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Assumptions and conventions:
All vector spaces are considered with R as the ground field.
(Ω,F , (Ft),P): filtered complete probability space satisfying the usual
conditions.
Adapted processes and stopping times will be considered with respect to this
filtration.
We only consider continuous processes.
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A description of the problem

We have some Hilbert spaces H (Hermite-Sobolev spaces) with
S(Rd ) ⊂ H ⊂ S ′(Rd ).
We consider a class of SPDEs in H of the form

dYt = A∗(Yt).dBt + L∗(Yt)dt; Y0 = y ∈ H,

where A∗, L∗ are some (linear, unbounded) differential operators and {Bt} is a
finite dimensional standard Brownian motion.

Solutions of finite dimensional SDEs
Duality arguments

}
=⇒ Existence of solutions of SPDEs.

Monotonicity inequality =⇒ Uniqueness of solutions of SPDEs.
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A description of the problem contd.

Taking expectation on both sides of the SPDE leads to the existence of solution of

∂ψ(t)
∂t = L∗ψ(t); ψ(0) = y .

Monotonicity inequality =⇒ Uniqueness of solutions of SPDEs.

These results are proved for y ∈ L1(Rd ) (where L1(Rd ) ⊂ H, for an appropriate
H) and were motivated by results of [Rajeev and Thangavelu(2008)]1, where the
initial conditions were taken as compactly supported distributions in Rd .

1B. Rajeev and S. Thangavelu. Probabilistic representations of solutions of the forward
equations, Potential Anal., vol. 28, no. 2, pp. 139–162, 2008.
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Schwartz Space with Hilbertian Topology Hilbertian Topology and Hermite-Sobolev Spaces

S(Rd ) is the space of smooth rapidly decreasing R-valued functions on Rd . For
the moment let us consider the case d = 1.

The Schwartz topology (say τ) on S = S(R) is given by the semi-norms

|φ|m,n : = sup
t
|tmφ(n)(t)|, m, n = 0, 1, 2, ....

Let S ′ be the dual of S. Elements of S ′ are called tempered distributions.

We now describe a Hilbertian topology on S(Rd ). Main reference: [Itô(1984)]2.

2Kiyosi Itô, Foundations of stochastic differential equations in infinite-dimensional spaces,
volume 47 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984.
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Schwartz Space with Hilbertian Topology Hilbertian Topology and Hermite-Sobolev Spaces

Recall that an ONB for the Hilbert space L2(R) is given by the Hermite
functions

hn(t) = (2nn!
√
π)− 1

2 exp
(
− t2

2

)
Hn(t), n ≥ 0

where Hn(t) are the Hermite polynomials, which arise as the coefficients of
xn in the expansion of exp(2xt − x2). Note that hn ∈ S and S ⊂ L2(R).

Denote the L2-norm and inner product by ‖ · ‖ and 〈· , ·〉 respectively. For
φ, ψ ∈ L2 , p ∈ R, consider

‖φ‖2
p : =

∞∑
n=0

(2n + 1)2p 〈φ , hn〉2,

〈φ , ψ〉p :=
∞∑

n=0
(2n + 1)2p 〈φ , hn〉 〈ψ , hn〉.

Note that ‖φ‖p <∞ for φ ∈ S, p ∈ R and this gives a norm on S for every
p ∈ R. The corresponding inner product is given by 〈· , ·〉p.
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Schwartz Space with Hilbertian Topology Hilbertian Topology and Hermite-Sobolev Spaces

The completion of (S, ‖ · ‖p) is a separable Hilbert space, denoted by
(Sp, ‖ · ‖p). These are the Hermite-Sobolev spaces.

The Schwartz topology τ on S coincides with the countably Hilbertian
topology determined by ‖ · ‖p, p = 1, 2, 3, . . . . For proof, refer to
[Rajeev(2001)]3.
We can similarly discuss S(Rd ), where we use

hn1,n2,..,nd (t1, t2, .., td ) : =
d∏

i=1
hni (ti )

instead of hn.

