Spectral and pseudo-differential analysis of the boundary integral operators in 3D elastodynamics. Application to preconditioning

Frédérique LE LOUËR

En collaboration avec M. Darbas (MCF-Amiens) et S. Chaillat (CNRS-ENSTA ParisTech)

LMAC EA2222, UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE, FRANCE

Séminaire de l'équipe LMAP, Université de Pau et des pays de l'Adour, 1er Décembre 2016

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

 \rightarrow To construct a **fast solver** for exterior boundary value problems **at high frequency** ω :

$$\begin{split} \mu \, \Delta \, \pmb{u} + (\lambda + \mu) \, \nabla \, \text{div} \, \pmb{u} + \rho \omega^2 \pmb{u} &= \mathbf{0} \text{ in } \mathbb{R}^3 \backslash \overline{\Omega} \\ & \pmb{u} + \pmb{u}^{inc} &= \mathbf{0} \text{ on } \Gamma \\ + \text{Kupradze radiation conditions} \end{split}$$

 \rightarrow Reduction to boundary integral equations on Γ

→ Drawbacks :

- The discretized matrix is not sparse and nonsymmetric
- **②** The required number of DOFs increases with the frequency \Rightarrow large dimension *N* **Cost of iterative solver** : $\mathcal{O}(n_{iter}N^2)$

 \rightarrow Solutions :

- To speed up the matrix-vector product : Fast Multipole Method (Chaillat & al.)
- To speed up the convergence of the iterative solver (GMRES)

GMRES

Y. SAAD & M. H. SCHULTZ, A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM (1986)

• **Algorithm** for solving Ax = b:

Choose an initial guess x₀ and compute the initial residual r₀ = b - Ax₀.
 While ||r_m|| < tol ,

Compute $x_m = \underset{x_m \in K_m(A,r_0)}{\operatorname{argmin}} ||Ax_m - b||_2$

where $K_m(A, r_0)$ is the Krylov subspace

$$K_m(A, r_0) = \operatorname{span}\{r_0, Ar_0, \ldots, A^{m-1}r_0\}$$
.

• **Error bounds** : if A is diagonalisable and $A = VDV^{-1}$, then

$$\frac{||r_m||}{||r_0||} \leq \operatorname{cond}(V) \min_{p_m \in \mathcal{P}_m} \max_{\lambda \in \sigma(A)} |p_m(\lambda)|,$$

where \mathcal{P}_m is the set of all polynomials of degree *m* or less over \mathbb{C} satisfying p(0) = 1.

Fast convergence provided

 $\bigcirc \text{ cond}(V) \approx 1 \text{ or } A \approx \text{ normal matrix}$

2 eigenvalue clustering about some nonzero point $c \in \mathbb{C}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Outline

- Boundary integral equation method
- Preconditioning Strategy
- Pseudo-differential analysis of the boundary integral operators
 - 4 Various approximations of the Dirichlet to Neumann map
 - Numerical experiments
 - Conclusion and future work

Spectral and pseudo-differential analysis of the boundary integral operators in 3D elastodynamics with application to preconditioning Boundary integral equation method

Boundary integral equation method

Preconditioning Strategy

Pseudo-differential analysis of the boundary integral operators

4 Various approximations of the Dirichlet to Neumann map

Numerical experiments

Solution of the scattering problem

D. KUPRADZE & , Three-dimensional problems of the mathematical theory of elasticity ...

- The time-harmonic Navier equation : $\mu \Delta u + (\lambda + \mu) \nabla \operatorname{div} u + \rho \omega^2 u = 0.$
- $G(\kappa, x y) = \frac{e^{i\kappa|x-y|}}{4\pi|x-y|}$, $\kappa_p = \omega\sqrt{\mu\rho^{-1}}$ and $\kappa_s = \omega\sqrt{(\lambda + 2\mu)\rho^{-1}}$. The Green function is

$$\Phi(\omega, x - y) = \frac{1}{\rho\omega^2} \left(\operatorname{curl} \operatorname{curl}_x \left\{ G(\kappa_s, x - y) \operatorname{I}_3 \right\} - \boldsymbol{\nabla}_x \operatorname{div}_x \left\{ G(\kappa_p, x - y) \operatorname{I}_3 \right\} \right)$$

- Traction trace : $T = 2\mu \frac{\partial}{\partial n} + \lambda n \operatorname{div} + \mu n \times \operatorname{curl}$.
- The elastodynamic potential operators are, for $x \in \mathbb{R}^3 \setminus \overline{\Omega}$,

$$\mathscr{S}\boldsymbol{\varphi}(x) = \int_{\Gamma} \Phi(\omega, x - y)\boldsymbol{\varphi}(y)d\sigma(y) , \quad \mathscr{D}\boldsymbol{\psi}(x) = \int_{\Gamma} {}^{\mathsf{T}} [\boldsymbol{T}_{y}\Phi(\omega, x - y)]\boldsymbol{\psi}(y)d\sigma(y)$$

