} f u .
\end{gathered}
$$

The Nehari manifold associated is

$$
\mathcal{N}:=\left\{u \in H_{0}^{1}(\Omega) \mid\left\langle J^{\prime}(u), u\right\rangle=N(u)-S(u)-t L(u)=0\right\} .
$$

Let us set $\forall u \neq 0, s \geq 0$,

$$
j_{u}(s):=J(s u)=\frac{s^{2}}{2} N(u)-\frac{s^{q+1}}{q+1} S(u)-s t L(u)
$$

We then have $\mathcal{N}=\left\{u \in H_{0}^{1}(\Omega) \mid j_{u}^{\prime}(1)=0\right\}$.

The maximum of J on \mathcal{N}

$$
\begin{aligned}
\mathcal{N}^{-} & :=\left\{u \in H_{0}^{1}(\Omega) \mid j_{u}^{\prime}(1)=0, j_{u}^{\prime \prime}(1)<0\right\} \\
& =\{u \in \mathcal{N} \mid N(u)<q S(u)\} ;
\end{aligned}
$$

The maximum of J on \mathcal{N}

$$
\begin{aligned}
\mathcal{N}^{-} & :=\left\{u \in H_{0}^{1}(\Omega) \mid j_{u}^{\prime}(1)=0, j_{u}^{\prime \prime}(1)<0\right\} \\
& =\{u \in \mathcal{N} \mid N(u)<q S(u)\} ;
\end{aligned}
$$

We denote

$$
\begin{gathered}
\mathcal{L}^{-}=\left\{u \in H_{0}^{1}(\Omega) \mid L(u)<0\right\} \\
\mathcal{L}_{0}=\left\{u \in H_{0}^{1}(\Omega) \mid L(u)=0\right\} \\
\mathcal{L}_{0}^{-}:=\mathcal{L}^{-} \cup \mathcal{L}_{0} .
\end{gathered}
$$

Lemma (Projection on Nehari)

If $S(u)>0, L(u) \leq 0$ and $L(u)<0$ in case $N(u)=0$, then there exists a unique $t_{1}=t_{1}(u)>0$ such that $t_{1} u \in \mathcal{N}$. Moreover $t_{1} u \in \mathcal{N}^{-}$and j_{u} has a global maximum in t_{1}.

Proposition

If $\left.q \in] 1, \frac{N+2}{N-2}\right]$ and $f \in L^{2}(\Omega)$ satisfies $\int_{\Omega} f \varphi_{1}<0$.

Proposition

If $\left.q \in] 1, \frac{N+2}{N-2}\right]$ and $f \in L^{2}(\Omega)$ satisfies $\int_{\Omega} f \varphi_{1}<0$.
Then
(i) $\inf _{\mathcal{N} \cap \mathcal{L}_{0}^{-}} J>0$;

Proposition

If $\left.q \in] 1, \frac{N+2}{N-2}\right]$ and $f \in L^{2}(\Omega)$ satisfies $\int_{\Omega} f \varphi_{1}<0$.
Then
(i) $\inf _{\mathcal{N \cap L}_{0}^{-}} J>0$;
(ii) If $\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}^{-}} J(u)<\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}} J(u)$, then $\exists u_{0} \in \mathcal{N} \cap \mathcal{L}^{-}$solution of (1) such that

$$
J\left(u_{0}\right)=\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}^{-}} J(u)=\inf _{u \in \mathcal{N}^{-} \cap \mathcal{L}_{0}^{-}} J(u) .
$$

Proof of the Theorem.

We need to see: $\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}^{-}} J(u)<\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}} J(u)$

Proof of the Theorem.

We need to see: $\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}^{-}} J(u)<\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}} J(u)$
For $u \in \mathcal{N} \cap \mathcal{L}_{0}$, we have $S(u)=N(u)$ and $L(u)=0$. Hence $J(u)=\left(\frac{1}{2}-\frac{1}{q+1}\right) N(u)$.

Proof of the Theorem.

We need to see : $\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}^{-}} J(u)<\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}} J(u)$
For $u \in \mathcal{N} \cap \mathcal{L}_{0}$, we have $S(u)=N(u)$ and $L(u)=0$. Hence $J(u)=\left(\frac{1}{2}-\frac{1}{q+1}\right) N(u)$. We prove that, for every t, we have

$$
\begin{equation*}
\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}} J(u) \geq c(f) \tag{10}
\end{equation*}
$$

Proof of the Theorem.

We need to see: $\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}^{-}} J(u)<\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}} J(u)$
For $u \in \mathcal{N} \cap \mathcal{L}_{0}$, we have $S(u)=N(u)$ and $L(u)=0$. Hence $J(u)=\left(\frac{1}{2}-\frac{1}{q+1}\right) N(u)$. We prove that, for every t, we have

$$
\begin{equation*}
\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}} J(u) \geq c(f) \tag{10}
\end{equation*}
$$

Moreover $t_{1} \varphi_{1} \in \mathcal{N}^{-} \cap \mathcal{L}^{-}$with $t_{1}=\left(t \frac{\left|\int_{\Omega} f \varphi_{1}\right|}{\int_{\Omega} \varphi_{1}^{g+1}}\right)^{1 / q}$ and hence

$$
\begin{equation*}
\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}^{-}} J(u) \leq J\left(t_{1} \varphi_{1}\right)=\frac{q}{q+1} t t_{1}\left|\int_{\Omega} f \varphi_{1}\right| . \tag{11}
\end{equation*}
$$

Proof of the Theorem.

We need to see : $\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}^{-}} J(u)<\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}} J(u)$
For $u \in \mathcal{N} \cap \mathcal{L}_{0}$, we have $S(u)=N(u)$ and $L(u)=0$. Hence $J(u)=\left(\frac{1}{2}-\frac{1}{q+1}\right) N(u)$. We prove that, for every t, we have

$$
\begin{equation*}
\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}} J(u) \geq c(f) . \tag{10}
\end{equation*}
$$

Moreover $t_{1} \varphi_{1} \in \mathcal{N}^{-} \cap \mathcal{L}^{-}$with $t_{1}=\left(t \frac{\left|\int_{\Omega} f \varphi_{1}\right|}{\int_{\Omega} \varphi_{1}^{q+1}}\right)^{1 / q}$ and hence

$$
\begin{equation*}
\inf _{u \in \mathcal{N} \cap \mathcal{L}_{0}^{-}} J(u) \leq J\left(t_{1} \varphi_{1}\right)=\frac{q}{q+1} t t_{1}\left|\int_{\Omega} f \varphi_{1}\right| . \tag{11}
\end{equation*}
$$

Hence, from (10) and (11), we will have our result if t is small enough.

Thank you for your attention.

Thank you for your attention.

Questions : ? ? ?