3B. Rajeev, From Tanaka’s formula to Ito’s formula: distributions, tensor products and local
times, in Séminaire de Probabilités, XXXV, volume 1755 of Lecture Notes in Math., pages
371–389. Springer, Berlin, 2001.
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Schwartz Space with Hilbertian Topology Hilbertian Topology and Hermite-Sobolev Spaces

(S−p, ‖ · ‖−p) is dual to (Sp, ‖ · ‖p) for p ≥ 0.
S0 = L2(R),S =

⋂
p∈R Sp, S ′ =

⋃
p∈R Sp.

0

S ′(R)

−∞

S(R)

∞

L2(R)′ = L2(R)

p

Sp

−p

S−p⊃ ⊃⊃⊃
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Schwartz Space with Hilbertian Topology Hilbertian Topology and Hermite-Sobolev Spaces

Given a tempered distribution ψ ∈ S ′(Rd ), the partial derivatives of ψ are
defined via the following relation

〈∂iψ , φ〉 := −〈ψ , ∂iφ〉 , ∀φ ∈ S(Rd ).

∂i : Sp(Rd )→ Sp− 1
2
(Rd ) is a bounded linear operator. So the Laplacian

4 =
∑d

i=1 ∂
2
i is a bounded linear operator from Sp(Rd ) to Sp−1(Rd ).

For x ∈ Rd , define translation operators on S(Rd ) by

(τxφ)(y) := φ(y − x), ∀y ∈ Rd .

We can extend this operator to τx : S ′(Rd )→ S ′(Rd ) by

〈τxφ , ψ〉 := 〈φ , τ−xψ〉 , ∀φ ∈ S ′(Rd ), ψ ∈ S(Rd ).

τx : Sp(Rd )→ Sp(Rd ) is a bounded linear operator.
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Schwartz Space with Hilbertian Topology Hilbertian Topology and Hermite-Sobolev Spaces

Proposition ([Rajeev and Thangavelu(2008)])

The Dirac distributions δx ∈ S−p(Rd ) for p > d
4 and there exists a constant

C = C(p) such that ‖δx‖−p ≤ C ,∀x ∈ Rd .

Note that τxδ0 = δx , x ∈ Rd .

Multiplication of a distribution by a real valued smooth function f :
〈Mf ψ , φ〉 := 〈ψ , f φ〉 ,∀φ ∈ S. It is known that
Mxi : Sp(Rd )→ Sp− 1

2
(Rd ), i = 1, · · · , d is a bounded linear operator.
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Known results Heat Equation

Consider the Heat equation with initial condition φ̄ ∈ Sp(Rd ) (for some
p ∈ R).

∂tφ(t) = 1
2 4 φ(t), t ≤ T ; φ(0) = φ̄.

By an Sp(Rd ) valued solution of the previous equation, we mean an Sp(Rd )
valued continuous map on [0,T ], viz t 7→ φ(t) such that the following
equation holds in Sp−1(Rd )

φ(t) = φ̄+
∫ t

0

1
2 4 φ(s) ds, t ≤ T .

Theorem ([Rajeev and Thangavelu(2003)])

The Heat equation has a unique Sp(Rd ) valued solution φ(t) given by

φ(t) = E(τBt φ̄),

where {Bt} is a d dimensional standard Brownian motion.a

aB. Rajeev and S. Thangavelu, Probabilistic representations of solutions to the heat
equation, Proc. Indian Acad. Sci. Math. Sci., vol. 113, no. 3, pp. 321–332, 2003.
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Known results Forward Equations

Main reference: [Rajeev and Thangavelu(2008)]
Let F be the Borel σ-field on Ω = C([0,∞),Rr ), the space of Rr valued
continuous functions on [0,∞).
Let P denote the Wiener measure.
Under P, the process Bt(ω) := ω(t), ω ∈ Ω, t ≥ 0 is a standard r
dimensional Brownian Motion.
Consider σ = (σij ), i = 1, · · · , d ; j = 1, · · · , r and b = (b1, · · · , bd ) where
σij , bi are C∞ functions on Rd with bounded derivatives.

