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Non-local operator

A prototypical example of non-local operator is the “fractional laplace”
operator and is defined as

(−4)σ/2u(x) = Cn,σ P.V

∫
RN

u(x)− u(x + z)

|z |N+σ
dz , (1)

for σ ∈ (0, 2). Cn,σ is a constant depending on n and σ, given by

Cn,σ =

(∫
RN

1− cos(z1)

|z |N+σ
dz

)−1

. (2)

The fractional Laplacian ((−4)σ/2) could also be thought of as a
Pseudo-differential operator with symbol |ξ|σ. In other words, in terms of
Fourier transform,

(−4)σ/2φ = F−1 (|.|σF(φ)) , (3)

for any function φ for which the right hand side makes sense.
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A general non-local operator would be of the following form:

Lu(x) = −
∫
RN

[u(x + z)− u(x)− z .∇u(x)1|z|<1(z)] ν(dz),

where, ν is a non-negative Radon measure on RN with possible singularity at
origin satisfying the condition∫

RN

min{|z |2, 1} ν(dz) <∞. (4)

This Radon measures are often referred to as the Lévy measure as there
associate non-local operators turn out to be the generator of pure jump Lévy
processes.
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Non-local Isaacs’ Equation

We are interested in the initial value problem

ut + inf
α∈A

sup
β∈B

{
−f α,β(t, x) + cα,β(t, x)u(t, x)

−bα,β(t, x).∇u(t, x)− Iα,β[u](t, x)
}

= 0 in QT ,

(N.Is.Eq)

u(0, x) = u0(x) in RN , (I.C)

where QT := (0,T ]× RN and α, β respectively takes values in two metric
spaces A and B.
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Non-local Isaacs’ Equation

The operator Iα,β signifies the nonlocality of the equation and is defined as

Iα,β[φ](t, x) :=

∫
RM\{0}

(
φ(t, x + ηα,β(t, x ; z))− φ(t, x)

− ηα,β(t, x ; z).∇xφ(t, x)
)
ν(dz) (N.T)

for smooth bounded function φ.

The quantity ν is a so-called Lévy measure on RM\{0} i.e a
nonnegative Radon measure with a possible singularity at the origin.

The functions ηα,β(t, x ; z) are defined from [0,∞)×RN ×RM to RN

and it is possible to have ηα,β(t, x ; z) = 0 on a set of positive
measure. This makes the equation (N.Is.Eq) degenerate.
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Origin of such problems

We know that Hamilton-Jacobi-Bellman(HJB) equations have direct
corresponds to the optimal control problems.

Instead of a single control when we will deal with two controls, one
wants to maximize and the other wants to minimize the cost function
then it called Differential Game problem.

Let us consider the controlled state dynamics with a pure jump
process on a filtered probability space (Ωt ,Ft ,Pt ,Ft,.) as

dX (s) = b(s,X (s),A(s),B(s)) ds

+

∫
RM\{0}

η(s,X (s−),A(s),B(s);w)Ñ(ds, dw),

where s ∈ (t,T ]. X (·) satisfies the initial condition X (t) = x where,
x ∈ RN .
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Contd...

A(s) and B(s) are two predictable control processes with values in A
and B respectively.

The pay-off functional is given by

J(t, x ;A,B) = E t,x

[∫ T

t
f (s,X (s),A(s),B(s)) ds + g(X (T ))

]
.

Strategy Of the Game: Let two players ‘Player I’ and ‘Player II’ are
playing the game. Player I chooses the control process A(·) and it
want to minimize the pay-off functional. At the same time, Player II
chooses the control process B(·) which wants to maximize the pay-off
functional.
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Contd...

Then one can derive that

The value function of the above ⇐⇒ solution to the non-local
mentioned game problem Bellman Isaacs equation

of type (N.Is.Eq).

It has a great application in mathematical-finance. For example, it
appears in financial market where the prices follow a ’jump process’
and two market participants are competing to optimize their
respective interest.
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Viscosity Solutions

From the expression of the equation (N.Is.Eq) we can readily see that
it is fully non-linear and degenerate parabolic equation and it does not
enjoy a variational structure.