- Integral representation of the solution : $u = \mathscr{D} \psi + i\eta \mathscr{S} \psi$ where $\eta \neq 0$ to ensure uniqueness.
- Solving the Direct Problem ⇔ solving a Boundary Integral Equation

$$\boldsymbol{u} + \boldsymbol{u}^{inc} = 0 \quad \Rightarrow \quad \frac{1}{2}\boldsymbol{\psi}(x) + D\boldsymbol{\psi}(x) + i\eta S\boldsymbol{\psi}(x) = -\boldsymbol{u}^{inc}(x), \ x \in \Gamma$$

$$S_{\kappa}\varphi(x) = \lim_{s \to 0} (\mathscr{S}\varphi)(x + sn(x)) \text{ and } \frac{1}{2}\psi(x) + D\psi(x) = \lim_{s \to 0} (\mathscr{D}\psi)(x + sn(x))$$

▲□▶▲□▶▲□▶▲□▶ □□ の

• Diffraction of an incident plane P-wave by the unit sphere

$$\boldsymbol{u}^{inc}(x) = \boldsymbol{p}\boldsymbol{e}^{i\kappa_p x \cdot \boldsymbol{d}}, \quad \boldsymbol{p} = \boldsymbol{d} = {}^{\mathsf{T}}(0,0,1)$$

- Simulations performed with a FM-BEM code [Chaillat-Bonnet-Semblat, 08].
- GMRES solver with no restart and tolerance $\varepsilon = 10^{-3}$.
- $\rho = 1$, $\mu = 1$ et $\lambda = 0.25$ and $\kappa_s = 1.5\kappa_p$
- Wavenumber $\lambda_s = \frac{2\pi}{\kappa_s}$.
- Number of DOFs per wavelenght : $n_{\lambda_s} = 10$
- CFIE parameter : $\eta = 1$
- Number of GMRES iteration :

#DOFs	ω	# iter
1 926	4	18
7 686	8.25	27
30 726	16.5	51
122 886	33	180
490 629	66.5	> 500

GMRES convergence depends on both a frequency increase and a mesh refinement

• eigenvalue repartition of the CFIE :

FIGURE: (Left) : Distribution of the eigenvalues of the standard CFIE ($\eta = 1$, $\kappa_s = 16\pi$ and $n_{\lambda_s} = 10$). (**Right**) : Condition number with respect to ω ($n_{\lambda_s} = 10$).

• How to speed up the convergence of the GMRES? The discretized matrix must have :

- eigenvalue clustering about c = 1,
- 2 a condition number close to 1.

Boundary integral equation method

Preconditioning Strategy

Pseudo-differential analysis of the boundary integral operators

Various approximations of the Dirichlet to Neumann map

Numerical experiments

Principle

- X. ANTOINE & M. DARBAS, Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation.
- We consider a new layer ansatz :

$$\boldsymbol{u}(x) = \mathscr{D}\boldsymbol{\varphi}(x) - \mathscr{S}\boldsymbol{\Lambda}\boldsymbol{\varphi}(x)$$
, $x \in \mathbb{R}^3 \setminus \overline{\Omega}$

$$\Rightarrow -\boldsymbol{u}_{|\Gamma}^{inc}(x) = (\frac{1}{2}\mathbf{I} + D)\boldsymbol{\varphi}(x) - S\boldsymbol{\Lambda}\boldsymbol{\varphi}(x) , \qquad x \in \Gamma$$

where the operator Λ is chosen such tthat $\left(\frac{1}{2}I + D\right) - S\Lambda \approx I$.

Extreme case :

1
$$I = (\frac{1}{2}I + D) - S\Lambda \Rightarrow \Lambda := -S^{-1}(\frac{1}{2}I - D)$$
 (if ω is not an eigenfrequency)

2 The Dirichlet-to-Neumann map is defined by :

$$DtN: u_{|\Gamma} \in H^{\frac{1}{2}}(\Gamma) \mapsto (Tu)_{|\Gamma}:= DtNu_{|\Gamma} \in H^{-\frac{1}{2}}(\Gamma).$$

Then, the Somigliana integral representation formula leads to

- ightarrow The exact DtN operator Λ^{ex} is a good preconditioner for the boundary integral equation
- **Objective** : we use, instead, the (pseudo-differential) principal part of the *DtN* map, that is easy to implement. We get $\boxed{(\frac{1}{2}I + D) S\Lambda = I + compact}$

<ロト < 回 ト < 回 ト < 回 ト - 三 三

Principle

- X. ANTOINE & M. DARBAS, Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation.
- We consider a new layer ansatz :

$$\boldsymbol{u}(x) = \mathscr{D}\boldsymbol{\varphi}(x) - \mathscr{S}\boldsymbol{\Lambda}\boldsymbol{\varphi}(x)$$
, $x \in \mathbb{R}^3 \setminus \overline{\Omega}$

$$\Rightarrow -\boldsymbol{u}_{|\Gamma}^{inc}(x) = (\frac{1}{2}\mathbf{I} + D)\boldsymbol{\varphi}(x) - S\boldsymbol{\Lambda}\boldsymbol{\varphi}(x) , \qquad x \in \Gamma$$

where the operator Λ is chosen such tthat $\left(\frac{1}{2}I + D\right) - S\Lambda \approx I$.