Let {X (t, x)} denote the unique strong solution on (Ω,F ,P) of the SDE

dXt = σ(Xt).dBt + b(Xt)dt; X0 = x .
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Known results Forward Equations

A ‘diffeomorphic modification’ of {X (t, x)} exists ([Kunita(1997)]4).

Theorem

There exists a process {X̃ (t, x)}t≥0, x∈Rd such that
For all x ∈ Rd , P(X̃ (t, x , ω) = X (t, x , ω), t ≥ 0) = 1.
P(x 7→ X̃ (t, x , ω) is a diffeomorphism,∀t ≥ 0) = 1.
(Flow property) Let θt : Ω→ Ω be the shift operator defined by
(θtω)(s) := ω(s + t). Then for s, t ≥ 0 we have

X̃ (t + s, x , ω) = X̃ (t, X̃ (t, x , ω), θtω)

for all x ∈ Rd , a.s. ω.

In what follows, {X (t, x)} will denote the modification obtained above.

4Hiroshi Kunita, Stochastic flows and stochastic differential equations, volume 24 of
Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1997.
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Known results Forward Equations

Define Xt(ω) : C∞(Rd )→ C∞(Rd ) by (Xt(ω)φ)(x) := φ(X (t, x , ω)). It is a
continuous linear map.
Let E ′(Rd ) denote the space of compactly supported distributions (dual of
C∞(Rd )).
Let Xt(ω)∗ : E ′(Rd )→ E ′(Rd ) be the transpose of the map Xt(ω). Note that

〈Xt(ω)∗ψ , φ〉 = 〈ψ , Xt(ω)φ〉 , ∀φ ∈ C∞(Rd ), ψ ∈ E ′(Rd ).
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Known results Forward Equations

Define Yt(ω) : E ′(Rd )→ E ′(Rd ) by

Yt(ω)(ψ) :=
∑
|α|≤N

(−1)|α|
∑
|γ|≤|α|

∫
V

gα(x)

Pγ
(
(∂β1 X1, · · · , ∂βd Xd )|βi |≤|α|

)
(t, x , ω) ∂γδX(t,x ,ω) dx ,

where Pγ are some polynomials.

Theorem
Let ψ ∈ E ′(Rd ). There exists p > 0 such that {Yt(ψ)} is an S−p(Rd ) valued
continuous adapted process and a.s.

Yt(ψ) = X∗t (ψ), t ≥ 0.
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Known results Forward Equations

Operators A, L,A∗, L∗

Now define the operators A : C∞(Rd )→ L(Rr ,C∞(Rd )) and
L : C∞(Rd )→ C∞(Rd ) as follows: for ψ ∈ C∞(Rd ) and x ∈ Rd ,

Aφ := (A1φ, · · · ,Arφ),
Aiφ(x) :=

∑d
k=1 σki (x)∂kφ(x),

Lφ(x) := 1
2
∑d

i,j=1(σσt)ij (x)∂2
ijφ(x) +

∑d
i=1 bi (x)∂iφ(x).

We define the adjoint operators A∗ : E ′(Rd )→ L(Rr , E ′(Rd )) and
L∗ : E ′(Rd )→ E ′(Rd ) as follows: for ψ ∈ E ′(Rd )

A∗ψ := (A∗1ψ, · · · ,A∗r ψ),
A∗i ψ := −

∑d
k=1 ∂k (σkiψ) ,

L∗ψ := 1
2
∑d

i,j=1 ∂
2
ij ((σσt)ijψ)−

∑d
i=1 ∂i (biψ) .
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Known results Forward Equations

Estimates on A∗, L∗ [Rajeev and Thangavelu(2008)]
Fix p > 0 and q > [p] + 4. Then there exists constants C1(p) > 0,C2(p) > 0 such
that for ψ ∈ E ′(Rd ) ∩ S−p(Rd )

r∑
i=1
‖A∗i ψ‖2

−q ≤ C1(p)‖ψ‖2
−p, ‖L∗ψ‖−q ≤ C2(p)‖ψ‖−p.