Hence for such equations, the notion of
weak solution is in general interpreted in viscosity solution sense.

Theorem ((Lipschitz Solution) Jakobsen and Karlsen ’05,’06 )

Under suitable condition on the coefficients of the equation (N.Is.Eq), we
have

(a) There exists a unique bounded viscosity solution u of the initial value
problem (N.Is.Eq).

(b) The viscosity solution u is Lipschitz continuous with the the following
inequity :

||u(t, .)||C0,1(RN) ≤ K (tC + ||u0||C0,1(RN)).
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Known results on numerical approximations of HJB
equations

The study of numerical approximation in the context of viscosity
solutions began in the early eighties. The numerical approximations of
the classical first order HJB equations of the form

ut + H(∇u(t, x)) = 0 in RN

and their related error bound have been established by Lions and
Crandall(1981).
Later, Souganidis(1985) studied it with general Hamiltonian
(depending on t, x and u).

The rate of convergence for classical first order Bellman-Isaacs
equations is showed to be 1

2 and it is the optimal rate.
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Error estimates of the numerical approximation for second order HJB
equation

ut + H(t, x , u,∇u,D2u) = 0

remained unsolved for a number of years, although the convergence of
such schemes have already been established by Souginidis and Barles
(1991).

I Finally, Krylov settled the issue for a class of monotone schemes for
convex Hamiltonian cases in his series of papers (1997,2000,2005) by
introducing the method of shaking the coefficient.

I In a parallel development, Barles & Jakobsen offered a general
approach, based on Krylov’s method, to estimate general monotone
approximation scheme to a convex second order HJB equation.

INDRANIL CHOWDHURY (TIFR) Rate of convergence for monotone approximations of non-local Isaacs’ equationsNovember 10, 2016 12 / 37



Error estimates of the numerical approximation for second order HJB
equation

ut + H(t, x , u,∇u,D2u) = 0

remained unsolved for a number of years, although the convergence of
such schemes have already been established by Souginidis and Barles
(1991).

I Finally, Krylov settled the issue for a class of monotone schemes for
convex Hamiltonian cases in his series of papers (1997,2000,2005) by
introducing the method of shaking the coefficient.

I In a parallel development, Barles & Jakobsen offered a general
approach, based on Krylov’s method, to estimate general monotone
approximation scheme to a convex second order HJB equation.

INDRANIL CHOWDHURY (TIFR) Rate of convergence for monotone approximations of non-local Isaacs’ equationsNovember 10, 2016 12 / 37



Error estimates of the numerical approximation for second order HJB
equation

ut + H(t, x , u,∇u,D2u) = 0

remained unsolved for a number of years, although the convergence of
such schemes have already been established by Souginidis and Barles
(1991).

I Finally, Krylov settled the issue for a class of monotone schemes for
convex Hamiltonian cases in his series of papers (1997,2000,2005) by
introducing the method of shaking the coefficient.

I In a parallel development, Barles & Jakobsen offered a general
approach, based on Krylov’s method, to estimate general monotone
approximation scheme to a convex second order HJB equation.

INDRANIL CHOWDHURY (TIFR) Rate of convergence for monotone approximations of non-local Isaacs’ equationsNovember 10, 2016 12 / 37



However, there is no general result on error estimates for
approximation schemes that covers second order non-convex Isaacs
type equations with full generality.

I In dimension one, it has been studied by Jakobsen (BIT,2004) and the
method is very specific to one dimension.

I On space dimension greater than one, partial results have been
obtained with uniform ellipticity, we refer the initial works by Caffarelli
& Souganidis(2008,2010) where existence of an algebraic rate of
convergence is established.

I Later there have been some extensions of these results but those are
restricted to the uniformly elliptic equations only. Also these results
were unable to address the optimal rate of convergence.
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Available Results for non local equations:

Study of numerical approximation of non-local Bellman-Isaacs equations is
a more recent one. The studies were concentrated on the equations of the
form

ut + sup
α∈A

{
−f α(t, x) + cα(t, x)u(t, x)− tr [aα(t, x)D2u(x)]

−bα(t, x).∇u(t, x)− Iα[u](t, x)} = 0 in QT ,

u(0, x) = u0(x) in RN ,

Karlsen, Jakobsen & Biswas have studied the monotone approximate
schemes for such convex non-local Bellman equations in there series
of papers (2007,2008,2010) where the specific emphasis was given in
estimating the rate of convergence.

