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Part I.
Abstract Framework
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Contraction and Markov semigroups

Let H be a Hilbert space.

I We say P = (Pt)t>0 is a contraction semigroup if it is a
C0-semigroup on H and satisfies |||Pt ||| 6 1 for all t > 0.

I We say P is an L2(µ)-Markov semigroup if it is a Markov semigroup
with invariant probability measure µ, i.e.

µPt f = µf :=

∫
f dµ.
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Convergence to equilibrium

Let P∞ be the projection onto {f ∈ H : Pt f = f for all t > 0}.
Our aim is to understand the long-time behavior of

||Pt f − P∞f ||H → ?

Definition 1
We say that a semigroup P converges to equilibrium if for all f ∈ H,

lim
t→∞

||Pt f − P∞f || = 0.

Note: If P is another projection such that ||Pt f − Pf || → 0, then by
invariance P = P∞.
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Spectral gap inequality

P satisfies a spectral gap inequality S(a) if

||Pt f − P∞f ||H 6 e−at ||f − P∞f ||H

where a > 0 is the spectral gap of P (i.e. the smallest such constant).

I Bakry, Gentil, Ledoux’s monograph [BGL14]

I Miclo [Mic15] self-adjoint, ergodic and hyperbounded =⇒ spectral
gap
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Hypocoercivity & perturbed spectral gap

P satisfies a hypocoercive estimate H(C , ω) if

||Pt f − P∞f ||H 6 Ce−ωt ||f − P∞f ||H,

where C > 1 and ω > 0 are (in general, unknown) constants.

I Villani’s memoir [Vil09] (Lyapunov functional techniques)

I Mischler, Mouhot [MM16] (shrinking & enlarging spaces)

I Baudoin [Bau13] (Bakry-Émery theory & Γ-calculus)

I Hérau & Nier [HN04] (hypoellipticity techniques)

P satisfies a perturbed spectral gap inequality PS(C , ω) if it satisfies
H(C , ω) and ω is a gap in the point spectrum.

I Patie & Savov [PS16] (intertwining relationships).
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Intertwining

Definition 2
Let P and Q be contraction semigroups on Hilbert spaces H and K.

I We say that P intertwines with Q, written P / Q, if there exists
Λ ∈ B(K,H) such that on K and for all t > 0 we have

PtΛ = ΛQt .

I If P / Q and Λ is bijective then Pt = ΛQtΛ
−1. In this case we say P

is in the similarity orbit of Q, and write P ./ Q.

Literature:

I Sz.-Nagy & Foais [SNFBK10] (quasi-affinity)

I Douglas [Dou69] (unitary equivalence for normal operators)

I Dynkin [Dyn82] (Dynkin’s criterion)

I Rogers & Pitman [RP80] (Brownian motion & Bessel process)
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First convergence result

Theorem 1 (Patie, V. 2016)
Suppose P ./ Q and let κ(Λ) = |||Λ||| |||Λ−1||| > 1.

(i) If Q satisfies H(C , ω) then P satisfies H(Cκ(Λ), ω).

(ii) If Q satisfies S(a) then P satisfies PS(κ(Λ), a).

Proof.
Let P ./ Q. Then, P∞ = ΛQ∞Λ−1. Since Q satisfies H(C , ω),

||Pt f − P∞f ||H = ||ΛQtΛ
−1f − ΛQ∞Λ−1f ||H

6 |||Λ||| ||QtΛ
−1f − Q∞Λ−1f ||K

6 C |||Λ|||e−ωt ||Λ−1f − Q∞Λ−1f ||K
= C |||Λ|||e−ωt ||Λ−1f − Λ−1P∞f ||K
6 C |||Λ||| |||Λ−1|||e−ωt ||f − P∞f ||H
= Cκ(Λ)e−ωt ||f − P∞f ||H.
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Beyond similarity via resolution of identity

We want to obtain convergence results under weaker hypotheses on Λ.
Henceforth we suppose that Q is a normal semigroup satisfying S(a).

By the spectral theorem we have

Qt =

∫
σ(−AQ )

e−γtdEγ ,

where E is the resolution of the identity for −AQ , the generator of Q.

Writing g = f − Q∞f , we have

||Qtg ||2 =

∫
σ(−AQ )\{0}

e−2<(γ)td〈Eγg , g〉

6 e−2at
∫
σ(−AQ )\{0}

d〈Eγg , g〉

6 e−at ||g ||2.
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Non-self-adjoint (unbounded) resolutions

From now on, suppose P / Q and the intertwining operator Λ satisfies

(a) Ran(Λ) ⊂d H, (Ran(Λ) = H)

(b) Ker(Λ �D) = 0 where
⋃

B∈B(C) Ran(EB) ⊂ D ⊂d H,

Then on D we can define, for B ∈ B(C),

FB = ΛEBΛ−1

Each FB is unbounded and non-self-adjoint.

Proposition 1
Under the above assumptions, for each f ∈ D and all t > 0,

Pt f =

∫
σ(−AQ )

e−γtdFγ f .

As a corollary we deduce that for each f ∈ D and all t > 0,

||Pt f − P∞f ||H 6 |||Λ|||e−at ||Λ−1(f − P∞f )||K.