Theorem ([Rajeev and Thangavelu(2008)])

Fix ψ ∈ E ′(Rd ). The S−p(Rd ) valued continuous adapted process {Yt(ψ)}
satisfies the following equation in S−q(Rd ) a.s.

Yt(ψ) = ψ +
∫ t

0
A∗(Ys(ψ)). dBs︸ ︷︷ ︸

=
∑r

i=1

∫ t

0
A∗

i (Ys (ψ)) dBi
s

+
∫ t

0
L∗(Ys(ψ)) ds, ∀t ≥ 0.
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Known results Forward Equations

Theorem ([Rajeev and Thangavelu(2008)])

Fix p > 0 and q > [p] + 4. Let ψ̄ ∈ E ′(Rd ) ∩ S−p(Rd ). Then ψ(t) := EYt(ψ̄)
solves

ψ(t) = ψ̄ +
∫ t

0
L∗ ψ(s) ds

in S−p−1(Rd ).
Moreover the solution is unique if the pair (A∗, L∗) satisfies the Monotonicity
inequality, viz

2 〈φ , L∗φ〉−q +
r∑

i=1
‖A∗i φ‖2

−q ≤ C ‖φ‖2
−q, ∀φ ∈ E ′(Rd ) ∩ S−p(Rd ),

where C = C(p) is a positive constant.

Remark: When σ = 0, the PDE considered above reduces to linear transport
equations considered in [DiPerna and Lions(1989)]5.

5R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev
spaces, in Invent. Math., vol. 98, no 3, pp. 511–547, 1989.
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where C = C(p) is a positive constant.

Remark: When σ = 0, the PDE considered above reduces to linear transport
equations considered in [DiPerna and Lions(1989)]5.

5R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev
spaces, in Invent. Math., vol. 98, no 3, pp. 511–547, 1989.
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Known results Monotonicity inequality

Introduced in [Krylov and Rozovskĭı(1979)]6 for Hilbert spaces.

reformulated in [Gawarecki, Mandrekar, and Rajeev(2008)]7,
[Rozovskĭı(1990)]8 for countably Hilbertian Nuclear spaces.
Proved in [Gawarecki, Mandrekar, and Rajeev(2009)]9 when A∗, L∗ were
constant coefficient differential operators on S ′(Rd ).

6N. V. Krylov and B. L. Rozovskĭı, Stochastic evolution equations, in Current problems in
mathematics, Vol. 14 (Russian), pages 71–147

7L. Gawarecki, V. Mandrekar, and B. Rajeev, Linear stochastic differential equations in the
dual of a multi-Hilbertian space, in Theory Stoch. Process., vol. 14, no 2, pp. 28–34, 2008

8B. L. Rozovskĭı, Stochastic evolution systems, volume 35 of Mathematics and its
Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1990.

9L. Gawarecki, V. Mandrekar, and B. Rajeev, The monotonicity inequality for linear
stochastic partial differential equations, in Infin. Dimens. Anal. Quantum Probab. Relat. Top.,
vol. 12, no. 4, pp. 575–591, 2009

Suprio Bhar, TIFR-CAM Stochastic PDEs October 13, 2016 22 / 44



Known results Monotonicity inequality

Introduced in [Krylov and Rozovskĭı(1979)]6 for Hilbert spaces.
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Known results Monotonicity inequality

Motivation

The key observation is that if {Yt} solves an SDE of the form in Sp(Rd )

dYt = A(Ys). dBs + L(Ys) ds

then

E‖Yt‖2
p ≤ ‖Y0‖2

p + E
∫ t

0

[
2 〈Ys , LYs〉p +

r∑
i=1
‖Ai (Ys)‖2

p

]
︸ ︷︷ ︸

LHS of Monotonicity Inequality

ds.

If above LHS of Monotonicity Inequality ≤ C‖Ys‖2
q, then Gronwall’s Inequality

alongwith Y0 = 0 will give the uniqueness.
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Known results Monotonicity inequality

Let σ = (σij ) be a constant d × r matrix and b = (b1, ..., bd ) ∈ Rd .