Extreme case :

1
$$I = (\frac{1}{2}I + D) - S\Lambda \Rightarrow \Lambda := -S^{-1}(\frac{1}{2}I - D)$$
 (if ω is not an eigenfrequency)

2 The Dirichlet-to-Neumann map is defined by :

$$DtN: u_{|\Gamma} \in H^{\frac{1}{2}}(\Gamma) \mapsto (Tu)_{|\Gamma}:= DtNu_{|\Gamma} \in H^{-\frac{1}{2}}(\Gamma).$$

Then, the Somigliana integral representation formula leads to

$$\begin{aligned} \boldsymbol{u}(\boldsymbol{x}) &= \mathscr{D}\boldsymbol{u}_{|\Gamma} - \mathscr{S}\boldsymbol{D}\boldsymbol{t}\boldsymbol{N}\boldsymbol{u}_{|\Gamma} \implies \boldsymbol{u}_{|\Gamma} = -\boldsymbol{u}_{|\Gamma}^{inc} = (\frac{1}{2}I + D)\boldsymbol{u}_{|\Gamma} - \boldsymbol{S}\boldsymbol{D}\boldsymbol{t}\boldsymbol{N}\boldsymbol{u}_{|\Gamma} \\ \Rightarrow & \boldsymbol{\Lambda} = \boldsymbol{D}\boldsymbol{t}\boldsymbol{N} \text{ and } \boldsymbol{\varphi} = \boldsymbol{u}_{|\Gamma} \end{aligned}$$

- \rightarrow The exact DtN operator Λ^{ex} is a good preconditioner for the boundary integral equation
- **Objective** : we use, instead, the (pseudo-differential) principal part of the *DtN* map, that is easy to implement. We get $\boxed{(\frac{1}{2}I + D) S\Lambda = I + compact}$

<ロト < 回 ト < 回 ト < 回 ト - 三 三

Mathematical properties of the boundary integral operators

D. KUPRADZE, three-dimensional problems of the mathematical theory of elasticity ...

• The elastodynamic boundary integral operators are :

$$S\varphi(x) = \int_{\Gamma} \Phi(\omega, x - y)\varphi(y)d\sigma(y) , \quad D\psi(x) = \int_{\Gamma} \mathsf{T}[\mathbf{T}_{y}\Phi(\omega, x - y)]\psi(y)d\sigma(y)$$

$$D' \varphi(x) = \int_{\Gamma} [T_x \Phi(\omega, x - y)] \varphi(y) d\sigma(y) , \quad N \psi(x) = \int_{\Gamma} T_x^{\mathsf{T}} [T_y \Phi(\omega, x - y)] \psi(y) d\sigma(y)$$

- Mathematical properties :
 - S: H^{-1/2}(Γ) → H^{-1/2}(Γ) is compact. The eigenvalues of S form an increasing sequence that tends to zero.
 D: H^{-1/2}(Γ) → H^{-1/2}(Γ) and D': H^{1/2}(Γ) → H^{1/2}(Γ) are not compact. The eigenvalues of D and D' are bounded.
 N: H^{1/2}(Γ) → H^{-1/2}(Γ) is unbounded from H^{1/2}(Γ) to itself. The eigenvalues of N form an increasing sequence that tends to infinity.
- Calderón relations :

$$SN = -\frac{1}{4}I + D^2 \qquad NS = -\frac{1}{4}I + {D'}^2$$
$$SD' = DS \qquad ND = D'N$$

Various representations of the exact DtN operator : if ω is not an eigenfrequency, then

$$DtN := -S^{-1}(\frac{1}{2}I - D)$$
 or $DtN := N(\frac{1}{2}I + D)^{-1}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Spectral and pseudo-differential analysis of the boundary integral operators in 3D elastodynamics with application to preconditioning Pseudo-differential analysis of the boundary integral operators

Boundary integral equation method

Preconditioning Strategy

Pseudo-differential analysis of the boundary integral operators

Various approximations of the Dirichlet to Neumann map

Numerical experiments

M. S. AGRANOVICH & B. A. AMOSOV & M. LEVITIN, Spectral problems for the Lamé system with spectral parameter in boundary conditions on smooth or nonsmooth boundary

•
$$L(\partial_x) = \mu \Delta + (\lambda + \mu) \nabla \operatorname{div} + \rho \omega^2 \mathbf{I}$$

• $\Delta = \nabla \operatorname{div} - \operatorname{curl} \operatorname{curl} \Rightarrow L(\partial_x) = (\lambda + 2\mu) \nabla \operatorname{div} - \mu \operatorname{curl} \operatorname{curl} + \rho \omega^2 I$

• It has the symbol $\ell(\boldsymbol{\xi}) = -(\lambda + 2\mu)\boldsymbol{\xi}^{\mathsf{T}}\boldsymbol{\xi} - \mu(|\boldsymbol{\xi}|^2 - \boldsymbol{\xi}^{\mathsf{T}}\boldsymbol{\xi}) + \rho\omega^2 \mathbf{I}$, that can be written :

$$\ell(\boldsymbol{\xi}) = (\lambda + 2\mu) \left(\kappa_p^2 - |\boldsymbol{\xi}|^2\right) \frac{1}{|\boldsymbol{\xi}|^2} \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{\xi} + \mu \left(\kappa_s^2 - |\boldsymbol{\xi}|^2\right) \left(\mathbf{I} - \frac{1}{|\boldsymbol{\xi}|^2} \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{\xi}\right)$$