Cannot be extended by density because Λ−1 is not necessarily bounded.
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Integral representation of P

Assume further that there exists m : σ(−AQ)→ C such that

(c) Fm
∞ =

∫
σ(−AQ )

m(γ)dFγ is bounded on H,

(d) for t > T > 0, u(t) = sup<(γ)>a
e−<(γ)t

|m(γ)| < +∞.

Theorem 2 (Patie, V. 2016)
Suppose Λ satisfies (a)–(d). Then for all f ∈ H and t > T ,

(i) Pt f =
∫
σ(−AQ )

e−γt

m(γ)dF
m
γ f ,

(ii) ||Pt f − P∞f ||H 6 |||Fm
∞|||u(t)||f − P∞f ||H,

Remark 1

I If the sup is attained at a then we have hypocoercivity estimate with
spectral explanation for the constant, which is the spectral gap of Q.

I Fm
∞ is no longer a resolution of the identity.

I Some sufficient conditions can be obtained when P / Q and Q / P.
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Proof of Theorem 2

The proof of (i) uses Proposition 1, condition (c) and the density of D.

For the proof of (ii), writing g = f − P∞f , we have

||Ptg ||2 =

∫
σ(−AQ )\{0}

e−γt

m(γ)
d〈Fm

γ g ,Ptg〉

6 u(t)

∫
σ(−AQ )\{0}

d〈Fm
γ g ,Ptg〉

6 |||Fm
∞|||u(t) ||g || ||Ptg ||
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Part II.
Generalized Laguerre semigroups
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Characterization

Let N denote the set of all functions Ψ : iR→ C given by

Ψ(z) = σ2z2 + mz +

∫
R

(ezy − 1− zy)Π(dy),

where σ2,m > 0 and Π is a measure satisfying
∫

R(|x | ∧ x2)Π(dx) <∞.

P = (e−tA)t>0 ∈ GL, the set of generalized Laguerre semigroups, if

MAf (z + 1) = −Ψ(−z)Mf (z) + (z + 1)Mf (z + 1), z ∈ iR,

with Mf (s) =
∫∞
0

x s−1f (x)dx the Mellin transform of f .

There is a bijection between N and GL. One can show that for suitable
functions f ,

−Af (x) = σ2xf ′′(x) +
(
m + σ2 − x

)
f ′(x)

+

∫
R

(f (eyx)− f (x)− yxf ′(x))
Π(dy)

x
.
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Properties and classical Laguerre

Every P ∈ GL is an L2(µ)-Markov semigroup with state space (R+,B)
and absolutely continuous, invariant probability measure µ.

P is self-adjoint on L2(µ) if and only if Π ≡ 0.

If σ = 1, Π ≡ 0 we get the classical Laguerre semigroup of order m > 0,
denoted by Q(m), which admits a spectral expansion

Q
(m)
t f =

∞∑
n=0

e−nt〈f , e(m)
n 〉e(m)

n .

From this we deduce that,

||Q(m)
t f − Q(m)

∞ f ||L2(µ) 6 e−t ||f − Q(m)
∞ f ||L2(µ).
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The similarity case

Theorem 3 (Patie, V. 2016)
Let P ∈ GL and suppose that the associated Ψ ∈ N satisfies

Ψ(z) = Ψ(−z) ⇐⇒ m = 0 and Π(dx)1{x<0} = Π(dx)1{x>0}.

Then P ./ Q(0), where the intertwining operator Λ is a Mellin
convolution operator with explicit Mellin multiplier. Furthermore,

||Pt f − P∞f ||L2(µ) 6 κ(Λ)e−t ||f − P∞f ||L2(µ).

Remark 2

I When Π 6≡ 0 then P is non-local and non-self-adjoint.

I The generator may or may not have a diffusive component.
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Hypocoercivity for generalized Laguerre

Wiener-Hopf factorization: Ψ(z) = −φ−(z)φ+(−z), z ∈ iR, where

φ±(z) = k±+d±z+

∫ ∞
0

(1−e−zy )η±(dy) = k±+d±z+

∫ ∞
0

e−zyη±(y)dy

k±, d± > 0 and
∫∞
0

(1 ∧ y)η±(dy) <∞.

Theorem 4 (Patie, V. 2016)
Let P ∈ GL. If Ψ is such that σ > 0 and η−

0∼ η+, then

||Pt f − P∞f ||L2(µ) 6 Ce−t ||f − P∞f ||L2(µ)

holds for all f ∈ L2(µ) and t > 0, where C > 1 is explicit.
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Sketch of proof

Key idea: P / Q(a) and Q(b) / P with 0 6 a < b, i.e.

PtΛ = ΛQ
(a)
t and Λ̃Pt = Q

(b)
t Λ̃.

The two intertwinings allow us to conclude that

Fγ =
∑
n6γ

〈Λ−1f , e(a)n 〉Λe(a)n =
∑
n6γ

〈f ,Vn〉Pn,

where Vn,Pn ∈ L2(µ). The function m is given by

m(n) =
Γ(b + 1)

Γ(a + 1)

Γ(n + a + 1)

Γ(n + b + 1)
,

which behaves asymptotically like na−b.
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Conclusions

I Intertwining seems to be a fruitful approach for investigating
convergence to equilibrium.

I Ideas can be applied in a general framework (independent of state
space).

I Useful for transferring (spectral) information from known to
unknown objects.

How far can one go with intertwining?
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Thank you for your time and attention
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