Theorem ([Gawarecki, Mandrekar, and Rajeev(2009)])
For every p ∈ R,∃ a constant C = C(p, d , (σij ), (bj )) > 0, such that

2 〈φ , Lφ〉p +
r∑

i=1
‖Aiφ‖2

p ≤ C .‖φ‖2
p, ∀φ ∈ S(Rd ).

Furthermore, by density arguments the above inequality can be extended to all
φ ∈ Sp+1(Rd ).

Remark
Monotonicity inequality holds for (A∗, L∗) when σ, b are as above.
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Known results Monotonicity inequality

We consider the case r = d .

Theorem ([Bhar and Rajeev(2015)])

Let α = (α1, · · · , αd ) ∈ Rd and C = (cij ) be a real square matrix of order d. Let
σ be a constant function, i.e. σ(x) ≡ (σij ), ∀x ∈ Rd where
σij ∈ R, i , j = 1, · · · , d. Let b = (b1, · · · , bd ) with b(x) := α+ C x , ∀x ∈ Rd . Fix
p ∈ R. Thena

1 The maps A∗i are bounded linear operators from Sp+ 1
2
(Rd ) to Sp(Rd ) and L∗

is a bounded linear operator from Sp+1(Rd ) to Sp(Rd ).
2 Monotonicity inequality for A∗, L∗ holds, i.e. there exists a positive constant

R = R(p, d , (σij ), (bj )), such that

2 〈φ , L∗φ〉p +
d∑

i=1
‖A∗i φ‖2

p ≤ R ‖φ‖2
p

for all φ ∈ Sp+1(Rd ).
aSuprio Bhar and B. Rajeev, Differential operators on Hermite Sobolev spaces,

Proc. Indian Acad. Sci. Math. Sci., vol. 125, no.1, pp. 113–125, 2015.
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New results

Outline

1 Schwartz Space with Hilbertian Topology
Hilbertian Topology and Hermite-Sobolev Spaces

2 Known results
Heat Equation
Forward Equations
Monotonicity inequality

3 New results
Ornstein-Uhlenbeck diffusion
Solution to SPDEs
Deterministic dependence on the initial condition
Solution to SPDEs Contd.
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New results Ornstein-Uhlenbeck diffusion

Ornstein-Uhlenbeck diffusion
Consider the case σ = I, b(x) = −x .

dXt = dBt − Xt dt; X0 = x

X (t, x) = e−tx +
∫ t

0
e−(t−s) dBs︸ ︷︷ ︸

X(t,0)

, 0 ≤ t <∞.

Note: x 7→ X (t, x , ω) is an affine map and hence is a C∞ function with bounded
derivatives.
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New results Solution to SPDEs

Define a continuous linear map, denoted by Xt(ω) : S(Rd )→ S(Rd ) and
given by

(Xt(ω)φ)(x) := φ(X (t, x , ω)), x ∈ Rd .

Let X∗t (ω) : S ′(Rd )→ S ′(Rd ) denote the transpose of the map Xt(ω). Then
for any ψ ∈ S ′(Rd ),

〈X∗t (ψ) , φ〉 = 〈ψ , Xt(φ)〉 , ∀φ ∈ S(Rd ).
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New results Solution to SPDEs

Fix ψ ∈ L1(Rd ) ⊂ S ′(Rd ). The identification is given by

φ 7→
∫
Rd
φ(x)ψ(x) dx .

In fact L1(Rd ) ⊂ S−p(Rd ) for any p > d
4 .

Define Yt(ω)(ψ) :=
∫
Rd ψ(x)δX(t,x ,ω) dx .

Yt(ψ) is a well-defined element of S−p(Rd ) for any p > d
4 .

E ‖Yt(ψ)‖2
−p ≤ C 2 (∫

Rd |ψ(x)| dx
)2
<∞ for some constant C > 0.

Observe that

〈Yt(ψ) , φ〉 =
∫
Rd
ψ(x)φ(X (t, x)) dx

=
∫
Rd
ψ(x) (Xt(φ))(x) dx = 〈ψ , Xt(φ)〉 , ∀φ ∈ S(Rd ).