The approaches are based on the method of shaking the coefficients
and hence not applicable to the equations of type (N.Is.Eq).
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Method of Shaking the coefficient

Let u be a solution ( weak or numerical) of

ut + sup
α
{f α(t, x) + cα(t, x)u − bα(t, x).∇u − 1

2
tr(aα(t, x)D2u)} ≤ 0.

(Conv.Eq)

We further consider an ε > 0 and uε be the solution( weak or
numerical)

uεt + sup
α,y∈A×B1

{f α(t, x + εy) + cα(t, x + εy)uε − bα(t, x + εy).∇uε

− 1

2
tr(aα(t, x + εy)D2uε)} ≤ 0.

We note that if y is singleton then uε(t, x) = u(t, x + εy).

Let us take a non negative function ξ such that ξ ∈ C∞c (B1) and
have unit integral. We define

u(ε)(t, x) =
1

εN

∫
RN

u(t, y)ξ

(
t,
x − y

ε

)
dy .
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The above inequality implies, for every α ∈ A and y ∈ B1

uεt (t, x − εy) + {f α(t, x) + cα(t, x)uε(t, x − εy)

− bα(t, x).∇uε(t, x − εy)− 1

2
tr(aα(t, x)D2uε(t, x − εy)} ≤ 0. (Sh.Eq)

Now we multiply (Sh.Eq) by ξ and integrate over y , we finally get

u
ε(ε)
t + sup

α
{f α(t, x) + cα(t, x)uε(ε) − bα(t, x).∇uε(ε)

− 1

2
tr(aα(t, x)D2uε(ε))} ≤ 0.

Hence, we observe that we are able to construct a smooth solution of
(Conv.Eq) from the given particular solution u. Then the properties
of mollifiers, consistency of numerical scheme with smooth solution
and comparison principle would help us to get the desired rate of
convergence.
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We can compare this method of shaking the coefficient with Jensen’s
inequality. The idea is to interchange the occurrence of integration
and convex function.

Hence, once we consider the non-convex Hamiltonian ; this method
will no longer work.

Questions: To construct a consistent monotone numerical approximate
scheme of equation (N.Is.Eq), i.e,

ut + inf
α∈A

sup
β∈B

{
−f α,β(t, x) + cα,β(t, x)u(t, x)

−bα,β(t, x).∇u(t, x)− Iα,β[u](t, x)
}

= 0 in QT ,

u(0, x) = u0(x) in RN ,

and to find the rate of convergence of the scheme with the viscosity
solutions.
* These are the joint work of I*, Imran and Jakobsen.
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Assumptions
We now list the set of working assumptions. These are necessary for the
wellposedness and regularity results for the problem (N.Is.Eq).

(A.1) The control sets A,B are separable metric spaces. Moreover, the
functions f α,β(t, x), cα,β(t, x), bα,β(t, x) and ηα,β(t, x ; z) are
continuous in α, β, t, x and z .

(A.2) There exist a constant K > 0 such that for every α, β ,

||u0||1 + ||f α,β||1 + ||cα,β||1 + ||bα,β||1 ≤ K .

(A.3) For x , y ∈ RN and z ∈ RM we have

|η(t, x ; z)− η(t, y ; z)| ≤ C |z | |x − y | and, |η(t, x ; z)| ≤ C0 |z |.

(A.4) The Lévy measure ν(dz) is Radon measure on
(
RM ,B(RM)

)
and it

has density k(z) of the form

0 ≤ k(z) ≤ C
e−Λ|z|

|z |M+σ

for some σ ∈ (0, 2) and Λ > 0.
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We devide our study of numerical approximation of solution (N.Is.Eq)
in two parts as the nature of nonlocality is significantly different in
following two cases.

I The first step would be to consider the case when σ ∈ (0, 1).