• Th volume potential with kernel $\Phi(\omega, x - y)$ has the symbol

$$\ell^{-1}(\boldsymbol{\xi}) = (\lambda + 2\mu)^{-1} \frac{-1}{|\boldsymbol{\xi}|^2 - \kappa_p^2} \frac{1}{|\boldsymbol{\xi}|^2} \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{\xi} + \mu^{-1} \frac{-1}{|\boldsymbol{\xi}|^2 - \kappa_s^2} \left(\mathbf{I} - \frac{1}{|\boldsymbol{\xi}|^2} \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{\xi} \right)$$

• The boundary integral operator with kernel $\Phi(\omega, x - y)$ has the principal symbol

$$\sigma(S) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \ell^{-1}(\boldsymbol{\xi}) d\xi_3 \quad \text{where } \boldsymbol{\xi} = (\xi_1, \xi_2, \xi_3) = (\boldsymbol{\xi}_{||}, \xi_3)$$
$$= \frac{1}{2\rho\omega^2} \left(\frac{-1}{\sqrt{|\boldsymbol{\xi}_{||}|^2 - \kappa_p^2}} \begin{pmatrix} \boldsymbol{\xi}_{||}^{\mathsf{T}} \boldsymbol{\xi}_{||} & 0\\ 0 & |\boldsymbol{\xi}_{||}|^2 - \kappa_p^2 \end{pmatrix} + \frac{-1}{\sqrt{|\boldsymbol{\xi}_{||}|^2 - \kappa_s^2}} \begin{pmatrix} \kappa_s^2 \mathbf{I}_{||} - \boldsymbol{\xi}_{||}^{\mathsf{T}} \boldsymbol{\xi}_{||} & 0\\ 0 & -|\boldsymbol{\xi}_{||}|^2 \end{pmatrix} \right)$$

• We deduce the principal part of *S* in terms of differential operators

$$P_{-1}(S) = \frac{i}{2\rho\omega^2} \left[-\nabla_{\Gamma} \left(\Delta_{\Gamma} + \kappa_p^2 \mathbf{I} \right)^{-\frac{1}{2}} \operatorname{div}_{\Gamma} \mathbf{I}_t + \boldsymbol{n} \left(\Delta_{\Gamma} + \kappa_p^2 \mathbf{I} \right)^{\frac{1}{2}} (\boldsymbol{n} \cdot \mathbf{I}_n) + \left(\Delta_{\Gamma} + \kappa_s^2 \mathbf{I} \right)^{-\frac{1}{2}} \left(\kappa_s^2 \mathbf{I}_t + \nabla_{\Gamma} \operatorname{div}_{\Gamma} \mathbf{I}_t \right) - \boldsymbol{n} \left(\Delta_{\Gamma} + \kappa_s^2 \mathbf{I} \right)^{-\frac{1}{2}} \Delta_{\Gamma} (\boldsymbol{n} \cdot \mathbf{I}_n) \right]$$

Frédérique LE LOUËR

Integral representation of D and its principal part

G. C. HSIAO & W. L. WENDLAND , Boundary integral equations

- Tangential Günter derivative : $\mathcal{M} = \frac{\partial}{\partial n} n \operatorname{div} + n \times \operatorname{curl} = [\nabla_{\Gamma} \cdot]n n \operatorname{div}_{\Gamma} \cdot$
- Traction trace : $T = 2\mu \frac{\partial}{\partial n} + \lambda n \operatorname{div} + \mu n \times \operatorname{curl} = 2\mu \mathcal{M} + (\lambda + 2\mu)n \operatorname{div} \mu n \times \operatorname{curl}$
- Integral representation of the double layer boundary integral operator :

$$(D\boldsymbol{\psi})(x) = 2\mu S\mathcal{M}\boldsymbol{\psi}(x) - \int_{\Gamma}^{\mathsf{T}} [\boldsymbol{n}(y) \times \operatorname{curl}_{y} \{G(\kappa_{s}, x - y)\mathbf{I}_{3}\}]\boldsymbol{\psi}(y)ds(y) - \int_{\Gamma} \boldsymbol{\nabla}_{x} G(\kappa_{p}, x - y)(\boldsymbol{n}(y) \cdot \boldsymbol{\psi}(y)) ds(y),$$

Well-known expansions :

$$\nabla v = \nabla_{\Gamma} v + n \frac{\partial v}{\partial n},$$

$$n \times \operatorname{curl} u = \nabla_{\Gamma} (u \cdot n) + n \times (\mathcal{R} - 2\mathcal{H} \operatorname{I}_3)(u \times n) - n \times \left(\frac{\partial u}{\partial n} \times n\right)$$

We deduce the principal part of D in terms of differential operators

$$P_0(D) = 2\mu P_{-1}(S)\mathcal{M} + \frac{i}{2} \left(\boldsymbol{n} \left(\Delta_{\Gamma} + \kappa_s^2 \mathbf{I} \right)^{-\frac{1}{2}} \operatorname{div}_{\Gamma} \mathbf{I}_t - \boldsymbol{\nabla}_{\Gamma} \left(\Delta_{\Gamma} + \kappa_p^2 \mathbf{I} \right)^{-\frac{1}{2}} \boldsymbol{n} \cdot \mathbf{I}_n \right)$$