Yt(ψ) = X∗t (ψ).
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New results Solution to SPDEs

Theorem ([Bhar(2016)])

Let p > d
4 and ψ ∈ L1(Rd ). Thena the S−p(Rd ) valued continuous adapted

process {Yt(ψ)} satisfies the following equation in S−p−1(Rd ), a.s.

Yt(ψ) = ψ +
∫ t

0
A∗(Ys(ψ)) dBs +

∫ t

0
L∗(Ys(ψ)) ds, ∀t ≥ 0.

This solution is also unique.
aSuprio Bhar,Characterizing Gaussian flows arising from Itô’s stochastic differential

equations, Potential Analysis, pages 1–17, 2016. doi: 10.1007/s11118-016-9578-6.

Sketch of Proof.
By Itô’s formula for any φ ∈ S(Rd ), and any x ∈ Rd

(Xt(φ))(x) = φ(X (t, x)) = φ(x) +
∫ t

0
Aφ(X (s, x)). dBs +

∫ t

0
Lφ(X (s, x)) ds

= φ(x) +
∫ t

0
(Xs(Aφ))(x). dBs +

∫ t

0
(Xs(Lφ))(x) ds
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By Itô’s formula for any φ ∈ S(Rd ), and any x ∈ Rd

(Xt(φ))(x) = φ(X (t, x)) = φ(x) +
∫ t

0
Aφ(X (s, x)). dBs +

∫ t

0
Lφ(X (s, x)) ds

= φ(x) +
∫ t

0
(Xs(Aφ))(x). dBs +

∫ t

0
(Xs(Lφ))(x) ds

Suprio Bhar, TIFR-CAM Stochastic PDEs October 13, 2016 30 / 44



New results Solution to SPDEs

Sketch of Proof (contd.)

Then for φ ∈ S(Rd ),

〈Yt(ψ) , φ〉 = 〈ψ , Xt(φ)〉

=
〈
ψ , φ+

∫ t

0
Xs(Aφ). dBs +

∫ t

0
Xs(Lφ) ds

〉
= 〈ψ , φ〉 +

∫ t

0
〈ψ , Xs(Aφ)〉 . dBs +

∫ t

0
〈ψ , Xs(Lφ)〉 ds

= 〈ψ , φ〉 +
∫ t

0
〈A∗Ys(ψ) , φ〉 . dBs +

∫ t

0
〈L∗Ys(ψ) , φ〉 ds

=
〈
ψ +

∫ t

0
A∗Ys(ψ). dBs +

∫ t

0
L∗Ys(ψ) ds , φ

〉

Proof of uniqueness: Gronwall’s inequality + Monotonicity inequality
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New results Solution to SPDEs

Theorem (B.)

Let p > d
4 and ψ ∈ L1(Rd ). Then ψ̄(t) := EYt(ψ) solves the equation

d
dt ψ̄ = L∗ψ̄,

i.e. the equality

EYt(ψ) = ψ +
∫ t

0
L∗ (EYs(ψ)) ds

holds in S−p−1(Rd ). Furthermore this is the unique solution.
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New results Deterministic dependence on the initial condition

Consider random fields which arise as solutions of SDEs:

dXt = σ(Xt) dBt + b(Xt) dt, ∀t ≥ 0; X0 = X

where the coefficients σ = (σij ), b = (bi ), 1 ≤ i , j ≤ d are Lipschitz continuous
and the random variable X is independent of the Brownian motion {Bt}. For any
x ∈ Rd , let {X x

t } denote the solution of the SDE with X0 = x .

It is known that the solutions to such equations are Gaussian if X is Gaussian (or
a constant), σ is a constant d × d matrix and b(x) = a + bx ,∀x ∈ Rd for some
a ∈ Rd , b ∈ R.
The strong solutions of the above equations are maps
F : [0,∞)×Rd ×C([0,∞),Rd )→ Rd such that the solutions with initial value X
and Brownian motion {Bt} is given at time t by

Xt = F (t,X ,B), a.s..
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New results Deterministic dependence on the initial condition

In the Gaussian case as above (i.e. σ is constant and b(x) = a + bx) it is known
that a.s.

