On a Problem Related to Isolated Singularities of Polyharmonic Operator Abstract

Abhishek Sarkar^{*} NTIS, University of West Bohemia

We consider the equation (in the sense of distribution):

$$\begin{cases} (-\Delta)^m u = g(x, u) \ge 0 \text{ in } \mathcal{D}'(\Omega') \\ (-\Delta)^k u \ge 0 \text{ in } \Omega', \forall k = 0, \cdots m - 1, \end{cases}$$

where $\Omega' = \Omega \setminus \{0\}$ and $\Omega \subset \mathbb{R}^{2m}$ is a bounded domain. Then it is known (thanks to Brezis and Lions [1] and Lions [4]) that u solves

$$(-\Delta)^m u = g(x, u) + \sum_{i=0}^{m-1} \alpha_i (-\Delta)^i \delta_0, \text{ in } \mathcal{D}'(\Omega), \qquad (0.1)$$

for some nonnegative constants α_i 's. In this talk (based on Dhanya R and A.S [3]), we will discuss the existence of singular solutions to

$$(-\Delta)^m u = a(x)f(u) + \sum_{i=0}^{m-1} \alpha_i(-\Delta)^i \delta_0 \text{ in } \mathcal{D}'(\Omega),$$

and a is a nonnegative measurable function in some suitable Lebesgue space. If $(-\Delta)^m u = a(x)f(u)$ in Ω' , then we find the growth of the nonlinearity f that determines $\alpha_i = 0$ for all $i = 0, \dots, m-1$. In case when $\alpha_i = 0$, for all $i = 0, \dots, m-1$, we will establish regularity results when $f(t) \leq Ce^{\gamma t}$, for some $C, \gamma > 0$. This result extends the works of Soranzo [5] and Caristi et al. [2], where the authors find the barrier function in higher dimensions $(N \geq 2m)$ with a specific weight function $a(x) = |x|^{\sigma}$ for $\sigma \in (-2m, 0)$.

References

 H. Brezis and P.L. Lions, A note on isolated singularities for linear elliptic equations. In:Mathematical analysis and applications, part A. Vol. 7A, Advances in mathematics supplementary studies. New York: Academic Press; 1981. p. 263– 266.

^{*}Joint work with Dr. R. Dhanya

- [2] G. Caristi, E. Mitidieri and R. Soranzo, Isolated singularities of polyharmonic equations. Dedicated to Prof. C. Vinti (Italian) (Perugia, 1996). Atti Sem. Mat. Fis. Univ. Modena. 1996;46(1998): 257–294.
- [3] R. Dhanya and A. Sarkar, Isolated singularities of polyharmonic operator in even dimension, Complex Variables and Elliptic Equations, 2016, 61:1, 55-66.
- [4] P.L. Lions, Isolated singularities in semilinear problems. J. Differ. Equ. 1980; 38:441-450.
- [5] R. Soranzo, Isolated singularities of positive solutions of a superlinear biharmonic equation. Potential Anal. 1997;6:57–85.