• $\Lambda = -P_{-1}(S)^{-1}(\frac{1}{2}I - P_0(D))$

• Remark : $P_0(D - 2\mu S\mathcal{M}) = \frac{i}{2} \left(n \left(\Delta_{\Gamma} + \kappa_s^2 \mathbf{I} \right)^{-\frac{1}{2}} \operatorname{div}_{\Gamma} \mathbf{I}_t - \nabla_{\Gamma} \left(\Delta_{\Gamma} + \kappa_p^2 \mathbf{I} \right)^{-\frac{1}{2}} n \cdot \mathbf{I}_n \right)$

- M. DARBAS & F. LE LOUËR, Well-conditioned boundary integral formulations for high-frequency elastic scattering problems in three dimensions
- We consider a new layer ansatz :

$$\boldsymbol{u}(x) = (\mathcal{D} - 2\mu \mathscr{S}\mathcal{M})\boldsymbol{\varphi}(x) - \mathscr{S}(\boldsymbol{\Lambda} - 2\mu \mathcal{M})\boldsymbol{\varphi}(x) \,, \qquad x \in \mathbb{R}^3 \setminus \overline{\Omega}$$

$$\Rightarrow -\boldsymbol{u}_{|\Gamma}^{inc}(x) = (\frac{1}{2}\mathbf{I} + (D - 2\mu S\mathcal{M}))\boldsymbol{\varphi}(x) - S(\boldsymbol{\Lambda} - 2\mu\mathcal{M})\boldsymbol{\varphi}(x) , \qquad x \in \Gamma$$

where the operator Λ is chosen such tthat $\left(\frac{1}{2}I + (D - 2\mu SM)\right) - S(\Lambda - 2\mu M) \approx I$.

• Extreme case : $\Lambda \approx DtN = -S^{-1}(\frac{1}{2}I - (D - 2\mu S\mathcal{M})) + 2\mu\mathcal{M}$

New results for the elastodynamic potential theory :

• Neumann-type trace : $T_{2\mu} = T - 2\mu \mathcal{M} = (\lambda + 2\mu)n \operatorname{div} - \mu n \times \operatorname{curl}$.

3 New boundary integral operators : S, $D_{2\mu} = D - 2\mu SM$, $D'_{2\mu} = D' - 2\mu MS$ and

 $N_{2\mu} = N - 2\mu (D'\mathcal{M} + \mathcal{M}D) + (2\mu)^2 \mathcal{M}S\mathcal{M}$

3 Calderon relations : $SN_{2\mu} = -\frac{1}{4}I + D_{2\mu}^2 \Rightarrow DtN := N_{2\mu}(\frac{1}{2}I + D_{2\mu})^{-1} + 2\mu\mathcal{M}$

The associated Dirichlet-to-Neumann map is defined by :

$$\boldsymbol{u}_{|\Gamma} = (\operatorname{curl} \boldsymbol{\psi}_s + \nabla \boldsymbol{\psi}_p)_{|\Gamma} \mapsto (\boldsymbol{T}_{2\mu} \boldsymbol{u})_{|\Gamma} := -\rho \omega^2 (\boldsymbol{n} \boldsymbol{\psi}_{p|\Gamma} + \boldsymbol{n} \times \boldsymbol{\psi}_s).$$

→ It contains the acoustic and electromagnetic Neumann-to-Dirichlet maps !

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○

• Integral representation : $T_{2\mu} = T - 2\mu \mathcal{M} = (\lambda + 2\mu)n \operatorname{div} - \mu n \times \operatorname{curl}$

$$N_{2\mu}\varphi(x) = \int_{\Gamma} T_{2\mu,x}^{T} [T_{2\mu,y}\Phi(\omega, x - y)]\psi(y)d\sigma(y)$$

= $\rho\omega^{2} \int_{\Gamma} \mathbf{n}(x)G(\kappa_{p}, x - y)(\mathbf{n}(y) \cdot \varphi(y))ds(y)$
+ $\rho\omega^{2}\mathbf{n}(x) \times \int_{\Gamma} G(\kappa_{s}, x - y)(\varphi(y) \times \mathbf{n}(y))ds(y)$
- $\mu \operatorname{curl}_{\Gamma} \int_{\Gamma} G(\kappa_{s}, x - y) \operatorname{curl}_{\Gamma}\varphi(y)ds(y), \quad x \in \Gamma,$

where we have $\operatorname{curl}_{\Gamma} = -n \times \nabla_{\Gamma}$ and $\operatorname{curl}_{\Gamma} = \operatorname{div}_{\Gamma}(\cdot \times n)$.