I In the next part we consider the equation when σ ∈ [1, 2).

In the first case as σ < 1 we can easily verify that the Lévy measure
should satisfy the following:∫

|z|<1
|z |ν(dz) < C

∫
|z|<1

|z | e
−Λ|z|

|z |M+σ
dz

≤ C

∫
|z|<1

1

|z |M+σ−1
dz <∞.

The above estimate would not be true for σ ≥ 1.
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Monotone scheme for σ ∈ (0, 1).

Let ∆t,∆x > 0 be the discretisation parameters/ mesh size in the time
and spatial variables, respectively. We use the notation h to denote the
vector

(
∆t,∆x

)
. we consider M = T

∆t and write the mesh as

GNh =
{

(tn, xm) : tn = n∆t, xm = m∆x ; m ∈ ZN , n = 0, 1, ....,M
}
.

The equation (N.Is.Eq) has two main spatial component the need
discretisation. The local term bα,β(t, x).∇u(t, x) and the nonlocal
term Iα,β[u](t, x).
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The discretisation of bα,β(t, x).∇u(t, x) is denoted by Dα,βh [u](t, x)
and defined as

Dα,βh [u](t, x) =
N∑
i=1

[
bα,β,+i (t, x)

u(t, x + ei∆x)− u(t, x)

∆x

+ bα,β,−i (t, x)
u(t, x − ei∆x)− u(t, x)

∆x

]
,

where where ei ∈ RN are the unit normal vectors in RN .

We rewrite Dα,βh [u](t, x) as

Dα,βh [u](t, x) =
∑
j6=0

dα,βh,j, (t, x)
[
φ(tn, x + xj)− φ(tn, x)

]
,

where, dα,βh,±ei (t, x) = bα,β,±(t,x)
∆x and dα,βh,j (t, x) = 0 otherwise.
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The next step is to propose a suitable discritisation of the non-local
term Iα,β[u]. We use the notation Iα,βh [u] denote the quadrature
based approximation of Iα,β[u] based on the spatial grid ∆x ZN .

I Let ih be the piece-wise linear/multilinear/affine interpolation operator
based on the spatial grid. Then the operator ih has the following form

ih[φ](x) =
∑
j∈ZN

φ(xj)ωj(x ; h) with, ωj(x ; h) ≥ 0

for all x ∈ RN .

I In addition, the functions ωj(x ; h) are Lipschitz continuous and
ωj(xk; h) = δj,k and

∑
j ωj(x ; h) = 1.

I We also remark that ωj(0; h) = 0 if j 6= 0 and

ωj(x ; h) ≤ K

∆x
|x | for all x ∈ RN .
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The monotone discretization of Iα,β is now given by

Iα,βh [ϕ](t, x) =
∑
j6=0

(
ϕ(t, x + xj)− ϕ(t, x)

)
κα,βj (t, x ; h),

where

κα,βj (t, x ; h) =

∫
RM\{0}

ωj(η
α,β(t, x ; z); h)ν(dz)

≤ C

∆x

∫
RM\{0}

ηα,β(t, x ; z)ν(dz) ≤ C

∆x

∫
RM\{0}

|z |ν(dz) ≤ K

∆x

(Note that when σ ∈ [1, 2), we can not make sense of this quantity.)

By the property of ih we can conclude that there is number K (N) depending
only on N such that ∑

j6=0

κα,βj (t, x ; h) ≤ K (N)

∆x
.
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Fully discrete numerical scheme

The solution of the scheme on the grid GNh is denoted as Uh and defined
as Un

j = Uh(tn, xj) for any (tn, xj) ∈ GNh . Then, for two parameters
θ, ϑ ∈ [0, 1], the implicit-explicit fully discrete scheme is written as

Un
j =Un−1

j −∆t inf
α∈A

sup
β∈B

{
−θDα,βh [u]nj − (1− θ)Dα,βh [U]n−1

j

−f α,β,n−1
j + cα,β,nj Un−1

j − ϑIα,βh [U]nj − (1− ϑ)Iα,βh [U]n−1
j

}
,

(Nu.Schm)

U0
j =u(0, xj) for all j ∈ ZN .

