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We consider the equation (in the sense of distribution):{
(−∆)mu = g(x, u) ≥ 0 in D′(Ω′)
(−∆)ku ≥ 0 in Ω′,∀k = 0, · · ·m− 1,

where Ω′ = Ω \ {0} and Ω ⊂ R2m is a bounded domain. Then it is known (thanks to
Brezis and Lions [1] and Lions [4]) that u solves

(−∆)mu = g(x, u) +
m−1∑
i=0

αi(−∆)iδ0, in D′(Ω), (0.1)

for some nonnegative constants αi’s. In this talk (based on Dhanya R and A.S [3]),
we will discuss the existence of singular solutions to

(−∆)mu = a(x)f(u) +
m−1∑
i=0

αi(−∆)iδ0 in D′(Ω),

and a is a nonnegative measurable function in some suitable Lebesgue space. If
(−∆)mu = a(x)f(u) in Ω′, then we find the growth of the nonlinearity f that de-
termines αi = 0 for all i = 0, · · · ,m− 1. In case when αi = 0, for all i = 0, · · · ,m− 1,
we will establish regularity results when f(t) ≤ Ceγt, for some C, γ > 0. This re-
sult extends the works of Soranzo [5] and Caristi et al. [2], where the authors find
the barrier function in higher dimensions (N ≥ 2m) with a specific weight function
a(x) = |x|σ for σ ∈ (−2m, 0).
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