Principal part of N_{2µ}

$$P_1(N_{2\mu}) = \frac{i\rho\omega^2}{2} \bigg[\boldsymbol{n} \big(\Delta_{\Gamma} + \kappa_p^2 \mathbf{I} \big)^{-\frac{1}{2}} \boldsymbol{n} \cdot \mathbf{I}_{\boldsymbol{n}} + \big(\boldsymbol{\Delta}_{\Gamma} + \kappa_s^2 \mathbf{I} \big)^{-\frac{1}{2}} \Big(\mathbf{I}_{\boldsymbol{t}} - \frac{1}{\kappa_s^2} \operatorname{curl}_{\Gamma} \operatorname{curl}_{\Gamma} \Big) \bigg].$$

The preconditionner is

$$\mathbf{\Lambda} = P_1(N_{2\mu}) \left(\frac{1}{2} \mathbf{I} + P_0(D_{2\mu}) \right)^{-1} + 2\mu \mathcal{M}$$

with

$$P_0(D_{2\mu}) = \frac{i}{2} \left(-\boldsymbol{\nabla}_{\Gamma} \left(\Delta_{\Gamma} + \kappa_p^2 \mathbf{I} \right)^{-\frac{1}{2}} \boldsymbol{n} \cdot \mathbf{I}_{\boldsymbol{n}} + \boldsymbol{n} \left(\Delta_{\Gamma} + \kappa_s^2 \mathbf{I} \right)^{-\frac{1}{2}} \operatorname{div}_{\Gamma} \mathbf{I}_{\boldsymbol{t}} \right)$$

• Drawback : $(\frac{1}{2}I + P_0(D_{2\mu}))$ has a very bad eigenvalue clustering.

M. DARBAS & F. LE LOUËR , Well-conditioned boundary integral formulations for high-frequency elastic scattering problems in three dimensions

- Choose $\alpha \neq 2\mu$.
- We consider a new layer ansatz :

$$\begin{aligned} \mathbf{u}(x) &= (\mathscr{D} - \alpha \mathscr{S} \mathcal{M}) \boldsymbol{\varphi}(x) - \mathscr{S}(\mathbf{\Lambda} - \alpha \mathcal{M}) \boldsymbol{\varphi}(x) \\ \Rightarrow & -\mathbf{u}_{|\Gamma}^{inc}(x) = (\frac{1}{2}\mathbf{I} + (D - \alpha \mathcal{S} \mathcal{M})) \boldsymbol{\varphi}(x) - \mathcal{S}(\mathbf{\Lambda} - \alpha \mathcal{M}) \boldsymbol{\varphi}(x) , \quad x \in \Gamma \end{aligned}$$

where the operator Λ is chosen such tthat $\left(\frac{1}{2}I + (D - \alpha S\mathcal{M})\right) - S(\Lambda - \alpha \mathcal{M}) \approx I$.

- Extreme case : $\Lambda \approx DtN = -S^{-1}(\frac{1}{2}I (D \alpha SM)) + \alpha M$
- New results for the elastodynamic potential theory :

• Neumann-type trace : $T_{\alpha} = T - \alpha \mathcal{M} = (2\mu - \alpha)\mathcal{M} + (\lambda + 2\mu)n$ div $-\mu n \times$ curl.

2 New boundary integral operators : S, $D_{\alpha} = D_{2\mu} - (\alpha - 2\mu)SM$, $D'_{\alpha} = D'_{2\mu} - (\alpha - 2\mu)MS$

and
$$N_{\alpha} = N_{2\mu} - (\alpha - 2\mu)(D'_{2\mu}\mathcal{M} + \mathcal{M}D_{2\mu}) + (\alpha - 2\mu)^2\mathcal{M}S\mathcal{M}$$

3 Calderon relations : $SN_{\alpha} = -\frac{1}{4}I + D_{\alpha}^2 \Rightarrow DtN := N_{\alpha}(\frac{1}{2}I + D_{\alpha})^{-1} + \alpha \mathcal{M}$

The preconditionner is

$$\mathbf{\Lambda} = P_1(N_\alpha) \left(\frac{1}{2} \mathbf{I} + P_0(D_\alpha) \right)^{-1} + \alpha \mathcal{M}$$

Spectral and pseudo-differential analysis of the boundary integral operators in 3D elastodynamics with application to preconditioning Various approximations of the Dirichlet to Neumann map

Boundary integral equation method

2 Preconditioning Strategy

Pseudo-differential analysis of the boundary integral operators

Various approximations of the Dirichlet to Neumann map

Numerical experiments

• Choose the best value α : when $\alpha = \frac{2\mu^2}{3\lambda + 2\mu}$, then D_{α} is compact !

P. HÄHNER & G. C. HSIAO, Uniqueness theorems in inverse obstacle scattering of elastic waves \rightarrow We use the GMRES solver to invert $(\frac{1}{2}I + P_0^{\varepsilon}(D_{\alpha}))$.

- Regularization procedure : we set κ_{s,ε} = κ_s + iε_s and κ_{p,ε} = κ_s + iε_p. We obtain a better eigenvalue clustering in the grazing zone β_n ≈ κ_p or β_n ≈ κ_s
- Optimal values of ε_s and ε_p : $\varepsilon_\gamma = 0.39 \kappa_\gamma^{1/3} (\mathcal{H}^2)^{1/3}$ for $\gamma = s, p$
- Final expression : $\Lambda = P_1^{\varepsilon}(N_{\alpha}) \left(\frac{1}{2}I + P_0^{\varepsilon}(D_{\alpha})\right)^{-1} + \alpha \mathcal{M}$

$$P_0^{\varepsilon}(D_{\alpha}) = P_0^{\varepsilon}(D_{2\mu}) - (\alpha - 2\mu)P_{-1}^{\varepsilon}(S)\mathcal{M}_P$$