F (t, x ,B) = etbx + (etb − 1)b−1a +
∫ t

0
e(t−s)bσ dBs .

We wish to characterize the maps F for which the solutions of the above SDEs
are Gaussian.
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New results Deterministic dependence on the initial condition

We make a definition of the class of SDEs such that {X x
t } has a deterministic

‘local’ component.

Definition

We say the general solution of the SDE depends deterministically on the initial
condition, if there exists a function f : [0,∞)× Rd → Rd such that for any
x ∈ Rd , we have a.s.

X x
t (ω) = f (t, x) + X 0

t (ω), t ≥ 0.

Remark: In this case, for every fixed x ∈ Rd , the map
t 7→ ∂f

∂t (t, x) = (∂f1
∂t (t, x), · · · , ∂fd

∂t (t, x)) is continuous.
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New results Deterministic dependence on the initial condition

Theorem ([Bhar(2016)])
Let σ, b be Lipschitz continuous functions. Suppose the following happena:

1 there exists an x ∈ Rd such that the determinant of (σij (x)) is not zero,
2 bi ∈ C 1(Rd ,R), i = 1, · · · , d where b = (b1, · · · , bd ),
3 for every fixed x ∈ Rd , the map t ∈ [0,∞) 7→ ∂f

∂t (t, x) is of bounded
variation.

Then the general solution of the SDE depends deterministically on the initial
condition if and only if σ is a real non-singular matrix of order d and b is of the
form b(x) = α + Cx and f (t, x) = etC x where α ∈ Rd and C is a real square
matrix of order d.

aSuprio Bhar,Characterizing Gaussian flows arising from Itô’s stochastic differential
equations, Potential Analysis, pages 1–17, 2016. doi: 10.1007/s11118-016-9578-6.
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New results Deterministic dependence on the initial condition

Proposition (B.)
Let σ, b be Lipschitz continuous functions.

1 Suppose the general solution of the SDE depends deterministically on the
initial condition, where the function f has the decomposition
f (t, x) = g(t)h(x) with g ∈ C 1([0,∞),R), h : Rd → Rd . Then
f (t, x) = g̃(t)x for some g̃ ∈ C 1([0,∞),R) with g̃(0) = 1.

2 The solution to the SDE depends deterministically on the initial condition in
the following form: for each x ∈ Rd , a.s. t ≥ 0

X x
t = g(t)x + X 0

t ,

for some g ∈ C 1([0,∞),R) with g(0) = 1 if and only if σ is a constant d × d
matrix, b(x) = α + βx and g(t) = eβt , t ≥ 0 where α ∈ Rd , β ∈ R. In this
case, the solution has the form

X x
t =

{
eβtx + σ

∫ t
0 eβ(t−s) dBs + eβt−1

β α, if β 6= 0
x + tα + σBt , if β = 0.
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New results Solution to SPDEs Contd.

Let σ = (σij ) be a real square matrix of order d .
Let b = (b1, · · · , bd ) be of the form b(x) = α+ Cx where α ∈ Rd and C is a
real square matrix of order d .

Define the continuous linear maps Xt(ω) : S(Rd )→ S(Rd ) and
X∗t (ω) : S ′(Rd )→ S ′(Rd ).
For ψ ∈ L1(Rd ), define Yt(ψ) as before. Then Yt(ψ) = X∗t (ψ).

Theorem (B.)

Let p > d
4 and ψ ∈ L1(Rd ). Then the S−p(Rd ) valued continuous adapted

process {Yt(ψ)} satisfies the following equation in S−p−1(Rd ), a.s.

Yt(ψ) = ψ +
∫ t

0
A∗(Ys(ψ)) dBs +

∫ t

0
L∗(Ys(ψ)) ds, ∀t ≥ 0.

This is also the unique solution of the previous equation. Furthermore,

EYt(ψ) = ψ +
∫ t

0
L∗EYs(ψ) ds

holds in S−p−1(Rd ). Furthermore this is the unique solution.
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