In the above, for any generic function γα,β, we have followed abbreviation
γ(tn, xj) = γnj for tn ∈ ∆t × {0, 1, 2, ......., T

∆t } and any multiindex j ∈ ZN .
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Monotonicity of the scheme.

We see that, the weight functions of the respective approximations Dα,βh and

Iα,βh are non-negative.

We further have for all ∆x ≤ 1

κα,β,n
h,j̄

=
∑
j6=0

κα,β,n
h,j,̄j

≤ KI (∆x)−1

and, dα,β,n
h,̄j

=
∑
j6=0

dα,β,n
h,j,̄j

≤ KD(∆x)−1.

Then we have the following lemma.

Lemma

The scheme (Nu.Schm) is monotone under the following condition: if ∆x ≤ 1,
along with

∆t

∆x

(
(1− θ)KD + (1− ϑ)KI

)
+ ∆t sup

α,β
|cα,β | ≤ 1. (CFL)
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Wellpossedness of numerical scheme

Theorem

Assume (A.1)-(A.4) and the CFL condition (CFL) hold. Then there exists
unique bounded solution Uh of (Nu.Schm). Moreover, the scheme
(Nu.Schm) is L∞-stable, more specifically

|Uh| ≤ esupα,β |cα,β |0tn
[
|u0|+ supα,β |f α,β|

]
.

The proof of the above theorem uses the classical fixed point
argument with an induction on the time stepping.
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Main result

Let us now state the main theorem in this context.

Theorem (I*,Imran, Jakobsen, 2016)

Let (A.1)-(A.4) be true with σ ∈ (0, 1) and u0 be bounded and Lipschitz
continuous function on RN . Furthermore, assume that the CFL condition
(CFL) holds and Uh be the unique bounded function on GNh that solves
(Nu.Schm). If u ∈ C 0,1(QT )is the unique viscosity solution of (N.Is.Eq) in
QT , then there exists a constant C > 0 depending only on ||u0||, ||∇u0||
such that

|Uh − u| ≤ C (∆t1/2 + ∆x1/2) on GNh .

The proof uses the discretize version of the technique of doubling the
variable adopted in non-local setup.

Due to too many technical details we are skipping the details of the
proof here.
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Monotone scheme for σ ∈ [1, 2).

In this case, we propose a two-step approximation method for
(N.Is.Eq).
The first step would be to approximate the equation by cutting-off
the singularity of the Lévy measure at a suitable level. Let δ > 0 be a
positive constant and νδ(dz) = 1|z|>δ(z) ν(dz).We replace ν(dz) by

νδ( dz) in the non local term Iα,β[φ] and write

J α,β,δ[φ](t, x) =

∫
|z|>δ

(
φ(t, x + ηα,β(t, x ; z))− φ(t, x)

− ηα,β(t, x ; z) · ∇xφ(t, x)
)
ν(dz)

:= Iα,β,δ[φ](t, x)− bα,βδ (t, x) · ∇xφ(t, x),

where

Iα,β,δ[φ](t, x) =

∫
|z|>δ

(
φ(t, x + ηα,β(t, x ; z))− φ(t, x)

)
ν(dz),

bα,βδ (t, x) =

∫
|z|>δ

ηα,β(t, x ; z) ν(dz).
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Monotone scheme for σ ∈ [1, 2).
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We now replace Iα,β[u] in (N.Is.Eq) by J α,β,δ[φ] and obtain the
perturbed problem as

uδt + inf
α∈A

sup
β∈B

{
−f α,β(t, x) + cα,β(t, x)uδ(t, x)− b̃α,βδ (t, x).∇uδ(t, x)

−Iα,β,δ[uδ](t, x)
}

= 0 in QT , (Pt.N.Is.Eq)

uδ(0, x) = u0(x) in RN , (Pt.I.C)

where b̃α,βδ (t, x) = bα,β(t, x) + bα,βδ (t, x).

The specific choice of νδ guarantees us to consider the monotone
discretisation of b̃δ(t, x) · ∇xu(t, x) and Iα,β,δ[u](t, x) in a similar
way as for the case σ ∈ (0, 1) and those discritisations are respectively

denoted as Dα,β,δh [u](t, x) and Iα,β,δh [u](t, x).
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Fully discrete scheme

We now propose the following discretisation of (Pt.N.Is.Eq)-(Pt.I.C):

[Uδ]nj =[Uδ]n−1
j −∆t inf

α∈A
sup
β∈B

{
− θDα,β,δh [Uδ]nj

− (1− θ)Dα,β,δh [Uδ]n−1
j − f α,β,nj + cα,β,nj [Uδ]n−1

j

− ϑIα,β,δh [Uδ]nj − (1− ϑ)Iα,β,δh [Uδ]n−1
j

}
,

(Pt.Nu.Schm)

[Uδ]0j =u(0, xj) for all j ∈ ZN , (Pt.Nu.I)

where Uδ
h denotes the solution of this scheme on the grid GNh and

defined as Uδ
h(tn, xj) = [Uδ]nj .

This scheme is monotone under a suitable CFL condition. We note
that this CFL condition would depend on the cut-off parameter δ.
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Main Result

Our aim is to estimate ||Uδh − uδ||L∞(GN
h ) for every fixed δ > 0. .

We can verify that the bounds on b̃α,β , Iα,β,δ(two main terms of the
perturbed equation) and their respective approximations would depend on∫

|z|>δ
|z |ν(dz) ≈ Γ(σ, δ) =

{
δ1−σ when, σ > 1
− log δ when, σ = 1

(5)

and hence this quantity Γ(σ, δ) will iterate to the proof of error estimate as
well.

We follow the similar steps as in the case of σ ∈ (0, 1) and finally, have the
following error estimate for perturbed problem (Pt.N.Is.Eq).

Theorem (I*,Imran, Jakobsen, 2016)

Let (A.1)-(A.4) hold and uδ be the unique viscosity solution of
(Pt.N.Is.Eq)-(Pt.I.C). For very δ > 0, if Uδh is the solution of the scheme
(Pt.Nu.Schm)-(Pt.Nu.I) then

sup
(t,x)∈GN

h

|uδ(t, x)− Uδh (t, x)| ≤ K1(∆t + ∆x)1/2Γ(σ, δ) + K2(∆x)3/2δ−σ. (6)
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Main result

The final step would be to estimate the viscosity solution u of our main
equation with the solution uδ of perturbed equation. We invoke the
continuous dependence estimate proved by Karlsen & Jakobsen(JDE,2005)

and get the following:

|u(t, x)− uδ(t, x)| ≤ CT 1/2 sup
α,β

√∫
RN\{0}

|ηα,β(t, x , z)|2 |ν − νδ|(dz)

≤ Kδ1−σ
2 (7)

for (t, x) ∈ QT .

Hence, for any (t, x) ∈ GNh , we combine the estimates (6) and (7) obtain

|u(t, x)− Uδh (t, x)| ≤ K1(∆t + ∆x)1/2Γ(σ, δ) + K2(∆x)3/2δ−σ + Kδ1−σ
2

for every δ > 0.
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Main Result

Finally choose δ optimally (consider δ = (∆x + ∆t)1/σ) to get the
desired result.

Theorem (I*,Imran, Jakobsen, 2016)

Let (A.1)-(A.4) hold and u be the unique viscosity solution of
(N.Is.Eq)-(I.C) with σ ∈ [1, 2). If Ũh is the solution of the scheme
(Pt.Nu.Schm)-(Pt.Nu.I) for δ = (∆x + ∆t)1/σ, then

|u − Ũh| ≤

{
K (∆t + ∆x)

1
σ
− 1

2 when, σ > 1

K (∆t + ∆x)
1
2 | log(∆t + ∆x)| when, σ = 1

(8)

in GNh .
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Remarks

We have obtained the optimal rate of convergence for the case σ < 1.

For the case σ ≥ 1 the rates, we obtained, are depending on the order
of the non local term σ.

The immediate question that comes :

Whether we can find a better rate of convergence for the case σ ≥ 1
and what will be the optimal rate of convergence in this case?
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Thank YOU.
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