$$P_1^{\varepsilon}(N_{\alpha}) = P_1^{\varepsilon}(N_{2\mu}) - (\alpha - 2\mu)(P_0^{\varepsilon}(D'_{2\mu})\mathcal{M}_P + \mathcal{M}_P P_0^{\varepsilon}(D_{2\mu})) + (\alpha - 2\mu)^2 \mathcal{M}_P P_{-1}^{\varepsilon}(S)\mathcal{M}_P$$

with

$$P_{-1}^{\varepsilon}(S) = \frac{i}{2\rho\omega^{2}} \left[-\nabla_{\Gamma} \left(\Delta_{\Gamma} + \kappa_{p,\varepsilon}^{2} \mathbf{I} \right)^{-\frac{1}{2}} \operatorname{div}_{\Gamma} \mathbf{I}_{t} + \mathbf{n} \left(\Delta_{\Gamma} + \kappa_{p,\varepsilon}^{2} \mathbf{I} \right)^{\frac{1}{2}} \left(\mathbf{n} \cdot \mathbf{I}_{n} \right) \\ + \left(\Delta_{\Gamma} + \kappa_{s,\varepsilon}^{2} \mathbf{I} \right)^{-\frac{1}{2}} \left(\kappa_{s,\varepsilon}^{2} \mathbf{I}_{t} + \nabla_{\Gamma} \operatorname{div}_{\Gamma} \mathbf{I}_{t} \right) - \mathbf{n} \left(\Delta_{\Gamma} + \kappa_{s,\varepsilon}^{2} \mathbf{I} \right)^{-\frac{1}{2}} \Delta_{\Gamma} \left(\mathbf{n} \cdot \mathbf{I}_{n} \right) \right] \\ \mathcal{M}_{P} = \nabla_{\Gamma} (\mathbf{n} \cdot) - \mathbf{n} \operatorname{div}_{\Gamma} \mathbf{I}_{t} \\ P_{0}^{\varepsilon} (D_{2\mu}) = \frac{i}{2} \left(-\nabla_{\Gamma} \left(\Delta_{\Gamma} + \kappa_{p,\varepsilon}^{2} \mathbf{I} \right)^{-\frac{1}{2}} \mathbf{n} \cdot \mathbf{I}_{n} + \mathbf{n} \left(\Delta_{\Gamma} + \kappa_{s,\varepsilon}^{2} \mathbf{I} \right)^{-\frac{1}{2}} \operatorname{div}_{\Gamma} \mathbf{I}_{t} \right) \\ P_{1}^{\varepsilon} (N_{2\mu}) = \frac{i\rho\omega^{2}}{2} \left[\mathbf{n} \left(\Delta_{\Gamma} + \kappa_{p,\varepsilon}^{2} \mathbf{I} \right)^{-\frac{1}{2}} \mathbf{n} \cdot \mathbf{I}_{n} + \left(\Delta_{\Gamma} + \kappa_{s,\varepsilon}^{2} \mathbf{I} \right)^{-\frac{1}{2}} \left(\mathbf{I}_{t} - \frac{1}{\kappa_{s,\varepsilon}^{2}} \operatorname{curl}_{\Gamma} \operatorname{curl}_{\Gamma} \right) \right]$$

14/22

Frédérique LE LOUËR

- Complete expression : $\Lambda_{HO}^{(2)} = P_1^{\varepsilon}(N_{\alpha}) (\frac{1}{2}I + P_0^{\varepsilon}(D_{\alpha}))^{-1} + \alpha \mathcal{M}$
- We omit the grazing zone : $\Lambda_{HO}^{(1)} = P_1^{\varepsilon}(N_{\alpha}) + \alpha \mathcal{M}$
- We omit the grazing zone and the elliptic zone :

$$\mathbf{\Lambda}_{GG} := i((\lambda + 2\mu)\kappa_p \mathbf{I}_n + \mu\kappa_s \mathbf{I}_t$$

道 G. K. GÄCHTER & M. J. GROTE, Dirichlet-to-Neumann map for three-dimensional elastic waves

$$\rightarrow \Lambda_{GG}$$
 is contained in $P_1(N_{2\mu})$:

$$P_{1}(N_{2\mu}) = \frac{i\rho\omega^{2}}{2} \left[\boldsymbol{n} \left(\Delta_{\Gamma} + \kappa_{\rho}^{2} \mathbf{I} \right)^{-\frac{1}{2}} \boldsymbol{n} \cdot \mathbf{I}_{\boldsymbol{n}} + \left(\boldsymbol{\Delta}_{\Gamma} + \kappa_{s}^{2} \mathbf{I} \right)^{-\frac{1}{2}} \left(\mathbf{I}_{t} - \frac{1}{\kappa_{s}^{2}} \operatorname{\mathbf{curl}}_{\Gamma} \operatorname{curl}_{\Gamma} \right) \right]$$

• Standard CFIE : $\Lambda = i\eta I, \eta \in \mathbb{R}, \eta \neq 0.$

Boundary integral equation method

2 Preconditioning Strategy

Pseudo-differential analysis of the boundary integral operators

Various approximations of the Dirichlet to Neumann map

5 Numerical experiments

The sphere

Diffraction of an incident plane P-wave by the unit sphere

$$\boldsymbol{u}^{inc}(x) = \boldsymbol{p}\boldsymbol{e}^{i\kappa_p x \cdot \boldsymbol{d}}, \quad \boldsymbol{p} = \boldsymbol{d} = {}^{\mathsf{T}}(0,0,1)$$

• Diffraction of an incident plane S-wave by the unit sphere

$$u^{inc}(x) = pe^{i\kappa_p x \cdot d}, \quad d = {}^{\mathsf{T}}(0,0,1) \quad p = {}^{\mathsf{T}}(1,0,0)$$

- Simulations performed with a FM-BEM code [Chaillat-Bonnet-Semblat, 08].
- GMRES solver with no restart and tolerance $\varepsilon = 10^{-3}$.
- $\rho = 1$, $\mu = 1$ et $\lambda = 0.25$ and $\kappa_s = 1.5\kappa_p$
- wavenumber $\lambda_s = \frac{2\pi}{\kappa_s}$.
- fixed density of points per wavelength $n_{\lambda_s} = 10$

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ の*

#DOFs	ω	# iter	# iter GG	# iter HO(1)	# iter HO(2)	
		CFIE	P-CFIE	P-CFIE	P-CFIE	
1 926	4	18	8	7	5 (11)	
7 686	8.25	27	8	6	4 (11)	
30 726	16.5	51	9	6	3 (13)	
122 886	33	180	9	6	3 (13)	
490 629	66.5	> 500	9	6	3 (14)	

TABLE: Diffraction of P-waves by the unit sphere. Number of GMRES iterations for a fixed density of points per wavelength.

#DOFs	ω	# iter	# iter GG	# iter HO(1)	# iter HO(2)
		CFIE	P-CFIE	P-CFIE	P-CFIE
1 926	4	18	9	7	6 (10)
7 686	8.25	26	10	7	4 (11)
30 726	16.5	75	11	7	4 (14)
122 886	33	199	14	8	4 (15)
490 629	66.5	> 500	16	10	4 (16)

TABLE: Diffraction of S-waves by the unit sphere. Number of GMRES iterations for a fixed density of points per wavelength.

FIGURE: (Left) Distribution of the eigenvalues of the standard and different P-CFIEs ($\eta = 1$, $\kappa_s = 16\pi$ and $n_{\lambda_s} = 10$). (Right) Condition number with respect to ω ($n_{\lambda_s} = 10$)

э

< ロト < 団ト < 団ト < 団ト</p>

#DOFs	ω	# iter	# iter GG	# iter HO(1)	# iter HO(2)
		CFIE ($\eta = 1$)	P-CFIE	P-CFIE	P-CFIE
3 594	25	48	8	8	7 (12)
7 644	30	122	10	8	7 (13)
41 310	60	>500	11	9	8 (13)
122 886	115	>500	13	12	10 (15)

TABLE: Diffraction of P-waves by an ellipsoid. Number of GMRES iterations for a fixed density of points per wavelength.

and the second se						
	#DOFs	ω	# iter	# iter GG	# iter HO(1)	# iter HO(2)
			$CFIE(\eta = 1)$	P-CFIE	P-CFIE	P-CFIE
	1 446	2.5	14	10	9	9 (13)
-4	6 630	5	40	12	10	9 (13)
	26 505	11	120	13	10	9 (12)
	105 990	22	>500	14	11	9 (13)

TABLE: Diffraction of P-waves by a cube. Number of GMRES iterations for a fixed density of points per wavelength.

#DOFs	ω	# iter GG		# iter HO(1)		# iter HO(2)	
		P-CFIE		P-CFIE		P-CFIE	
11 964	5	39	40	44	47	33 (54)	34 (55)
49 137	10	43	63	41	54	27 (42)	30 (42)
98 499	15	48	208	31	121	22 (28)	103 (28)
197 688	20	97	> 500	48	283	36 (29)	199 (29)

TABLE: Diffraction of incident plane P-waves by the sphere with cavity. In each column, the first numbers give the number of GMRES iterations for $p_1 = d_1 = (-1, 0, 0)$ and the second numbers correspond to the incidence $p_2 = d_2 = (0, 0, 1)$.

Boundary integral equation method

Preconditioning Strategy

Pseudo-differential analysis of the boundary integral operators

4 Various approximations of the Dirichlet to Neumann map

Numerical experiments

Conclusion, work in progress and future works

Done : Dirichlet case

- Utilization of the mathematical properties of the boundary integral operators to construct an efficient preconditioner
- Efficient combination of FM-BEM code & analytical preconditioner
- Better understanding of elastodynamic waves

• Future work : Neumann case

- Using $\Lambda^{-1} = (\frac{1}{2}I P_0^{\varepsilon}(D))^{-1}P_{-1}^{\varepsilon}(S)$ is not sufficient to construct well-conditioned BIEs for the Neumann scattering problem
- 2 Idea : the optimal values of $\varepsilon_{\gamma} = 0.39\kappa_{\gamma}^{1/3}(\mathcal{H}^2)^{1/3}$ for $\gamma = s, p$ used in the regularisation of the square root $\kappa_{s,\varepsilon} = \kappa_s + i\varepsilon_s$ and $\kappa_{p,\varepsilon} = \kappa_s + i\varepsilon_p$ are not the good one.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □