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Abstract

Numerical modeling and simulation of marine intrusion in coastal aquifers has been an
interesting research topic and different approaches and appropriate strategies have been
developed to predict seawater intrusion. Such a problem is modeled by a coupled system
of two parabolic partial differential equations. This thesis aims to develop and implement
robust and accurate finite volume schemes, based on recent and efficient tools, for two
(sharp and sharp—diffuse) seawater intrusion models in coastal aquifers. Moreover, we focus
in this work on the numerical analysis of a finite volume method for the mixed sharp-diffuse
interfaces model. The thesis is organized in six chapters.

The general context of the thesis and a literature review were the subject of the first chapter.
In the second one, we present a state of the art on existing approaches for modeling marine
intrusion in coastal aquifers. Afterwards, we present the derivation of the sharp interface
2D model, which assumes that freshwater and saltwater are immiscible and separated by
a sharp interface. Chapter 3 is devoted to the numerical resolution of this model. In this
context, we have considered a fully coupled, fully implicit finite volume TPFA (Two Point
Flux Approximation) method for performing numerical simulations using this approach.
The numerical scheme is implemented in the DuMu¥X framework. Our code is validated
on several 1D and 2D test cases, including two realistic cases: the Souss-Chtouka plain in
Morocco and Tripoli aquifer in Lebanon. The comparison of our numerical results with
others presented in the literature proves the ability of our module to predict seawater
intrusion in large-scale aquifers.

Then in chapter 4, we consider an extension of the sharp interface approach to take into
account the dynamics of transition (mixing) zones to the so-called sharp-diffuse interfaces
2D model. The mathematical formulation, recently introduced, of this approach is briefly
described. As in the previous chapter, this model is discretized by a fully implicit TPFA
method and implemented in DuMu¥. The proposed module is validated on several test
cases and proved its capacity to deal with physical and hydrological phenomena like tidal
fluctuations. Thereafter, we compared the numerical result for the 2D model with those
obtained with the classical 3D model for miscible displacements. The numerical results
showed that this approach yields physically realistic and performance results.

To predict seawater intrusion into heterogeneous and anisotropic coastal aquifers, we have
considered in chapter 5 a numerical method, based on a MPFA (Multi-Point Flux Approx-
imation) method of the sharp-diffuse interfaces model. The study of the numerical analysis
of the scheme is presented. The non-negativity of the discrete solution is proved and an ex-
istence result is shown using a fixed point theorem. Based on recent compactness tools, we
have proved the strong convergence of the approximate solution to the weak solution of the
continuous problem. The MPFA numerical scheme is further implemented in the DuMu*X
framework. The accuracy and efficiency of our method in a strongly heterogeneous case are
examined by performing 2D numerical simulations. Lastly, some concluding remarks and
perspectives are forwarded.

Keywords: Saltwater intrusion, finite volume, TPFA, MPFA, DuMu™, numerical simu-
lation, numerical analysis, convergence, heterogeneity, porous media.
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Résumé

La modélisation et la simulation numérique de 'intrusion marine dans les aquiféres cotiers
ont été un sujet de recherche important et différentes approches et stratégies appropriées
ont été développées pour prédire I'intrusion d’eau salée. Un tel probleme est modélisé par
un systeme couplé de deux équations aux dérivées partielles paraboliques. Cette these
vise & développer des schémas volumes finis robustes et précis, basés sur des outils récents
et efficaces, pour deux modeles (interface nette et nette-diffuse) d’intrusion marine dans
des aquiferes cotiers. En plus, on s’intéresse dans ce travail a l'analyse numérique d’une
méthode volume finis pour le modele d’interface nette-diffuse. La theése est organisée en six
chapitres.

Le contexte général de la these et une revue de la littérature ont fait 'objet du premier
chapitre. Dans le second chapitre, nous présentons un état de 'art sur les approches exis-
tantes pour la modélisation de I'intrusion marine dans les aquiféres cotiers. Ensuite, nous
présentons la dérivation du modele 2D d’interface nette, qui suppose que l'eau douce et
I’eau salée sont immiscibles et séparées par une interface nette. Le chapitre 3 est consacré a
la résolution numérique de ce modele. Dans ce contexte, nous avons considéré une méthode
volumes finis TPFA (Two Point Flux Approximation) totalement couplée et implicite pour
effectuer des simulations numériques en utilisant cette approche. Le schéma numérique est
implémenté dans la plateforme DuMu®. Notre code est validé sur plusieurs cas tests 1D
et 2D dont deux cas sont réalistes : la plaine du Souss-Chtouka au Maroc et 1'aquifere
de Tripoli au Liban. La comparaison de nos résultats numériques avec d’autres présentés
dans la littérature montre la capacité de notre module & prédire I'intrusion marine dans des
aquiferes a grande échelle.

Dans le chapitre 4, nous avons considéré une extension, récemment introduite, permettant
de prendre en compte la dynamique des zones de transition. Cette approche est nommée
modele d’interface nette-diffuse. La formulation mathématique de ce modele est brievement
décrite. Comme dans le chapitre précédent, ce modele est discrétisé par une méthode TPFA
totalement implicite et implémenté dans DuMu*. Ce second module est validé sur plusieurs
cas tests et a montré sa capacité a traiter des phénomenes physiques et hydrologiques
comme les fluctuations des marées. Ensuite, nous avons comparé les résultats numériques du
modele 2D avec ceux obtenus avec le modele 3D classique pour les déplacements miscibles.
Les résultats numériques ont montré que cette approche donne des résultats physiquement
réalistes et performants.

Pour prédire I'intrusion marine dans des aquiferes hétérogenes et anisotropes, nous avons
développé dans le chapitre 5 une méthode numérique, basée sur une approximation MPFA
(Multi Point Flux Approximation) du modéle d’interface nette-diffuse. L’étude de ’analyse
numérique du schéma est présentée. La positivité de la solution discrete est prouvée et
un résultat d’existence est montré en utilisant un théoreme de point fixe. En se basant
sur des outils de compacité récents, nous avons prouvé la convergence forte de la solution
approchée vers la solution faible du probléme continu. Le schéma numérique MPFA est
implémenté dans DuMu®. La précision et l'efficacité de la méthode dans un cas forte-
ment hétérogéne sont examinées en effectuant des simulations numériques 2D. Enfin, une
conclusion et perspectives sont présentées.

Mots clés: Intrusion marine, volumes finis, TPFA, MPFA, DuMuX, simulation
numérique, analyse numérique, convergence, hétérogénéité, milieux poreux.
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1.1 Introduction

In this thesis, we are interested in the mathematical modeling and numerical sim-
ulation of seawater intrusion into coastal aquifers. Thus, this chapter presents a
general introduction of this manuscript while outlining the objective, the structure
and the different developments and improvements made in the context of this work.

We introduce the motivation and the problematic of this research in section 1.2.
Due to accelerated urbanization and the population explosion and industrial ac-
tivities, the exploitation of water resources becomes more and more considerable,
particularly in coastal regions which are pole of attraction. Therefore, the poten-
tial of freshwater decreases and the seawater advances towards the land-side which
degrade the quality of freshwater. A good management of these areas requires the
use of appropriate strategies and efficient tools for the simulation and prediction
of seawater intrusion in theses zones. Different approaches used in the modeling of
marine intrusion are discussed and presented. After that, we present in section 1.3
the main results achieved in this thesis. In this work, two marine intrusion modules,
based on recent and efficient tools, are developed and integrated in the platform
DuMu®. A brief description of theses modules is presented and the different de-
velopments done in the implementation of the finite volume numerical methods is
explained. The structure of this manuscript is explained in section 1.4.
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1.2 Motivation and problem setting

Groundwater is an essential source of water that represents only 3% of the world
total water. Most groundwater is in contact with saltwater. These valuable re-
sources suffer from drought and contamination by seawater. Freshwater extraction
is increasing with population growth and industrial activity. The water potential of
the aquifers is threatened, both qualitatively and quantitatively, by the significant
decline in peizometric levels and ocean intrusion due to high pumping rates. A
good management of theses resources is becoming an important issue and a major
challenge, see for instance [91, 92].

The coastal regions are often, poles of attraction for industrial, agricultural and
tourist activities. The large increase in demand for drinking water due to popula-
tion growth and the expansion of economic activities in these areas presents a sig-
nificant challenge to the hydraulic potential of coastal aquifers. Over-exploitation
and excessive pumping of these resources lead to the invasion of aquifers by salt
water. As a consequence, seawater moves towards the landside under freshwater
because of its important density compared to freshwater. Indeed, over-pumping
from wells located in sensitive areas of the water table can cause the advancement
of the saltwater wedge and thus cause the degradation of the quality of the water
in the coastal water table. Figure 1.1 represents seawater intrusion phenomena into
coastal aquifers.

Well contaminated
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irrigation
well

Fresh table >

groundwater A
aquifer ] | SRS

\ \ i / \
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Figure 1.1: Saltwater intrusion into coastal water wells. Source:

http://imag.slid.com

The prediction of the hydrodynamics of freshwater and saltwater and the imple-
mentation of efficient tools is essential for a good management of these resources
in the coastal zones, because once contaminated, the freshwater hardly recovers its
state before the pollution, hence the importance of prediction.

The numerical modeling and simulation of marine intrusion in coastal aquifers has
been a significant research topic and different approaches have been developed to
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predict seawater intrusion. Two classical approaches are often employed to tackle
marine intrusion problems. We refer to the books [14, 15, 16, 21, 22, 36].

The first one is the 2D sharp interface approach [15] which assumed that the fresh-
water and saltwater fluids do not interact with each other and are separated by an
abrupt interface. In this case, flow at the saltwater and freshwater zones is con-
sidered and no mass transfer occurs at the transition zones. In natural conditions
where external forces are neglected, saltwater is supposed to be immobile; and only
the freshwater movement is then considered. In such case, we are simulating only
freshwater flow.

Secondly, the 3D variable density flow and solute transport approach [14, 36] which
considers that the two fluids are miscible. Two processes then govern the transport
of the dissolved salt, namely convection and dispersion. This approach seems more
credible to track movement and changes in the freshwater/saltwater transition zone,
but no interface is defined to determine the area of saltwater wedge occupation or
that of the water table which may be moved by pumping. In this case, the vertical
variation of the fluids is considered. Furthermore, in terms of CPU time, this
approach (3D model) is expensive compared to the sharp interface approach and
produces significant numerical diffusion in the transition zones between freshwater
and saltwater, and saturated and unsaturated zones.

In the coastal areas, the thickness of the aquifer is insignificant compared to its
horizontal thickness. The problem is simplified and reduced to a 2D model since
the fluids flow is assumed to be horizontal. In such case, the sharp interface ap-
proach can be adopted and extended to deal with large scale aquifers and to provide
physically efficient results. In this context, a new approach (2D model) coupling
the physical sides of the 3D variable density model and the simplicity of the sharp
interface approch is introduced in [25]. The dynamic of the diffusive zones is tacking
into account.

1.3 The objective of the thesis

The purpose of this research is the development and implementation of finite vol-
ume numerical schemes for seawater intrusion models into coastal aquifers. This
study is based mainly on the of an efficient and robust numerical framework sim-
ulating seawater intrusion models and able to take into account various hydraulic
and hydrogeological phenomena. Furthermore, we are interested in the numerical
analysis of a conservative finite volume method for the flow of two immiscible fluids
in an anisotropic and heterogeneous porous medium.

In this section, we describe the different development done in the implementation
of our finite volume seawater intrusion numerical schemes. We have adopted a
fully coupled, fully implicit approach for the resolution of freshwater and saltwater
flows into coastal aquifers. We employ an Euler implicit scheme for the discretisa-
tion in time and a Cell Centered finite volume method to discretize in space. We
linearise the coupled systems using Newton’s method in each time step wherein
each iteration, a linear system is solved using iterative Krylov methods. We use
mainly BiCGSTAB (Biconjugate gradient stabilized method) solvers combined with
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a preconditioner (ILU) and GMRES (Generalized minimal residual method) solver
coupled with a preconditioned (AMG Backend). Numerical differentiation tech-
niques are used to approximate the derivatives in the calculation of the Jacobian
matrix.

We have developed and implemented two modules in the the framework of the
parallel open source DuMu®, based on the Distributed and Unified Numerics En-
vironment (DUNE), allowing simulations for large-scale field applications involving
seawater intrusion in coastal aquifers. The two modules called respectively "2p-
SWI” (for the sharp interface approach) and "2pdiff-SWI” (for the sharp-diffuse
interfaces approach). The object-oriented code provides recent and efficient numer-
ical tools and allows us to predict marine intrusion while taking into account various
hydraulic and hydrogeological phenomena. All our recent developments have been
implemented in DuMu¥ versions 2.12 and 3.0.

1.3.1 The sharp interface module

The 2p-SWI module is based on a TPFA (See [37, 42]) numerical finite volume
scheme by means of the sharp interface approach. The validation of the integrated
module is performed on different 1D, 2D test cases, in particular the Souss-Chtouka
plain in Morocco. In the case of a confined aquifer, we have compared our numerical
results with an analytical solution proposed in [61]. The numerical results feet well
with those presented in [8, 67]. The efficiency and accuracy of our module in the
case of a free aquifer are investigated by performing the numerical convergence of
the scheme. Afterwards, we have extent our module to deal with heterogenous and
realistic test cases. We have applied our method to two real test cases: "the field
scale free aquifer” presented in [71], the Souss-Chtouka plain [5] and the Tripoli
aquifer test case [57]. Numerical simulations for the long-term demonstrate the
applicability of our developed approach in highly heterogeneous coastal aquifers,
and proved that our module is efficient and able to solve numerically 2D seawater
intrusion problem using the sharp interface approach. Chapter 3 summarizes all
the numerical illustrations of these test cases.

The extension of the methodology to more advanced models, like the mixte sharp-
diffuse interfaces model recently introduced in [25] will be the subject of the next
section.

1.3.2 The sharp-diffuse interfaces module

Firstly, we have extended the sharp interface module to more general module which
take into account the width of the transition zones. It is based on a TPFA finite
volume numerical method. This module provides more informations about the
position of the diffusion zones and yields physically realist results. To ensure the
validity of our module, we proceed to the study of the numerical convergence of the
scheme and compared our numerical results with an analytical solution presented
in [45]. The ability of our 2D module to provide an efficient and accurate results is
checked by comparing the numerical results with the classical 3D model for miscible
displacements.
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After that, we have developed the "2pdiff-SWI” module to deal with the anisotropy
and the heterogeneity of the coastal aquifer and to provide accurate reults. The
developed module uses an MPFA [37] finite volume numerical method, where the
subfluxes are approximated on the half-edges of the control volume. In fact, this
method tackles the non-linearity of the problem, the anisotropy and the heterogene-
ity of the aquifer on unstructured mesh, which improves the efficiency and accuracy
of the numerical computations of the system of equations. Numerical results for a
test case showed the impact of various hydraulic and hydrogeological phenomena
on the displacement of the freshwater and saltwater flows.

1.4 Thesis structure

The purpose of this section is to present the general structure of the thesis, which
is divided into six chapters.

Chapter 2 is devoted to the mathematical modeling of seawater intrusion in coastal
aquifers. First, we present a state of the art on the existing approaches modeling
marine intrusion. After that, we describe the derivation of the governing equa-
tions modeling saltwater and freshwater flows using the sharp interface model. The
set of physical assumptions used in the formulation of the mathematical model is
presented.

In chapter 3, we develop a fully coupled, fully implicit finite volume method for the
numerical resolution of the sharp interface model. To discretize in time, we use an
implicit Euler method and a TPFA finite volume method (See [37, 42]) in space.
The coupled system is linearized using Newton’s method, wherein each iteration
a linear system is solved. In this context, we have integrated ”"2p-SWI” module
in the framework of DuMu®. A brief description of the platform is presented.
Afterwards, we illustrate the numerical results obtained in the validation of our
module. The module is first tested on a reference case concerning the evolution
of the interface under density contrast in a confined aquifer. The efficiency of the
module is examined by conducting the numerical scheme study in the case of a
free aquifer. We applied the method to different test cases presented in [8, 67,
71]. The results obtained are in good agreement, which guarantees the validity of
our implemented module. Moreover, we test our module in a two realistic cases
corresponding to the Souss-Chtouka plain [5] in Morocco and Tripoli aquifer [57] in
Lebanon. The numerical model is based on available hydrogeological data in real
scale by simulating the progress of seawater intrusion for several years. Numerical
results have proved the ability of our developed module to predict water table
and salt front elevations under various stress conditions and its ability to yield
physically accurate and efficient solutions. Part of the results of this chapter have
been published in [4].

Chapter 4 aims to develop a finite volume method for the numerical simulation
of the sharp-diffuse interfaces model. First, we briefly outline the derivation of
the mathematical model. Then, we present different numerical results used for
the validation of our module. First, we proceed to the study of the numerical
convergence of the scheme. After that, we consider a test case which concerns a
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free aquifer subjected to tidal fluctuations where the analytical solution is known.
The numerical results are compared to the analytical solution and proved a good
agreement with those presented in [7, 25]. Both test cases show that our fully
implicit approach is suitable to simulate a seawater intrusion problem taking into
account the dynamics of transition zones. In addition, we propose to compare the
numerical results of the 2pdiff-SWI module (2D model) with those provided by the
classical 3D model for miscible displacements. The numerical results have shown
that this approach yields physically realistic and performant results.

Chapter 5 is devoted to the study of the convergence of an MPFA finite volume
scheme for the sharp-diffuse interfaces model in an anisotropic and heterogeneous
free aquifer. We develop a fully coupled, fully implicit approach finite volume
method to discretize the coupled system on an unstructured mesh. The numerical
scheme ensures a discrete maximum principle taking into account the heterogeneity
and anisotropy of the aquifer. Using a fixed point theorem, we have established
the existence of the discrete solution. Based on a priori estimates and compactness
arguments, we prove the convergence of the numerical approximation to the weak
solution of the continuous problem. Furthermore, we have integrated the numerical
scheme in the DuMu® framework. Numerical results proving the robustness and
the ability of our module to deal with heterogeneity of the aquifer are presented.

In chapter 6, we conclude and summarize the work carried out in this thesis and
give some research perspectives in the context of modeling seawater intrusion in
coastal aquifers.
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Notations

e General variables

— t: Time variable [s],
— x: Space variable [m],

— ¢ = f,s: Phase index f= freshwater and s= saltwater.
e The main unknowns of the system

— u: The freshwater head [m],
— v: The saltwater head [m],

— Z: The salt front elevation [m)].
e Physical parameters

— ¢: porosity of medium [-],

— k: Intrinsic permeability tensor [mQ] ,

— w2 Dynamic viscosity [kg.mfl.sfl} ,

— p;: Density of the fluid ¢ [kg . m’3],

— @;: Darcy’s velocity of the fluid ¢ [m.s_l] ,

— @;: Quantity of water injected or pumped per unit of VER [S_l] ,
— g: Gravitational acceleration [m.s_2] ,

— D : Hydraulic conductivity of freshwater [m/day]

— D;: Hydraulic conductivity of the fluid ¢ [m/day]

— = Pf N 1 -
a= o Density contrast [-],
—_— = 7p57pf
v=E

Zp: Bottom of the aquifer [m],

Zp: Water table elevation [m],
— 0: Width of the transition zones [m].

e Functions

— by = Zp — Zp: Thickness of freshwater [m],
— bs = Z — Zp: Thickness of saltwater [m],

= o(u) = 3(u—Zp)?,

- o(Z) = 5(Z - Zp).
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2.1 Introduction

In this chapter, we are interested in the mathematical modeling of seawater intrusion
in coastal aquifers. In section 2.2, we present an overview of marine intrusion
models. We consider two classical approaches. The sharp interface approach (2D
model), see for instance [14, 15, 16, 21, 22, 36], which assumes that freshwater and
saltwater are immiscible and separated by a sharp interface. Furthermore, we have
the variable density approach (3D model) which supposes that the two fluids are
miscible and a mixing zone caused by dispersion is considered. In this context,
another approach modeling saltwater intrusion in coastal aquifers (2D model) has
recently been introduced in [25]. It is based on the assumption that the two fluids
are immiscible and takes into account the dynamics of transition zones.
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In section 2.3, we present the mathematical formulation of the equations modeling
marine intrusion using the sharp interface model. The hydraulic flow of freshwater
and saltwater is governed by Darcy’s law and the mass conservation equation of
each fluid. We define the main unknowns and physical parameters of the aquifer
and subsequently introduce the laws that contribute in the construction of the
mathematical system. Furthermore, we consider two hypotheses, corresponding to
Dupuit’s approximation [38], which suppose that the flow is horizontal and Bear’s
hypothesis [13], where the vertical variation of the fluids is neglected. Thereafter, we
present the sharp interface seawater intrusion model in a coastal aquifer. Such flows
are governed by a coupled non-linear system of two parabolic equations simulating
freshwater and saltwater heads respectively. Finally, section 2.4 contains concluding
remarks.

2.2 A state of the art on marine intrusion models

Groundwater is the main source of drinking water in coastal areas, and better man-
agement of these resources is becoming a major challenge, see e.g. [92]. With the
population explosion and increased economic activities in these areas, the high de-
mand for drinking water is threatening the water potential of coastal aquifers, both
in terms of quantity and quality. Indeed, over-exploitation can lead to the invasion
of aquifers by seawater, thus degrading groundwater quality. Marine intrusion is
caused by excessive pumping from the water table, thus reducing the load of fresh-
water and destabilizing the prevailing balance between freshwater and saltwater.
Therefore, seawater progresses towards the land side as a saltwater bevel under
freshwater because of its high density compared to freshwater. The implementation
of appropriate strategies for the management of coastal aquifers is a requirement.
Much work is also being done to develop technical tools to determine the amount
of water that can be pumped without causing such a negative impact.

There are many reference books, see for instance [14, 15, 16, 21], and different
theses, such as [6, 34, 56, 74, 75, 95] on the modeling of marine intrusion in coastal
aquifers. Two approaches has been adopted. The first one is the variable density
flow and solute transport approach, which assumes that freshwater and saltwater
are miscible and a mixing zone caused by dispersion is tacking into account. We
can mention in this case [29, 43, 53, 77]. The second method is based on an abrupt
approximation, see e.g. [13, 55]. This approach assumes that the two fluids are
immiscible, therefore separated by a sharp interface.

Models with a sharp interface can be divided into two main categories. Mod-
els considering only freshwater flow and saltwater are assumed to be stationary.
In this case, we are talking about the one fluid dynamics approach of freshwater
[9, 39, 40]. This approach remains valid for long-term predictions under steady-
state conditions but suffers from an insufficient description of the behavior of the
freshwater-saltwater interface in the short term. Secondly, we have the two-fluid
dynamics approach [17, 55] considering the dynamics of the two fluids (freshwater
and saltwater). Different analytical models are derived from the sharp interface
approach for the prediction of marine intrusion [45, 47, 61, 86, 88] but they are
limited to very simple geometries and to situations where the Ghyben—Herzberg
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hypothesis is satisfied. Under simplified conditions, these analytical solutions are
used as a test case to validate numerical codes.

Recently, several studies [7, 8, 23, 25, 26] have focused on saline intrusion mod-
eling with a new method called sharp-diffuse interfaces approach. The last one
combines the simplicity of the sharp interface model with the physical accuracy of
models with a diffuse interface. The modeling of the transition zone is based on a
phase-field theory developed in [10] and used for the description of the exchange
between freshwater and saltwater. A detailed description of the derivation of the
mathematical model is given in [23].

2.2.1 Sharp interface approach

The sharp interface approach assumes that saltwater and freshwater are immiscible
separated by an abrupt interface. This approximation is all the more legitimate
as the vertical dimension of the aquifer is very small in front of the horizontal
dimensions of the aquifer, see for instance [13, 40]. For the same reasons, the
interface between the saturated and unsaturated zone is assumed to be abrupt in
the case of a free aquifer. The presentation of the sharp interface approach is shown
in Figure 2.1.

Sea Level

Figure 2.1: Sharp interface model. Source: https://www.solinst.com

In steady state conditions, according to a hypothesis proposed in [31], there is an
approximate relationship between the thickness of freshwater above sea level and
that of freshwater below sea level. In hydrostatic conditions, they assumed that
saltwater is static and freshwater is the only fluid in dynamic. According to this
relation, if the water table in an unconfined coastal aquifer is lowered by 1 m, the
saltwater interface will rise 40 m. In [90], a density difference factor was modified in
the relationship introduced in [31]. The developed method is used as an analytical
solution to predict seawater intrusion in steady-state conditions in [91].

Unlike previous two-fluid flow models that were established using freshwater and
saltwater hydraulic heads as variables, the model introduced in [55] used a mixed
formulation with one fluid potential and a Pseudosaturation as double variables.
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The numerical solution solved by the finite element method was verified against the
analytical solution proposed in [86]. In the same context, another mathematical
formulation of the sharp interface model is proposed in [67]. It is based on the
mathematical model presented in [40] which simulates freshwater and saltwater
heads, therefore the position of the interface is calculated using the continuity of
the flux on the interface. The variables of the proposed model are the depth of the
salt front and the capillary fringe.

In the case of confined aquifers, the validity of the sharp interface model was as-
sessed in [80] according to four factors: infiltration factor, dispersion/advection ra-
tio, geometric ratio, and time scale factor. The results have shown that the abrupt
interface is applicable in steady and unsteady state conditions provided that advec-
tion is dominant. Similarly, its validity was discussed in [66] by comparison with the
diffusive approach in a free aquifer subjected to pumping. Considering the mathe-
matical formulation presented in [40], a numerical model based on a finite volume
method is performed to predict seawater intrusion in Llobregat Delta [17, 18].

Recent work has examined other factors that increased seawater intrusion in a
coastal aquifer. The impact of Sea-Level Rise (SLR) on seawater intrusion has been
investigated in [60, 87] for a single aquifer and in [69] for multi-layer aquifer. The
location of the toe (intersection of the interface with the base of the aquifer) is as-
sessed in [60] under the impact of SLR combined with the Land Surface inundation
and the Aquifer Bed Slope. The pumping impact was studied in [48, 70, 84] accord-
ing to two parameters: the pumping quantity and the position of the wells. Several
scenarios are presented to visualize the motion of the salt front while the effect of the
random heterogeneity of the aquifer structure on saline intrusion was investigated
in [32]. The resolution of the system in a multilayer aquifer is considered as a kind
of heterogeneity of the medium [55, 69, 71]. The impact of the population increase
on the exploitation of of freshwater potential in the Tripoli aquifer was examined
n [58]. Results for different pumping scenarios and their impact on the evolution
of the freshwater/saltwater interface are presented.

Many works are presented for the application of the sharp groundwater model in
complex and realistic examples. We can cite the case of Tongatapu Island [11],
the Tripoli Aquifer in Lebanon [58], the Qom aquifer in Iran [79], the Greek Is-
land Kalymnos [63], the Llobregat aquifer in Spain [17], the Soquel-Aptos basin -
Santa Cruz Country in California [40], the Walawe River basin in Sri Lanka [78],
Yermasogia aquifer in Cyprus and the Crau aquifer in France [46].

2.2.2 Variable density approach

In the variable density approach, the two volumes of water are considered to inter-
act with each other, thus forming a transition zone characterized by variations in
salt concentration. This interface is, in fact, a diffuse zone in which freshwater and
saltwater mix. It is called a dispersion zone (or transition zone) (Figure 2.2). This
approach seems more realistic and represents physical reality since fresh and saltwa-
ter are miscible. The vertical section is then considered and the salt concentration
is expressed in 3D. The density is considered as a function of salt concentration.
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Land surface

Figure 2.2: Groundwater flow patterns and the dispersion zone in a homogeneous
coastal aquifer. Source: http://water.usgs.gov/

During the last decades, many simulations models were developed with finite ele-
ments and finite difference techniques using this approach [28, 29, 51, 59, 60], also
the finite volume methods [12, 50, 65]. In the same context, different works are
devoted to the development of software for the problem with variable density such
as SEAWAT [49], SUTRA [89] based on finite element methods, FEMWATER [64],
MODFLOW [68], MOCDENS-3D [81] and FEFLOW [35].

Under steady-state conditions, a semi-analytical solution proposed in [52] for the
variable density diffusion problem in a confined aquifer. The classical problem
of saltwater intrusion in a coastal aquifer using the variable density approach
under simplified conditions, introduced in [52], is widely used for the validation
of numerical models. All semi-analytical methods proposed in previous works
[44, 62, 93, 94, 95] for the resolution of Henry’s problem are limited to homogeneous
and isotropic cases that have recently extended to a heterogeneous and anisotropic
coastal aquifer [43]. This model has many applications in randomly heterogeneous
aquifers [85] and fractured media [82]. For the application of the method in realistic
case, we can mention, the Kocaeli-Darica plain in Turkey [59], the Wadi Ham aquifer
in the Fujairah Emirate of the UAE [54], the Gooburrum-Bundaberg-Queensland
aquifers in Australia [65].

2.2.3 Sharp-diffuse interfaces approach

A new model combined between the sharp interface approach and the diffusive
approach has recently been introduced in [25]. The freshwater and saltwater zones
are modeled using the Dupuit approach which assumes that all fluid movements are
essentially horizontal.

The modeling of the diffusive interface (resp. between the saturated and unsat-
urated zone) is derived from a model based on the phase field theory. However,
the latter was initially developed in [10] for the description of the transition phe-
nomena between freshwater and seawater. The reader can consult [6, 34, 74] for
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documentation including an overview of the sharp-diffuse modeling approach and
the mathematical formulation of the proposed model. It combines the simplicity of
the abrupt interface with the realism of diffuse interface models. Furthermore, the
model takes into account the dynamics of the diffuse interface. In [23], a numerical
comparison between the results given by this model with those obtained from the
variable-density flow and solute transport model, is proposed. Several scenarios, in-
cluding pumping and injection processes, were considered to demonstrate that the
diffuse interface provided by this model passes through the middle of the transition
zone. The salt concentration in the transition zone is assumed to be half that of
the saltwater zone.

Another comparison between this model and the classical sharp interface approach is
proposed in [25] to assess the validity of the mixte approach. The diffusive interface
given by the mixed approach coincides with that provided by the sharp interface
model when the width of the transition zone is small. Tidal effects on the saltwater
front were studied in [25] using this model. The effect of the width of the transition
zone was also investigated in the same reference. In [7], the authors approximate the
sharp-diffuse model using finite volume and finite element methods in unconfined
aquifers. The numerical results were compared and showed good agreement.

2.3 Mathematical modeling of the sharp interface model

In this section, we present the basic equations used in the derivation of the math-
ematical model, including the mass conservation equations and Darcy’s law. The
governing flow equations are provided firstly in 3D. Based on different assumptions,
presented in subsection 2.3.3, the equations are vertically integrated and the prob-
lem is reduced to a 2D model. Afterwards, the system of equations is closed by
evaluating the flow and the pressure continuity on the sharp interface.

2.3.1 Continuity equation

The continuity equation of a fluid in movement on a Representative Elementary
Volume (REV) is given by the following equation, see e.g. [14, 16]

X90) 1 divion) = pQ, (2.3.1)

with:
e ¢: porosity [-],
e p: fluid density [kg-m™3],
e ¢: Darcy’s velocity [m.s_l] )

e (): quantity of water injected per unit of VER [s_l} .

We define the coeflicient of compressibility of the soil and the fluid respectively by

and ap = L 0P (2.3.2)
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with P is the pressure [Pa]. By replacing (2.3.2) in (2.3.1), we obtain

o) _ (120 ,,00) 00
ot oprP oP) ot’

oprP
Ev
OP

ot’

=¢,004P861; +pBp (1 —¢)
=P<¢OZP +Bp(1 — ¢)>

Therefore, the mass conservation equation (2.3.1) is written as follows

0
p(dap + Bp(1— ) 0+ pdiv(@) + V-7 = pQ. (2.3.3)

2.3.2 Darcy’s law

Darcy’s law describes the flow of a fluid through a porous medium in a macroscopic
context. It expresses the flow velocity as a function of the gradient of the hydraulic
head. It is given by the following equation:

qg= —g (VP + pgVzs), (2.3.4)

where

e k: intrinsic permeability tensor [mQ] ,
e 1: dynamic viscosity [kg.m_l.s_l} ,
e ¢: gravitational acceleration [m.S*Q] ,

e 13: the vertical dimension [m].
We define the macroscopic hydraulic head by

P
Om| = — + z3. (2.3.5)
Py
The freshwater and the saltwater are incompressibles with a constant density. In
this case, the hydraulic head is identified at the piezometric level. Equation (2.3.4)
is, therefore, written as a function of the hydraulic head:

i=-DV®, (2.3.6)

where D [m.s_l] — BP9 s the tensor of the hydraulic conductivity.

n

2.3.3 Assumptions

In this subsection, we present different assumptions used in the derivation of the
sharp interface model. Some hypotheses are related to the nature of the soil and
the fluids and others are used for the up-scaling of the 3D problem to a 2D model.
The aquifer is supposed weakly deformable and the elastic behavior of the soil is
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very weak. Moreover, freshwater and saltwater are both weakly compressible fluids.
Therefore, the compressibility coefficient of the fluid and the soil, defined in (2.3.2),
are neglected, i.e. (8, ap < 1).

Two main assumptions are also applied: Dupuit’s approximation where the move-
ment of the fluids is horizontal since the thickness of many coastal aquifers is ne-
glected compared to its horizontal surface. This has been used and discussed in
[13, 38]. In this concept, the transition zone between freshwater and saltwater
(resp. saturated and unsaturated zone in the case of a free aquifer) is presumed
an abrupt interface. The problem is thereby reduced to a 2D model describing the
freshwater and saltwater flows separated by an abrupt interface. In a second step,
we consider Bear’s hypothesis [13], which consists to ignore the density variation in
the flow direction.

2.3.4 Integration of the equations

This subsection aims to present different details of the derivation of the mathemat-
ical model. The mass conservation equation (2.3.3) and Darcy’s equation (2.3.4)
for each fluid can be rewritten as follows

o
ppg(¢ap + pp(1— cb)) a5 T pdiv(q) + Vp- 7= pQ,

v (2.3.7)

i=-DVo,

with S = pg (d)oz p+B8p(1— qﬁ)) is the storage coefficient representing the capacity
of the aquifer to contain groundwater. Usually, its value is very small due to the
low compressibilty of the soil and the fluid. i.e, ( Bp < 1 and ap < 1).

Using Bear’s hypothesis, the term Vp- ¢ in equation (2.3.7) is negligible. One has

o®

PS5

+ pdiv(q) + Vp- 7= pQ, with ¢=—-DV®. (2.3.8)
=0

We introduce specific indices for freshwater (f) and saltwater (s) in (2.3.8). The
governing freshwater and saltwater flows are as follows

0P o .
Sfaitf +div(qy) = Qf, Sp= Pfg(¢ap + Bp(1 - ¢))7 gy = -D;V®;. (2.3.9)

ad,

S ot

+div(@) = Qs Ss = pug(dar + Bp(1-6)), G =-D,Vo,. (23.10)
We consider a coastal aquifer represented by a domain Q x (Zg, Z7) with Q C R?
is a part of its horizontal surface (see Figure 4.1). The function Zp [m] describes
its lower topography while Zp [m] represents the elevation of the top of the aquifer.
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Figure 2.3: Schematic representation of a coastal aquifer [70].

The sharp interface between freshwater and saltwater is noted by Z [m]. The phys-
ical parameters by = Zr — Z and b; = Z — Zp are the thicknesses of the freshwater
and saltwater zones respectively. Equations (2.3.9) and (2.3.10) are expressed in
3D. However, the vertical dimension of a coastal aquifer is very small compared to
its horizontal dimension. We, therefore, use Dupuit’s approximation. In the follow-
ing, we will present all the steps of upscaling the 3D problem to a 2D model. In
this part, we refer to the work performed in [34].

We integrate equation (2.3.9) between Z and Z7. We obtain

Zr (9(1)]0 o Zr
/ Sfi + le(Qf) dxs = Qf dzs. (2.3.11)
z ot z

According to the Leibniz formula, we have

Zr P Zr P
/ Sfafdmg:Sf/ de?ﬂ
, ot

, ot
0 Zr 0Zr 07
:Sf& </Z @fdl‘g) —Sf(I)f(ZT)W-i-Sf‘I)f(Z)E.
(2.3.12)

Let 6f be the vertical average of ®:

_ 1 [4r
<I>f(q:1,ac2) = bf/Z q)f(xl,xg,acg) d:L’3, V(xl,l’g) e Q.

Since 5
Srg (177 @sdas) =Sy (bs%y).

0Py — Oby
= Sfbfﬁ + Sf@fﬁ’

equation (2.3.12) becomes

Zp 0d; 86}0 - 07y B 57
/Z Sfﬁdxg:Sfbfﬁ—i-Sf(@f—Qf(ZT)>W_Sf(¢f_¢f(Z))E'
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Similarly, applying the Leibniz formula to the second term on the right-hand side
of equation (2.3.11), we obtain

Zr Zr 6(]]0 8(]]0 4t a(]f
di AR 1 r2 d 3 d
/z () /Z <a:c1 T B > x3+/z oz
=V’ ( qf dx3) V' (Zr) + §5(2)-V'(Z) + 41., (Zr) — 45.,(2),

=V (bsd f) —q;(2) - ( (Z7) — 623963) +q7(2)- (V’(Z) — 313963>a

where:
a5 = (Qfﬂ,qnmqfwg) 05 = (Uh2y 452,)
80 L a0, 90 - 90, 90
V.()_ax1+ax2+8$3’ V.()_8$1+8l‘2‘

The vertical average of freshwater flux is given by
_ 1 [%T .
qf ™~ / ¢ pdzg ~ —DyV'®y,
by Jz

with

_ 1 [4r

Dy(z1,22) = 5 Dy(xy, 20, x3)dxs, V(x1,22) € Q, and x3 € (Z, Z7)

Using Dupuit’s assumption, the following approximations hold up ®¢(x1, z2, x3) ~

D¢(x1,22) and Q (w1, w2, 23) ~ Qf = (w1, x2) with (z1,22) € Q and z3 € (Z, Z7).

One obtains the equation modeling freshwater flow process [39, 40]

0 — = . .
Sfbfai — div (befV CI)f) + Qf(ZT) . V(xg, - ZT) - qf(Z) . V(:Cg - Z) = Qf.

(2.3.13)

Likewise, using Qs(z1,22,23) ~ Qs = (x1,x2) and integrating between Zp and Z

the equation (2.3.10), leads to the following equation describing the saltwater flow

0P, —div (bs DsV'®,)+35(2) - V(zs—Z)—qs(Zp) - V(zs—Zp) = Qs. (2.3.14)

Ssbsﬁ

The vertical averages of &5 and Dy are given by

_ 1 Z 1 Z

Qy(z1,22) = e ®g(z1, 72, 23)drs, and Dg(z1,22) = —
S

b Ds(x1,$27$3) dxd
s

The derived system (2.3.13)-(2.3.14) is composed of two equations with four un-
knowns ( 6f, @, Z and Z7). To reduce the number of unknowns, we close the
system by approaching the fluxes at the interfaces. More precisely, we use the
continuity of the fluxes and the pressure at the interfaces.
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Pressure continuity at the interface

We assume the continuity of the pressure at the interface. The salt front elevation
Z can be written as a function of the hydraulic head (2.3.5)

Ppioy—z = Pajas—z = pf(25 = Z) = ps(®s — 2),

= 7= (14 ;2) B, - 2%y, (2.3.15)

— Z=(1+a)®; —ady,

Witha:pp_f

- is the density contrast.

Approximation of the flux q,,—7, - V(r3 — Zp)

The base layer of the aquifer is impermeable. There is, therefore, no flow between
the salt zone and the bottom x3 = Zp. One has

Qs|z=zp - V(r3 — Zp) = 0.

The base of the aquifer Zp is assumed spatially variable.

Approximation of the flux ,,—» - V(z3 — Z),i = f,s

In the case of the sharp interface approach, the normal components of the velocity
at the interface are equal in each zone. This corresponds to no transfer of mass
across the interface. Thus, we obtain

6Tf|9v3:Z _,> i <q_;x3:Z _,) -
— 9| n=(———-7v) -n=0,
(5 ;

where 77 is the normal unit vector with respect to the abrupt interface, v [m.s_l] is
the interface velocity. We get

7, - 0z
Gfes=2- V(@3 = 2) = Q= - V(03 = Z) = 5.

Approximation of the flux f|,,—z, - V(z3 — Zr)
The modeling of the upper surface depends on the nature of the aquifer, we will
distinguish between free and confined aquifers.

In the case of a confined aquifer, the upper surface of the aquifer is impermeable,
so there is no flow between the roof and the freshwater area. The flux through the
upper interface of the aquifer is given by:

Tflas=27 - V(23 — Z1r) = 0.
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In the case of a free aquifer, the upper surface consists of a permeable layer, which
can be crossed by water at reasonable speeds. This limit corresponds to the piezo-
metric surface where there are exchanges with the outside world such as injections
and rainwater supply. The flow is given by
. 0P

df|xs=Zr 'V(l"s - ZT) = ¢87tf'
We introduce a parameter 5 to combine the two cases of the confined and unconfined
aquifer,

5= 1 if the aquifer is free,
~ | 0 if the aquifer is confined.

By replacing the flux in the equations (2.3.13) and (2.3.14) and Z by its formula,
we obtain a 2D system modeling freshwater and saltwater flows

0P 0P, _ -
{Sfbf +(B+ a)(b(ﬂf)}a—tf —(1+a)o()—5* —div (b;D;VE;) =@y,
0P ou ., =
{8 + (1 +@)o(@) } 52 = av(a) 5 — div (6.D,V3.) - Q..
The thicknesses of freshwater and saltwater are respectively by = Zr — Z and

bs = Z — Zp. The salt front is obtained by using the continuity of pressure on the
interface Z = (14 a)®, — aEf. The upper surface Zr is replaced by Ef in the case
of a free aquifer and by a constant in the confined case.

2.3.5 Mathematical model of the sharp interface problem

In this subsection, we present the seawater intrusion sharp interface model, where
freshwater and saltwater heads are the unknowns. Let 2 be an open polygonal
domain, Q) =T = Tp Uy, z = (z1,72) € R? and ]0,7| a time interval. Let
Qp =]0, T[x. We note u = Ef, v =®, and D; = D;,i = f,s. The mathematical
system is given by:

0 0

Bt (u, v)a—? - w()a—: —div (bf(u,v)DyVu) =Qf  in Qr,

Bs(u, U)% - A()% — div (bs(u, v)DsVo) =Qs in Qp,

u(0,.) =u°(.), 0(0,.) =) in Q,

v =up, u=1up on ]0,T[ x I'p,

{ bf(u,v)DfVu-1 =0, bs(u,v)D;Vv-7i=0 on |0, T[xT'y.
(2.3.16)
with
Br(u,v) = Spby(u,v) + ¢(2) (8 + a), w(z) = ¢(z)(1 + ),

Bs(u,v) = Ssbs(u,v) + ¢(x)(1 + ), and A(x)=¢(z)a.
The thickness of freshwater is given by

by(u,v) = {

(1+a)(u—w) free aquifer,
Zr — (14 a)v+ au confined aquifer,
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while that of saltwater is as follows bs(u,v) = au — (1 + a)v — Zp. The initial
conditions u%(z) and v°(z) are given for u and v at (t=0) to describe the initial
state of the aquifer.

The problem is a coupled system of two nonlinear parabolic partial differential equa-
tions simulating two immiscible fluids. The unknowns are u the hydraulic head of
freshwater and v the hydraulic head of saltwater. The depth of the freshwater /salt-
water surface can be calculated from the following relationship

Z=(1+a)v—au.

2.4 Conclusion

In this section, we conclude the work carried out in the context of marine intru-
sion modeling. We first presented a state of the art of saline intrusion models.
Three approaches were outlined. The classical 2D sharp interface approach, which
assumes that the two fluids are immiscible. This approach simulates respectively
the location of the salt front and the depth of the free surface. The second is the
3D variable density approach, which assumes that the two masses of water interact
with each other. It is characterized by the variation of the salt concentration and
the hydraulic head of the freshwater. Furthermore, we presented a new approach
[25] corresponding to the sharp-diffuse interfaces model. It is a combination of the
two previous approaches. The two fluids are assumed to be immiscible and the
dynamics of the transition zones are taken into account.

The other part of this chapter is devoted to the formulation of the mathematical
model using the sharp interface approach. We first introduced the physical laws of
the continuity equation and Darcy’s law. Moreover, we consider Bear’s hypothesis
and Dupuit’s approximation to upscale the initial 3D problem. We presented the
mathematical model of the marine intrusion using the sharp interface approach in a
free and confined aquifer. The system of equations simulating freshwater and salt-
water heads is further completed with Neumann and Dirichlet boundary conditions.
The elevation of the salt front is predicted as a function of the head of freshwater
and saltwater. The numerical resolution of this model will be the purpose of the
next chapter.
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3.1 Introduction

This chapter deals with a numerical method for performing numerical simulations
of the sharp interface model in a coastal aquifer. In this work, we develop a fully
implicit, cell-centered finite volume method to predict seawater intrusion by means
of this approach. A complete presentation of the derivation of the numerical scheme
is presented in section 3.2. To approximate the diffusive terms, a Two-Point Flux
Approximation (TPFA) method [42] on structured mesh is performed. An upwind
scheme is used to evaluate the convective fluxes. The nonlinear system is solved by
a Newton’s method, wherein each iteration a linear system is solved by an iterative
Krylov method.



Chapter 3. A finite volume method for numerical simulation of the sharp
24 interface model

After that, we have implemented and integrated this scheme in a new module in
the DuMu”® framework [1]. A short introduction of the platform is presented in
section 3.3. The developed module enables us to solve a coupled system of two
parabolic equations modeling saline intrusion in coastal aquifers. Our numerical
scheme has been tested and validated by different 1D, 2D test cases, including real-
scale Benchmarks. First of all, we validate our model in the case of a confined aquifer
with the rotating interface problem of Keulegan [61]. Numerical results, presented
in subsection 3.4.1, are compared to the analytical solution and showed a good
agreement with those presented in [8, 67]. After that, we validate our model in the
case of an unconfined aquifer. We proceed to the study of the numerical convergence
of the scheme on different grid resolutions. Then, we applied our approach to two
real test cases: the first test "field-scale free aquifer” is presented in [71]. Numerical
simulations over 30 years of exploitation of the aquifer are presented in subsection
3.4.2. The comparison between our results and those presented in [71] for eleven
scenarios illustrates the robustness and efficiency of our approach. The second test
case, presented in [5], corresponds to the Souss-Chtouka plain located in the south-
west of Morocco. Hydrological data and physical parameters are used to predict
seawater intrusion in the Souss-Chtouka aquifer. The numerical results showing the
evolution of different quantities during 80 years of over-exploitation of the aquifer
are presented in subsection 3.4.3. Afterwards, we validated our implemented module
on a real test case corresponding to the Tripoli aquifer in the northeast of Lebanon.
Numerical simulations over 20 years of exploitation are presented in section 3.4.4.
The comparison of our numerical results and those presented in [57] showed a good
agreement, which ensures the validity of our module to provide efficient and accurate
results in real scale test cases. Section 3.5 contains concluding remarks.

3.2 A fully implicit finite volume numerical scheme

This section aims to develop a finite volume numerical scheme for the sharp interface
approach. We consider the system of equations, presented in chapter 2, which
simulates freshwater head (u) and saltwater head (v) into confined and unconfined
aquifers:

( B (u, U)@ - w()@ —div (bf(u,v)D¢Vu) =Qf in Qr,
ot ot
Bul0) 5~ ARy~ div (b (0,0)DY0) = Qs O
s u,’U at . 8t 1v s U,U S v — S m T, (3'2'1)
u(0,.) =u’()), v(0,.) =%) in Q,
v =vp, u=1up on ]0,T[ x I'p,
br(u,v)DyVu-it =0, bs(u,v)DsVo-i=0 on]0,T[xIy.

which involve the following functions:
Br(u,v) = Sgby(u,v) + ¢(2)(8 + @), w(z) = ¢(z)(1 + ),
Bs(u,v) = Ssbs(u,v) + ¢(x)(1 + ), AMz) = ¢(z)a.

The thickness of freshwater is given by

by(u,v) = {

(1+a)(u—w) free aquifer,
Zr — (1 4+ a)v+ au confined aquifer,
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while that of saltwater is as follows bs(u,v) = au— (1+ a)v — Zp. We generalize
our model in both cases of free and confined aquifers by introducing a parameter

5= 1, if the aquifer is free,
~ | 0, if the aquifer is confined.

The source terms )y and ), represent the amount of freshwater and saltwater
injected ( or pumped) per unit surface, respectively. The domain 2 is illustrated in
Figure 3.1

['

I'n I

X1|_ I'n

Xy

Figure 3.1: Geometry of the domain ).

3.2.1 Discretization and basic notations

In this subsection, we give the parameters and the notations which used in the
derivation of the numerical scheme. Here, we choose a cell-centered finite volume
methods for the discretization in space. For the sake of simplicity, we present the
scheme on a structured mesh which suitable with TPFA method. The main advan-
tage of this scheme is to preserve the conservation property of the mass and the
positivity of the freshwater and saltwater thicknesses. The extension to unstruc-
tured grids will be presented in the next chapter for the so called the Multi Point
Flux Approximation (MPFA)[3].

We introduce the following notations

e Let {to,- - ,tn} be a partition of [0,T], At" = t,+1 — t, the time step size
and At = max At".
n

e let (7) be a rectangular partition of {2, such that Q = Uy, e7 V. OV = Vi \Vi
the boundary of V.

e The physical parameters are given as constant values on each cell. One has
1 1
O = o(x)de, wp = ——— w(z)dr and A =
ARG ARG

1
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e The freshwater thickness can be written as bs(u,v) = x(u) — (1 + o)v with

(u) = (14 a)u, in the case of free aquifer,
A= Z7 + au, in the case of confined aquifer.

We define the nonlinear function n € C1(£2) by:

Also, we define the function

e For an initial condition ug € L°°(£2) (resp. vo ), we put : ul) = ﬁ ka u®(x)dx

(resp. vY).

Other notations are presented in Figure 3.2.

° ‘@ -V
Kl /\‘—*——- Ykl
Ay
|
o {
- V)

Figure 3.2: Discretisation by a cell-centred finite volume method.

We present the derivation of the numerical scheme using a cell-centered finite volume
method in space. For the time discretization, we use an Euler implicit method. The
approximation of the convective subfluxes is done with an upwind scheme. In the
diffusion term, we approximate the gradient on the interface by a TPFA method.
The control volume V. where the numerical scheme will be written is illustrated in
Figure 3.2.

We integrate the freshwater and the saltwater equations in the system (3.2.1) on
|tn, tnt1[ X Vi, we obtain:

e The freshwater equation:

tn+1 ou tn+1 ov o1
/ Bf(u,v)dxdt—/ / w(a:)da:dt—/ / div (by(x,u,v)DfVu) dzdt
tn Vi at tn Vi at tn Vi

tn+1
= / Qydxdt.
tn Vk
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e The saltwater equation:

tn+1 6/0 tn+1 8“ tn+1
/ Bs(u,v)— da dt — / / MNz) = dedt — / / div (bs(z,u,v)DsVo) dzdt
tn Vi at tn Vi 8t tn Vi

tn+1
= / Qs dx dt.
tn Vi

Let u} = ﬁka u(z,t")dx (resp, v} = ﬁka v(z,t")dx) be the approximate
value of u (resp. v) in the control volume Vy, at time ¢,,. Using an implicit approx-
imation in time, the numerical scheme can be written as follows

A%

Vel Byt o) (" — ) — i (0 — o))

- Z / {Dan (u"‘H) —(1+ a)va”+1Vu"+1}kl Mgy dy
ledVv (k) < Tkt

= Q7

v

VAl (6o (7 — o) = A (™ — )}

— Z {DSVgo (v"“) — Dy (Ozu"+1 + ZB) Vv”“} g dy
1edV (k) ¥ Tk M

= QUi

where 7ig; is the unit outer normal to g and V (k) is the set of adjacent elements
of Vi. We denote by Q}L’J,gl (resp. nggl) the average value of Q¢ (resp. Q) on Vj
at time t,+1. The exact diffusion fluxes are given by

Fu™™) = — [ ADa{ V(™) - tadye,  Fu(™h) = —/ (D { V(" ™) i - A dy,
Ykl Ykl
while the exact convectif fluxes are given by
Gu" ™) =(1+4a) [ {Drhu{v"™ Ve figdy,
Ykl

Gu"™) = [ {D}ulef{u" "}y + Zp) Vo' - digdoy.
Ykl

The next step consist to approximate the exact fluxes.
Numerical diffusion fluxes:

The gradient of the freshwater and saltwater heads on the interface x; are approx-
imated by a TPFA method. For the computation of the diffusion coefficients D
(resp. Dy), we use an harmonic average between two adjacent elements. Here is
the expression of the numerical fluxes defined as a function of the main unknowns:

. n(un-i-l) o n(un—i-l)
sz(uz“) = _{Df}ZlM l ey g Ykl

. o) — p(vp™)
F(opthy = —{Dg =1 i Al
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where {D ;}?9" is the harmonic average of {D}, and {D};, while dy; is the distance
between the centers of the control volume Vi and V;.

Numerical convective fluxes:

For the approximation of the convective terms, we use a fully implicit upwind
scheme. The freshwater and saltwater heads are therefore evaluated implicitly and
dependly on the sign of the freshwater velocity. The numerical convective fluxes at
the interface vi; are given by:

G (upt™h) = ("D b { V™ b - gyl (1 + @),
Gr(opth) = (ofu" "1 + Zg) {Ds b { Vo b - k-
with
ot i (Db { Vurt i > 0

VTR = 3.2.2
{ Fhi o1 else ( )
In an analogue way, the discrete value {u"};? is evaluated on the interface ;.

Finally, the fully implicit cell-centered finite volume numerical scheme issued from
the sharp interface model (3.2.1) yields to the nonlinear coupled equations:

\%
U B ) (™ = ) = (o™ ) }

Atn
nbly _oomtl il et
R R T Y B B L [T e
dyi a
1AV (k)
NS (3.2.3)
[V

LB o) (o = o) = e (™ — o) )

gO(Un+1) — (p(y”'H) ot ot

— > DKl bt (afu Y+ Zp) S
1€V (k) ki kl

= Qi (3.2.4)

The initial conditions are given by

1

1
u) = —— u(z)dz, and o) 00(x) d. (3.2.5)
Vil Jv,

k = —
Vil Jv,
For the discretization of the boundary conditions, we distinguish between two cases
e Homogeneous Neumann BCs on I'y, one has

Fy(upt™) = Fi(vpth) = G (u)™h) = G (™) = 0. (3.2.6)

e Dirichlet BCs on I'p, we have

up) — n(utt
FE(uZ“)z—{Df}kn( D) d:( k )my, (3.2.7)
(vp) = n(up*™)

*/ m n
Fi(vpt) = —{Dsh a 1Ykl
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Gp(upt) = (" E{D 1e{ V) p il (3.2.8)
Gpp™) = {u" ™ P{D}e{ Vo b - dip|el, (3.2.9)

with

{vn+1}qg; _ { UZIl if {Df}k{vun-i-l}kl . ﬁkl >0
n else

3.2.2 Resolution of the nonlinear system

The numerical scheme (3.2.3)-(3.2.8) derived from the TPFA method is formulated
by two coupled nonlinear equations. Solving the governing equations is not obvious.
The difficulty arises from the nonlinearity and the coupling of the system. To
linearise the coupled system at each time step At"™, we use Newton’s method wherein
each iteration, a linear system is solved using iterative linear solvers provided by the
external library of DUNE [2]. The residual of the system of equations (3.2.3)-(3.2.4)
which is a function of the discrete solution (uZ'H UEH) can be written by the two

equations: Vk € T, and n € {0,..., N — 1}

{R }n+l( n+1 n+1) — 07
{ {Rf}nJrl( n+1 U§+1) -0. (3210)

We note that the local residual function R (resp. Rs) of the discrete freshwater
(resp. saltwater) equation is given at each element Vi and any time ¢, 1. In our im-
plemented module, we use some numerical differentiation techniques to approximate
the derivatives of the residual in the calculation of the Jacobian matrix. Adding or
subtracting epsilon from the solution in the numerical differential for each coeffi-
cient of the local Jacobian matrix requests more time within the numerical context
(CPU time). However, in practice, we do not recalculate the whole matrix at each
Newton iteration, but only a part of it according to the local residual error. There-
after, using some numerical strategies, we assemble the global residual and then the
global matrix. To show and illustrate the matrix form of the linear system solved
at each Newton’s iteration, we propose to compute explicitly the derivatives of the
local residue from our numerical scheme (3.2.3)-(3.2.4). To do so, we consider a
control volume Vj sharing an edge | € 0V (k) with its neighbor V;. We begin by
computing the local residual of freshwater and saltwater with respect to the discrete

solution UZH and v"“ We introduce the following notations

Qpp =

o _{ 1 if (D} {Va - i > 0 u { 1 if (D} { Vo i > 0
k=

0 else 0 else

(3.2.11)
The derivatives of the local freshwater residue Ry (u ( ntl UZH) on the element Vy
t"*1 with respect to uk+1 "l oare the following:

and at time and vy,

HR Vil [0Br(u™ o™ il yn
8u{1+1 |At’;‘ fFlu k ( +1 Uk) + Bp(ul +1 +1)
k

B uz+1 Uy, » Vg,

un—l—l un+1
- Y o (”“ . )>ml|

1€V (k)
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N 41 o u;z—i—l ug+1
+ (]‘ + Oé) Z {Df}klcwaklvg ou n+1 d h/kl|a (3212)
1€V (k) U ki

HR B Vil [ OB 0™ i
avz—&-l NG ( uk) — Wk

8uZ+1 R

n+1

N un—i—l_uk
1+a) > {Dgimay, g Vi - (3.2.13)
)

1€aV (k

Now, we calculate the derivative of the local residual {R f}"Jr1 with respect to the
approximate solutions on the element Vj.

n+1 un+1 un+1
HRAT™ 5 {Df}hm (n(l ) = n(up; >>M

n+1 D! n+1
Oy 18V (k du A
o un+1 un+1
+(1+a) Y AD i agu — [ A )
10V (k) Ouy drt
(3.2.14)
8{Rf}n+1 un+1 _ unJrl
W—(“ra) > {Dpiray, % it - (3.2.15)
K 1€V (k)

The derivative of the local saltwater re81dual {R }+! on the element Vi at time

tn+1 n+1

with respect to the discrete unknowns vk Land uy, " are as follows respectively:

8{R }n-i-l ’Vk| aﬁs( n+1 Z-‘rl
gurtt A av;;“

(e = o)+ Al >}

gD(Un—H) QD(’UH—H)
Z {D, Z?T ’Un+1 ( l da; . Ykl

1€dV (k) k
o Un+1 Un+1
+ > {DS}Z?T%U}Q“ — | k) vl (3.2.16)
1edV (k v Uk dl

a{R }nJrl ’Vk| 8Bs( n+1 n+1) " .
T (" o)~

auZJrl A
UnJrl ,UnJrl
+ Z {Ds K (o + Zp) (l d g ) Vet |- (3.2.17)
1eaV (k M
For the derivative of the local residue of the saltwater equation with respect to the
discrete unknowns u;’ 1 and v”“ we have

n+1 vn—i—l un—i—l
O{Rs}y, _ Z (D, }har <<P( 1) = p(ug )) I

n+l kl n+1 d
9y 1€aV (k) v ki
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+ Z (D} (afyup™

0 UZ”H — v,’;“
'+ Zg) Hur T < i Ykl

1€dV (k) l
(3.2.18)
8{72 }n+1 ar u n+1 _ Un—l—l
Couttt Z {Di}ia dik V- (3.2.19)
b 1oV (k) ki

Now we consider two adjacent elements V; and V.
the matrix on these two cells without considering the other cells.

structure of the Jacobian matrix is given by

<Jkk Jrt
Jie  Ju

We illustrate the blocks of
Therefore, the

(3.2.20)

e The block Jix (resp. Jj; ) represents the derivative of the residual issued from
the system (3.2.3)-(3.2.4) on the control volume Vy, (resp. V;) with respect to
the discrete unknowns of freshwater and the saltwater heads on the element

Vi (resp. V; ). The explicit from of the blocks is given by

8{7—\’, }n—i—l

6{72 }n—i—l

aun+1

u]]kk = 8{R }n+1

a n+1

(R }n+1 (3.2.21)

n+1
Ouy,

8{72 }n—H

n+1
vy

8{R }n—l—l

ou n+1

Jll = 8{R }n-i—l

8 n+1

a{R i (3.2.22)

n+1
ou;

n+1
o,

e The blocks Jy; (resp. Jix) corresponds to the derivative of the residual on
the control volume Vj (resp. V;) with respect to the discrete unknowns

n—l—l n+1

uy Yy

on the element V; (vesp. u}™,

,?H on the element Vy, for the

flux Jlk ). The explicit form of this terms is as follows

a{R }n+1

B{R }n+1

8 n+1
a{R }n+1

v n+1

a{R ot (3.2.23)

n+1
Ou,

R}t

n+1
o,

IRyt

a n+1

Ji = O{R. }n+1

8 n+1

IR }n+1 (3.2.24)

n+1
Ouy,

n+1
vy,
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3.3 Implementation of the numerical scheme

The implementation of the code is done in the platform DuMu¥. It is based on
the DUNE library (Distributed and Unified Numerical Environment). It offers a
variety of tools to numerically solve PDEs by the finite volume methods, finite
element methods, finite difference methods and discontinuous Galerkin method. It
also provides other features such as mesh management, discretization, linear and
nonlinear solvers...etc.

The main feature of DuMu?¥ is the modularity of the concepts. It can be easily
integrated and combine different properties depending on the problem to be solved.
For each DuMu® module, different elements interact with each other via common
interfaces. The user can select different properties according to the nature of the
problem.

DuMu® has two types of numerical schemes: the fully implicit approach and the se-
quential approach. The global implict strategy employs an implicit Euler discretiza-
tion in time , combined with the "Cell-Centered ” or "Vertex-Centered” method in
space. The derived equations are assembled into a single nonlinear system, solved at
each time step. The sequential approach deals with conservation equations where
the flow equation is approximated implicitly, while the transport equations are
solved using an explicit scheme. Flow and transport equations are solved sequen-
tially at each time step. Besides, there is a general module for solving flow and
transport problems, called "NpMc”, where N is the number of phases and M is the
number of components. Moreover, the choice of linear and nonlinear solvers, the
type of grids as provided by the DUNE library, is maintained by the user in the
problem file. Finally, we have the parameters, properties and physical law for each
problem solved in the source files.

In this work, we have developped a new module, called 2p-SWI, to predict sea-
water intrusion problem using the sharp interface approach by means of the fully
implicit approach. This method enable us to decrease in a significant way the CPU
time while maintaining a good accuracy of the results. The nonlinear system is
linearized by Newton’s method, wherein each iteration a linear system is solved
by a BiConjugate Gradient STABilized (BiCGSTAB) combined to the precondinor
(ILU). Other iterative linear solvers and preconditioners are available in the DUNE
library. For the approximation of the derivatives in the Jacobian matrix, we use
numerical differentiation techniques. This is mainly to ensure the occurrence and
efficiency of the implemented model. The management of the time-step is based on
the number of iterations required by the Newton method to achieve convergence for
the last time iteration. The time-step is reduced if the number of iterations exceeds
a specified threshold, whereas it is increased if the method converges within less
iterations.

3.4 Numerical simulations

This section aims to present numerical simulations of seawater intrusion problem
using the sharp interface approach. Several 1D, 2D test cases are used to validate
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our method. Numerical results for each test case are presented. In the case of
a confined aquifer, we have tested our module 2p-SWI against a linear analytical
solution of Keulegan. The obtained results correspond well to the analytical solution
and are in agreement with those proposed in [67]. After that, we have tested and
validated our strategy in the case of an unconfined aquifer by proceeding to the
study of the numerical convergence of the scheme. Furthermore, we examined three
test cases: the first is proposed in [70] and the two others are realistic test cases
with real data and complex geometry. The complete similarity of our results with
those presented in [67, 70] validates our approach and proves that our module is
applicable and able to simulate seawater intrusion in coastal aquifers.

We note that all computations were performed on a laptop with Intel Xeon(R) CPU
E3-1505M Processor (3.00 GHz) and 8 GB RAM.

Finally, a remarkable property of the TPFA scheme is that the discrete maximum
principles (nonnegativity of the thickness of freshwater and saltwater in the aquifer)
is satisfied wich is crucial to obtain physically meaningful approximate solutions.
This has been verified in all our simulations. A proof of this result for a simplified
model could be find in [76].

3.4.1 Test 1: The rotating interface problem

To verify and validate the numerical model obtained from the TPFA method, the
numerical results are compared with an analytical solution proposed in [61]. This
test consists to observe the movement of the interface without any external forces.
In this case, we consider a confined aquifer of uniform thickness D with saltwater
on the x < 0 part and freshwater on the z > 0 part. Homogeneous Neumann
conditions are imposed at the borders. At the time ¢ = 0, the interface starts to
move due to the density difference a. The elevation of the interface is therefore
described by a linear profile passing through a fixed point (0, —D/2) in each time
t > 0. It is given by the following equation

X

Z(x,t) = —g <1 + L(t)) : (3.4.1)

The intersection of the interface with the base of the aquifer (toe the interface) is

given for Z = —D by
DDt
L(t) = . 3.4.2
0=/ (3.42)

The initial position of the interface is given for L(tg) = 20 m, position corresponding
to top = 12.28 days. The aquifer is approximated by a square | — 50, 50[x]0, 100[.
The physical and geometric parameters used are those used in [40, 83] and they are

summarized in Table 3.1.

Parameters | D [m] | @ | ¢ | D¢[m/day] | Ds[m/day] | Sy, Ss[m™]
Values 10 40 | 0.3 | 39.024 40 0.0

Table 3.1: Parameter values for the rotating interface problem.
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Simulations were conducted over a 20-day period from the initial position. The
simulations start run with a resolution of 100 x 100. Figure 3.3 shows the position of
the interface obtained with this model (curves "Z-Aplt’) and the analytical solution
(curves "Zexact’) at time ¢t = 1, 10 and 20 days.

. o

o< T T T

'\L \‘ — Z_num-1d

AR — -+ Z_num-10d
Z_num-20d —
Z_ext-1d
Z_ext-10d
Z_ext-20d

> oo |

Elevation Z (m)

X (m)

Figure 3.3: Position of the interface obtained with the present model and the ana-
lytical solution at different simulation times.

The results issued from the finite volume method are consistent with the exact
solution and other numerical results presented in [40, 67, 72, 83]. Figure 3.4 shows
the movement of the toe of the interface compared to the exact solution calculated
by the formula (3.4.2). It can be seen that the toe of the interface moves exactly at
the theoretical speed.

35

— Exact L(t)
W Numerical L(t)

30
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|
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Time (day)

Figure 3.4: The progress of the numerical and analytical toe.

To visualize the state of equilibrium of the salt front, a second simulation was per-
formed with the same initial condition as the previous test. The interface between
these two liquids rotates counterclockwise until it becomes horizontal as shown in
Figure 3.5. The simulations described below permit to follow the rotation of the
interface.



3.4. Numerical simnulations 35

NN

0.0e+00

I

—-a

ElevationZ

-6

-8
[ -1.0e+01

Initial position ¢ = 0.0. t = 10.0 days. £ = 20.0 days.
t = 100 days. t = 200 days. t = 400 days.

Figure 3.5: Evolution of the salt interface at different times.

We refer to Figure 3.6 for better visualization of the rotary character of the interface.
Here, we plot its evolution along the section xzo = 50. The equilibrium state of the
interface achieved at ¢ = 800 days.

o—e Z_simult10
o—s 7_simulti20
= =~ Z_simult100 —
—a Z_simuli400
- = Z_simult800

Depth (m)

Figure 3.6: Rotary character of the freshwater/saltwater interface at times ¢ = 10,
20, 100, 400 and 800 days.

Injection and pumping processes

We consider the case of a free aquifer with soil compressibility. We associate homo-
geneous Neumann boundary conditions to our problem, which allows the solution
to evolve freely. We examine two cases:

e Injection of a significant amount of freshwater for a short period of 0.8 days
through a well with a radius of 1.0 m centered at (15, 50).

e Pumping freshwater through a well with a radius of 1.0 m centered at (15, 50).
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Figure 3.7: Evolution of the groundwater surface Zr and the salt front Z in an
injection (left) and pumping (right) process at time: t=1.5 and 10 days.

Figure 3.7 shows the movement of the interfaces Zr and Z during a pumping and
injection processes. We observe a local depression of the water table and the ap-
pearance of a salt cone ” upconing” in the pumping area. The salt interface rises
globally towards the horizon, which can be dangerous for the users. As to the in-
jection scenario, the effects of freshwater filling with a decrease in the depth of salt
water are observed, especially in the injection zone.

The complete similarity of our results with those presented in [8, 67] validate our
model.

The soil Compressibility

The purpose of this subsection is to visualize the effect of soil compressibility on
the evolution of the groundwater surface Zp and the salt front Z. The higher the
storage coefficient Sy, the more water the soil can contain.

Figure 3.8: Left: Injection process. Right: pumping scenario.

Figure 3.8 shows a comparison of the interfaces Zr and Z in the case of a com-
pressible soil (Sy = 0.25, the Z-InjSft curves) and in the case of an incompressible
environment (Sy = 0, the Z-Injt curves) at time ¢t = 1,2,3 days. We can see an
overestimation of the groundwater interface level Z7 and an underestimation of the
salt front interface elevation Z when Sy is zero. Usually, the injection process is
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used to decrease the salt cone and limit the marine intrusion problem. However,
we remark the opposite phenomenon during a pumping process. Therefore, we see
here that neglecting the compressibility of the soil can produce estimation errors on
the evolution of the Z7r and Z interfaces, particularly in the injection area.

3.4.2 Test 2: a field-scale free aquifer problem

We consider a test case presented in [70] which aims to ensure the applicability of
the sharp-interface approach for an unconfined coastal aquifer subjected to pumping
by comparison with dispersive approach results. The validity of the sharp interface
approach is based on two parameters: the pumping rate and the position of the
well. Numerical simulations for several scenarios have been considered. We briefly
review the main results of this comparison. The sharp interface gives better results
compared to the dispersive approach for higher pumping rates where the saltwater
has reached the well screen. Moreover, it’s produce good results when the pumping
wells are deep and close to the coast. As a conclusion, for such problems, the sharp
interface approach models well the saline intrusion.

To prove the performance of our developed module in the case of a free aquifer,
we proceed to the study of the numerical convergence of the TPFA scheme. The
efficiency and the accuracy are investigated through 2D simulations with different
grid resolutions. After that, we compared our numerical results with those presented
in [70] for several senarios. A good agreement between both results is observed.

3.4.2.1 Test description

We consider a hypothetical free aquifer of thickness 30 m and length 500 m. A
Dirichlet condition for the saltwater head v = 30 m is imposed at the seaside
boundary (x = 500 m). The constant freshwater flux 0.1 m?®/day at land boundary
(z = 0) is considered. Homogeneous Neumann boundary conditions are imposed
on the rest of the boundaries. The total extraction rate in the pumping wells is
assumed to be constant irrespective of the proportions of saltwater and freshwater:
Qt = Q + Qs. The last quantities are calculated in the same manner proposed in
[84]. One has,

D/l; Dl

=D, + D, @ =B, + D,

Qy
The thickness of the freshwater [y and the saltwater [, in the well screen respectively
are calculated as follow

ly = max{min(Zy¢, u) — max(Zy, Z), 0},
ls = min{ Z, u} — max{Z, Zp} — ly.

Zwt and Z,;, are respectively the elevation of the top and the bottom of the well
screen. The freshwater head is noted by v and Zp is the elevation of the bottom of
the aquifer. The physical well screen length is about 2 m while the diameter is set
at 1 m. Other notations are presented in Figure 3.9.
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Figure 3.9: Schematic of the well screen in an unconfined aquifer [84].

First of all, we have run the model under steady state conditions. In this case,
the aquifer is assumed to be static (no pumping). The obtained results are used
as initial conditions for the transient model (after pumping). The time required
for the simulation is approximately 30 years. The properties and parameters of the
aquifer are summarized in Table 3.2.

Parameters | o | Dy | Dy | ¢ Pf Ps Sy | Ss
Values 40 | 1.0 | 41.0 | 0.35 | 1000 | 1025 | 0.0 | 0.0

Table 3.2: Parameters and properties of the aquifer.

Different scenarios of the pumping rate and the wells position are presented in Table
3.3. @ represents the amount of water pumped, z,, is the distance between the
well and the sea while z,, is the depth of the well.

Scenarios Sc-1 | Sc-2 | Sc-3 | Sc-4 | Sc-5 | Sc-6 | Sc-7 | Sc-8 | Sc-9 | Sc-10 | Sc-11
Q¢ [m*/day] | 0.1 [0.05|0.07 [ 01501 |01 |01 [01 |01 |0.07 |0.07
T [m] 150 | 150 | 150 | 150 | 150 | 150 | 200 | 300 | 100 | 150 | 150
2w [m] 15 |15 |15 |15 |0 25 |15 |15 |15 |0 25

Table 3.3: Different pumping scenarios.

3.4.2.2 Numerical convergence

In order to validate our implemented module, we proceed to the study of the nu-
merical convergence. To do so, we select a scenario in the test case described in [70],
for example Scenario 2. In this case, the pumping well is placed at a depth of 15 m
and at a distance of x,, = 350 m from the shoreline. We pump a constant amount
of freshwater with Q; = 0.05 m3/day. We calculate the solution of the problem,
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corresponding to the saltwater and freshwater heads, for different grids. We have
refined the initial mesh several times by the factor 2. The grids considered for the
study of the numerical convergence are summarized in Table 3.4.

Grid levels | Number of cells

400 = 100 x 4

1600 = 200 x 8

6400 = 400 x 16
25600 = 800 x 32
102400 = 1600 x 64
409600 = 3200 x 128

STl W N

Table 3.4: Grids considered in the study of the numerical convergence.

The reference solution is calculated on a refined mesh, corresponding to 409600 cells
with a resolution 3200 x 128 in the z1 /x2 direction with a very small time step equal
to dt = 12 hours.

To visualize the convergence of the solution calculated on different grids to the ref-
erence solution, we make several sections in space and time. In Figure 3.10, we plot
different sections in space from the point (0, 10), which represents the seashore, to
the point (500, 10) at the landside. This section allows us to visualize the evolution
of the solution, corresponding to the freshwater and saltwater heads and salt front,
during the 30 years of activity. In Figure 3.10, we observe the convergence of the
solution calculated on different grids towards the reference solution.



Chapter 3. A finite volume method for numerical simulation of the sharp

40 interface model
32 T l
| — 400 cells 1 308 B, — 400 cells =
— - 1600 cells — - 1600 cells
- ggg& ::ellfl S —+ 6400 cells 1
D o cells _ o 25600 cells
* 102400 cells 30,6 - * 102400 cells -
— Reference — Reference

3 sk N I
= N o
A N N N a L
L Ny i
N 302
~
305 — \\ _
|- Ny > ~ o
30 ! ! ! \ \ \
100 200 300 400 B 100 200 300 400 500
Distance x(m) Distance x (m)
. Section for saltwater head wv.
Section for freshwater head u.
30 \ \
[ — 400 cells
25— — - 1600 cells
— - 6400 cells

r o 25600 cells
* 102400 cells
— Reference

Depth z (m)
%)
I

0 | | e
100 200 300 400 500
Distance x(m)

Section for the elevation Z.

Figure 3.10: Convergence of solutions on different grids to the reference solution
during 30 years of activity on the main section (0, 10) — (500, 10).

In the sequel, we visualize the convergence of the solutions in time. To do so,
we select a point in the zone of pumping of freshwater corresponding to the point
(350, 10). In Figure 3.11, we plot the curves of the freshwater head u, the saltwater
head v and the salt front elevation Z on 30 years (9.4 x 10® s). The evolution
of the solution calculated on different grids is compared to the reference solution
computed on a fine mesh. We can see a good convergence of these quantities to the
reference solution during 30 years of activity.
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Figure 3.11: Evolution of the solutions on each grid and convergence to the reference
solution for 30 years at the point of pumping (350, 10).

As we are interested in the accuracy of the scheme, we are going to evaluate the

error of the numerical scheme. We denote by erz the discrete I2-relative norm.

Moreover, we study the error between the reference solution and the numerical one
in [°° and we note by erj the discrete [*°-relative norm. Let

er;2 =

and

VIV g () = gy 6) 2

i=N R .
VSV g ()

=1,...,NRef | un (i) — “ref(i) |

SUP;=1,... NRef |“ref(i) |

Uret(7) is the reference solution and wy(i) is the numerical solution calculated on a
certain grid at element ¢ while N Ref represents the number of elements in the fine
mesh. We present in Table 3.5 the discrete I2-relative norm and in Table 3.6 the

discrete [*°-relative norm.

9.4e+08
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Number of cells 400 1600 6400 25600 | 102400
Freshwater head w | 4.37¢3 | 2.05¢3 | 6.29¢=* | 3.0le* | 9.15¢~°
Saltwater head v | 2.00e3 | 1.08¢3 | 3.77¢* | 1.76e~* | 6.28¢~°
Elevation Z 0.63 0.31 8.0le™2 | 4.03¢72 | 1.72¢72

Table 3.5: Numerical convergence of the scheme in /?-relative norm.

Number of cells 400 1600 6400 25600 102400
Freshwater head u | 6.45¢72 | 3.2¢73 9.86e* | 5.08¢* | 2.05¢*
Saltwater head v 4.44e3 | 2.85¢73 | 6.54e~* | 4.21e=* | 1.96¢ %
Elevation Z 0.32 0.18 6.46e 2 | 3.66e"2 | 1.5¢2

Table 3.6: Numerical convergence of the scheme in [*°-relative norm.

Let p be the order of convergence of the scheme in space. Then, there exists a
constant C' such that: erj2(h) ~ ChP. To estimate the order of convergence numer-
ically, we have refined the initial mesh several times by a factor of 2 for example.
For two successive mesh sizes h and h/2, one has

h R\?  erp(h)
erl2(§) ~ C <2> ~ op .

We obtain

er2(h)
10g (erﬂ(g))
log(2)

The next step consists to calculate the order of convergence using equation (3.4.3).

P~ (3.4.3)

Tables 3.7-3.8 represent the order of convergence of the scheme calculated for u, v
and Z in the {? and [ relative norms. It is of order 1 for the primary variables,
which seems logical considering the complexity and nonlinearity of the problem.

Number of cells 400 | 1600 | 6400 | 25600 | 102400
Freshwater head u | - 1.06 | 1.2 1.3 1.46
Saltwater head v - 0.88 | 1.09 | 1.23 1.34
Elevation Z - 1.02 | 1.12 | 1.2 1.3

Table 3.7: Order of convergence for the [2-relative norm.
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Number of cells 400 | 1600 | 6400 | 25600 | 102400
Freshwater head u | - 095 | 1.01 | 1.25 1.3
Saltwater head v - 0.63 | 0.7 0.86 1.1
Elevation Z - 0.83 | 0.94 | 1.17 1.28

Table 3.8: Order of convergence for the [*°-relative norm.

Finally, we present in Table 3.9 the value of the CPU time corresponding to each
simulation.

Number of cells | 400 | 1600 | 6400 | 25600 | 102400 | 409600
Time CPU (min) | 0.06 | 0.3 | 1.3 | 4.06 | 17.46 | 80.49

Table 3.9: CPU time taken for each simulation.

3.4.2.3 Numerical results

For the simulations of this test, we use a uniform rectangular mesh of 250 x 10
cells in the x;/x9 direction for the control volumes. We performed the simulations
with an initial time step of 0.01 s and a maximum time step of 1 day. The time
step is incremented or decremented according to the number of iterations required
by Newton’s method in the previous time iteration. If Newton’s method does not
converge to a fixed maximum number of iterations, the time step is then divided by
2. In the opposite case, the time step is multiplied by two. This process runs until
the maximum time step is reached.

The tolerances for the Newton’s method and the linear solver BICGSTAB are re-
spectively 10~ and 107°. For this simulation, Newton’s method converges quickly
with less than 5 iterations while the CPU time required is inferior to 1 min. In the
following, we will compare our developed model 2p-SWI implemented in DuMu*
(Curves: SWI-DuMu®) with the one presented in [70] (Curves: Mehdizadeh and al)
while changing the pumping rate and well position. The well position is represented
by a solid rectangular on Figure 3.12. The plots below illustrate that our numerical
solutions lead to results similar to those obtained in [70].

a) Case 1: varying the pumping rates

The objective here is to visualize the effect of the quantity of water pumped on the
variation of the saline front. In this case, the well screen is fixed and its central
point is located at (z,, = 350,22 = 0) with a diameter of 0.5 m. The depth of
the well with respect to the horizontal surface is z, = 15 m. We simulate the
saltwater interface with different pumping rates, which correspond respectively to
0.1m?-d=t (Se-1), 0.05 m3/day (Sc-2), 0.07 m?/day (Sc-3) and 0.15 m3 /day (Sc-4).
The numerical results corresponding to each scenario are shown in Figure 3.12.
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Figure 3.12: Variation of the salt front while changing the pumping rate and fixing
the position of the well.

throughout the pumping time, the salt interface gradually rises and the cone of
the polluted water tends towards the pumping well. The progression of the cone
is related to the quantity of the water pumped. The interface is too far from the
base of the well in (Sc-2) which corresponds to the smallest amount of freshwater
pumped. In this case, pumping do not present any risk of pollution. However,
saltwater reaches the base of the well in (Sc-4). The latter is salinized by the
seawater, which can be dangerous for the users. The interface is little far from the
well bottom in (Sc-1, Sc-3) but the risk is still present. It can, therefore, be deduced
that the salinization of the well increases with the increase in the quantity of water
pumped.

b) Case 2: changing the depth of the well

In this test, we mainly concentrate on the effect of the well position together with
the pumping rate on the variation of the sharp interface. The well is placed in
the center, at the bottom and at the upper part of the aquifer. We consider two
different pumping rates Q; = 0.1 m3/day, correspond to (Sc-1, Sc-5, Sc-6), and
Q¢ = 0.07 m?/day for (Sc-3, Sc-10, Sc-11). We plot in Figure (3.13) the salt front
for different position of the well screen.
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As shown in Figure 3.13 (Sc-5) and Figure 3.14 (Sc-10), the well screen is placed
at the bottom of the aquifer. We are talking about the full penetration of the
pumping well where the salt cone has disappeared and the well is completely filled
with saltwater. Steady-state conditions are reached quickly with Q; = 0.1 m3/day,
where more time is needed for Q; = 0.07 m?/day.

For the other simulations, we have a partial penetration of the strainer. We observe
the evolution of the salt interface and the appearance of the "upconing”. The
progress of the latter depends in particular on the location of the well . In (Sc-6),
the polluted cone is too far from the base, which does not present any risk, while
it is too close in (Sc-1). We can conclude that the deeper the well, the faster the
saltwater reaches the base.

The same remarks can be made when we decrease the pumping rate to QQ; = 0.07
m?/day but the effects are less than those obtained with Q; = 0.1 m3/day.

c) Case 3: varying the longitudinal position of the well

Four scenarios are considered to study the effect of the distance of the well from the
coast on the evolution of the salt front. To do so, we fixed the amount of freshwater
at Q¢ = 0.1 m?/day and we varied the distance from the coast . The obtained
results in this case are presented in Figure 3.15.
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Figure 3.15: Evolution of the salt front for Sc-1, Sc-7, Sc-8 and Sc-9 scenarios, while
changing the longitudinal positions of the wells.

Figure 3.15 shows the evolution of the interface saltwater/freshwater for different
values of z,,. (Sc-8) corresponds to the greatest distance from the coast compared
to the other simulations, it can be seen that the saltwater is too far from the well
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position, whereas it is completely polluted in the nearest one ( Sc-9). The saltwater
cone is too close in (Sc-1, Sc- 7) which means that the risk is higher in these cases.
We conclude that if the pumping well is close to the coast, the probability of its
pollution by seawater is higher. In addition, the risk decreases as you move away
from the coast.

Remark 3.4.1. We have presented a comparison of our results versus those obtained
in [70] for a test case dealing with a homogeneous unconfined aquifer subject to
eleven scenarios with different pumping rates and different well locations. We can
observe a very good agreement between both calculations, ensures the validity of our
developed model. From these series of simulations, it can be seen that if the well
position is deep and close to the coast, the risk of pollution is higher, the same
remarks can be made with a large quantity of water pumped.

We note that these simulations are carried out until steady-state conditions are
obtained, which means that the aquifer will be exploited for many years. It can be
noted, therefore, that these simulations can be useful to control the use of water
resources and avoid pollution of the aquifer.

3.4.3 Test 3: Souss-Chtouka case study

In this subsection, we present numerical results obtained using the 2p-SWI module
in the case of the Souss-Chtouka test case presented in [5]. We start by giving a short
description of the Geographical location of the Souss-Massa basin. Moreover, we
present different parameters corresponding to the geometry, boundary conditions,
geological data and pumping rates, used for the prediction of saline intrusion in the
Souss and Chtouka aquifer. The plain is under coastal groundwater conditions and
assumed to be static before 1986. Therefore, the model is first run under steady state
conditions. The comparison between the approximate and the measured piezometric
map of 1968 showed a good agreement. The obtained results are used as initial
conditions for the transition model. Different sections in space and time are used
to visualize the saltwater intrusion under 80 years of over-exploitation of the plain.
Numerical simulations have shown that the salt front elevation has moved to the
landside and that the groundwater flow decreases in the whole plain. This means
that our module is efficient and able to simulate the saltwater intrusion in a realistic
test case.

3.4.3.1 Geographical location

The Souss-Massa basin is located in the south-western of Morocco (see Figure 3.16),
which contains an important hydrological catchments with an area of 27000 Km?.
The natural limits of the Souss-Massa river basin are: the Anti-Atlas mountains in
the south, the High Atlas mountains in the north, the Siroua massif in the east,
and the Atlantic ocean in the west (see Figure 3.16). In this region, significant
groundwater tables have been identified occupying the Souss plain (4500 Km?),
the Chtouka plain (1260 Km?) and Tiznit plain (1200 Km?). Deep aquifers are
identified in this hydrogeologic structure, in addition of the generalized phreatic
aquifer, subject of this study. The phreatic aquifer of the Souss and Chtouka plains
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consists of heterogeneous fitting material of the valley. According to its geology,
the deposits correspond to the quaternary alluvial sands and gravels of the Oued-
Souss river, to the Moghrebian sandstones and coastal marine sands, to the Pliocene
limestone with marl and conglomeratic intercalations of the down-land areas of the
Souss plain and to fluvial-lacustrine deposits of the Souss unit extending to the
Anti-Atlas chain border [5].

+
Zone daction de FABHSM [ |
Limites des provinces E

Ville L

W0 W0 Kk
S

Figure 3.16: The situation of the Souss-Massa basin and the Souss-Chtouka ground-
water.

3.4.3.2 The studied domain and discretization

The studied domain, which is approximately 24 Km?, corresponds to the down-
land part of the Souss-Aval valley and the Chtouka plain. It is located between the
Haut-Atlas chain at the north, the 100 m contour of the 1968's piezometry at the
east, the Oued-Massa river at the south and the Atlantic ocean at the west.

The geometry and boundaries of the aquifer are given in the left of Figure 3.18.
For the mesh, we used a triangulation mesh of 19520 elements and 9871 vertexes as
shown in the right of Figure 3.18.
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Figure 3.18: Left: geometry and boundaries of the aquifer and well locations. Right:

mesh for the aquifer.

In passing, we remark that the horizontal surface area of the aquifer is about 24
Km?, while the thickness of the aquifer is less than 1 Km (about 600 m in the north
and 100 m in the south). In spite of the presence, locally, of relatively high depth
regions in the northern part of the Souss—Chtouka coastal aquifer, the thickness
of the latter remains small when compared to its lateral extent, which allows the
Dupuit assumption to be valid. The fluid movement is therefore assumed to be

horizontal.
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3.4.3.3 Physical parameters and boundary conditions

Hydraulic conductivity of different geologic units that constitute the Souss—Chtouka
aquifer, are determined following trial-and-error calibration operations in [5]. Ten
zones have been recognized, for which the spatial hydraulic conductivity values vary
between 1.21 m/day and 40 m/day. The value is higher in the lower part of the
valley, especially in the north-west, where agricultural activity is very important,
than in the upper part. Porosity values varying between 0.1 and 0.25 have been
used, depending on the geologic material lithology. The porosity and hydraulic
conductivity distributions are specified in Figure 3.19.

6.250-06
1.4e-0540

3.75¢-05
551e-05-
6.94e-05- 2
8e-0540 —
8.26-0547] &
0.000117-
0.000375-
0.000462-

Porosity

Figure 3.19: Left: hydraulic conductivity (Dy) of the aquifer. Right: porosity (¢)
of the soil.

The specific storage coefficient values varying between 107> m~! and 4 x 107° m~!
and taken to be the same for fresh and salty phases are specified at the right hand-
side of Figure 3.20.
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— Piezomelry 1968
— 2p-SWI

Figure 3.20: Left: the freshwater storage coefficient Sy. Right: comparison between
our developed module 2p-SWI model and the measured piezometric map of 1968.

For the initial conditions, the plain is supposed to be in hydrostatic equilibrium.
Saltwater is static and freshwater is in dynamic. The problem is, therefore, run
under steady-state conditions, using the parameters obtained from the calibrations
done in [5]. The obtained results are compared with the measuring head of 1968
piezometric (see Figure 3.20 right). The results are satisfactory and used as initial
conditions for the transition regime.

Figure 3.21 presents different values of the topography of the aquifer. The depth
of the aquifer varies between —690 m and 35 m where the sea level is used as a
reference. Negative values expressed the depth below sea level. The deeper values
are located to the northwest of the domain while the higher values are located at
the southeast.

The Souss—Chtouka aquifer is fed, mainly, by the precipitation, the irrigation re-
turns, the vertical leakance of the underlain Turonian limestone, the infiltration from
the Oued-Souss river and the recharge from the Haut-Atlas chain at the north. In
[5], the author delimited 8 zones in the study area with fluxes values varying between
1.05 x 107% m/day and 8.06 x 107> m/day.
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Figure 3.21: Topography of the aquifer bottom.

Owing to the intensive exploitation of the Souss—Chtouka aquifer and the difficulty
to have appropriate data, a general lowering of the water table is assumed. Many
pumping wells given by the Moroccan authority of water (ONEP) are presented in
Table 3.10. However, the numerical simulations obtained with these data show that
the interface does not move for almost 80 years. In order to predict a significant
displacement of the interface in the long term, we have multiplied the pumping
rates given by the ONEP by a factor of 10.

b

Points P1 P2 P3 P4 P5 P6
X [m] 99811 | 100277 | 101250 | 100750 | 102000 | 99507
Y [m] 384285 | 383966 | 374280 | 374280 | 375400 | 375246
Rate [m?/day]| | 2918.84 | 2686.99 | 1011.10 | 673.31 | 710.22 | 1113.03
P7 P8 P9
101710 | 100062 | 100000
374431 | 372311 | 374996
1533.89 | 1402.35 | 1488.54

Table 3.10: Well position and associated rates.

To close the problem, boundary conditions have to be specified. Fixed head (u = 100
m) is used on the upstream of the domain, at the east. At the northwest, at the
contact with the Haut-Atlas chain and the south, fixed heads are also imposed
representing the measured head [5]. On the western boundary, at the contact with
the ocean a zero head is imposed (v = v = 0 m).
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For all simulations, a triangulation mesh of 19, 520 cells is used for control volumes.
We have ensured that the orthogonality condition is satisfied while constructing
the mesh. This condition is necessary for consistent and efficient approximations
of the TPFA method. Simulations were achieved with an initial time step of 10 s.
The tolerances for the Newton method and the BICGSTAB solver are respectively
1078 and 107%. In this case, Newton’s method converges in less than 5 iterations.
As expected, the time-step is increased when Newton’s algorithm converges within
less iterations. A remarkable attribute of the algorithm is that the total CPU time
required for a 80 years simulation is less than 5 min on a laptop.

Let us end this section with the following remark. A second simulation for the
Souss—Chtouka aquifer was performed with a refined mesh (37, 320 cells and 18, 861
vertex). The obtained results are very close to those of the previous coarse mesh.
However, the CPU time is 15 min. In the sequel, we will present results correspond-
ing to the coarse mesh.

3.4.3.4 Numerical results

In this subsection, we will present numerical results obtained using our 2p-SWI
module for modeling seawater intrusion into the Souss-Chtouka aquifer. We consider
the hydrogeological data and physical parameters described above. The model
is, thereafter, run under transition condition over an 80-year period. Figure 3.22
illustrates the piezometry of freshwater in 1968 and after 80 years of exploitation.

Figure 3.22: Plan view of the piezometry of the plain Souss—Chtouka before (left)
and after (right) solicitation.

u_2048
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Up to 1968, the Souss-Chtouka aquifer was not subject to any exploitation. It
follows the principle of the functioning of coastal aquifers. It is supposed to be in
hydrostatic equilibrium. The aquifer is inflated and the equipotentials are regular
and vary from 0 downstream to 100 upstream as shown in Figure 3.22 at left.
However, for the 2048 predictions, equipotentials are no longer regular. Indeed,
after 80 years of drastic exploitation, consisting of a general decline of the water
table from the coast to the upstream ( u(t) = 100 — 0.625¢), the level of freshwater
is decreased by 50 m in the upper part of the aquifer and a local depression of the
water table in pumping wells position illustrated by negative values of the freshwater
head.

To give a more realistic vision of the freshwater potential and to visualize the impact
of the dramatic exploitation of the Souss—Chtouka Plain, we illustrate the piezo-
metric contours of the freshwater head on the bottom of the aquifer (see Figure
3.23).

Figure 3.23: Contours representing the freshwater potential of the Souss-Chtouka
plain illustrated on the bottom of the aquifer in 1968 (left) and 2048 (right).

Figure 3.24 shows the piezometric of saltwater in its initial state, corresponding to
1968, and after 80 years of service.
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o

Figure 3.24: Plan view of the piezometry of the saltwater in its initial state in 1968
(left) and after 80 years of exploitation (right).

Until 1968, the plain follows the principle of coastal aquifers in stable conditions.
The only fluid in movement is freshwater. The saltwater level is supposed to be
identified with the sea level, which is equal to zero. After 80 years of drastic
exploitation, the aquifer has experienced a general decrease in seawater level from
the coast to the whole basin illustrated by negative values.

Figure 3.25 illustrates the extension of the salt wedge, which is more prominent in
the north towards the east (the depth of the reservoir reaches 650 m) and remains
practically parallel to the western limit when going south. After 80 years of activity,
the salt bevel has experienced a significant displacement in the north caused by
intensive freshwater pumping, especially in regions where pumping wells are placed.

However, in the southwestern region, Figure 3.25 shows that the salt bevel is stable
and does not advance in the continent (in regions with low permeability).

v_2048
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Figure 3.25: Position of the interface freshwater/saltwater in 1968 (black line) and
in 2048 (red line).

In order to show the extent of the salt intrusion according to the location, we chose
five sections perpendicular to the Atlantic coast and oriented from the Est to the
West. The profiles of u,v and Z according to different sections over a 20-year

package are presented in Figures 3.26-3.28.
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Figure 3.26: Left: Plan view of level positions. Right: vertical cross section showing
the interface position (red line), the free surface position (blue line) and the variation
of the saltwater hydraulic head (green line) for different time: cut on the level 1.
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The first remark we can make is the progress of the freshwater/saltwater interface
for the great depths to the east in the Agadir region, over a distance estimated at
7000 m on the substratum at a depth of 600 m. In fact, in the concerned area,
the high value of the permeability of the formations contributes to the advance of
the bevel. Significant vertical advancement of the interface is noticed in the first
section and an “upconing” is developed under a large flow well. The pumping well
is close to the coast, which accelerates the advancement of the salt bevel during the
80 years of activity (Figure 3.26 (left)).
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Figure 3.27: Vertical cross section showing the interface position (red line), the free
surface position (blue line) and the variation of the saltwater hydraulic head (green
line), for different time: cut on the levels 2 (left) and 3 (right).

On the second section, (Figure 3.27 (left)), we can see a significant displacement of
the salt bevel laterally around 4 Km and especially vertically, so that an "upconing”
developed below a large flow of three pumping wells. A slight cone of depression
can also be noted at the location of these wells.

Along the third section, (Figure 3.27 (right)), the salt bevel is displaced laterally
over a distance of at least 6K m after 80 years of activity and an "upconing” is
developed below the pumping well. The pumping effects are less visible compared
to the first two sections since the corresponding flow rate is low. On the other
hand, a strong cone of depression developed at the well site. The regular shape
of the bedrock and the high permeability values in this region contributed to the
lateral advancement of the salt bevel.
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Figure 3.28: Vertical cross section showing the interface position (red line), the free
surface position (blue line) and the variation of the saltwater hydraulic head (green
line), for different times: cut on the levels 4 (left) and 5 (right).

On the fourth section, (Figure 3.28 (right)), there is always a sustained movement
of the salt bevel over the years to reach its maximum value after 80 years of service.
Finally, the fifth section, (Figure 3.28 (left)), shows almost no movement of the salt
bevel despite a linear decrease in the free surface area, which is generalized to the
entire basin. It should be noted that the region interested in logging is free of any
pumping zones.

To understand the functioning of the Souss-Chtouka aquifer during the period of
its activity, we propose to visualize the evolution of several quantities over time. To
do so, we have selected five points on the surface of the aquifer. Figures 3.29 show
the evolution of u, v and Z over time.
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Figure 3.29: Evolution in time of the salt front (top right) freshwater head (left)

and saltwater head (right).

The results show that the salt front elevation is stable and did not move during
the period of its exploitation at the second and third points. This seems physically
logical since the corresponding area is free of any external exploitation. At the
third and fifth points, the salt interface has moved about 150 m towards the ground
during the 80 years of operation. The area concerned is under immense stress. In
addition, the hydrogeological parameters (high permeability and porosity) improve
the progression of the salt front. The third point is located at the position of the
pumping well with a rate of 2686.99 m3/day. As a result, the interface has moved
rapidly about 250 m to the surface, particularly over the past 50 years. This is the
result of a combination of over-exploitation and the nature of the soil.

A general decline in freshwater levels is observed in Figure 3.29 (right) over the
80-years period. At the fifth point, the freshwater level decreases by 13 m during
the pumping period. The evolution of the saltwater level is shown in Figure 3.29
(left). The saltwater level in the area subjected to stress decreases in the first few

years and then stabilizes again.

Remark 3.4.2. The numerical results of the “Souss-Chtouka” test case proved that
the new module developed is capable of providing an accurate solution and can predict
the location, shape and extent of the water table and of the the freshwater/saltwater
interface in coastal aquifers under a variety of different stress conditions, thereby
illustrating its robustness with a sufficient convergence rate.
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To end this section, we have the following remark. For numerous tests, the obtained
results are satisfactory and the numerical computations for the coupled system have
demonstrated that this approach yields physically realistic flow fields in heteroge-
neous fields. Furthermore, the fully coupled fully implicit scheme greatly reduce
the CPU time of the simulations.

3.4.4 Test 4: Tripoli aquifer case study

In this section, we present the numerical results obtained in the case of the Tripoli
test case proposed in [57] using the sharp interface module. It deals with the
impact of demographic evolution on seawater intrusion in the lower Tripoli aquifer
in Lebanon. We present a brief description of the geographical location of the
Tripoli aquifer and the different physical parameters employed in the simulations.
To ensure the validity of our developed module in a real case, we propose to compare
our numerical results with those presented in [57]. Different scenarios are considered
and presented based on the available hydrological data. Numerical simulations have
shown a reduction of the water potential and an advance of the freshwater /saltwater

interface.

3.4.4.1 Geographical location

The city of Tripoli is the second pole of attraction located in northern Lebanon
(see Figure 3.30), wich covers a total area of 400 Km?. It is located between
the Mediterranean Sea (about 15 Km) in the west, the Mountain of "Bcharré” in
the east and the Mountains of Qalhat and Torbol from the south and the north,
respectively. The groundwater is mainly supplied by precipitation and snow-melt
from the "Bcharré” region located at the east of the Tripoli aquifer (see Figure 3.30).
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In this work, we consider only the lower Tripoli aquifer. The bedrock of the aquifer
is the impermeable layer "C6” formed by marl and marl limestone (See Figure 3.31).
The thickness of the aquifer above the impermeable layer is about 200 m.

Geological map

Y| 00,3807 14 21 28

Lower zone of Tripoli

Figure 3.31: Geological map and stratigraphy of Tripoli (cf. [56]).

3.4.4.2 The studied domain and physical parameters

The study area is approximately 3 Km x 6 Km. The Tripoli aquifer is an homoge-
neous porous medium with a thickness of 200 m. The geometry and boundaries of
the aquifers are given in Figure 3.32. For the mesh, we use a triangulation mesh of
37568 elements an 10285 vertexes.

The boundary conditions are divided into two parts: I'y represents the shoreline of
the aquifer and I'y coresponds to a fracture separating the lower and the upper zone
of the city. A Dirichlet boundary condition (u = vy = 200m) is used on I'; while
a freshwater inflow Qjy, fiow is imposed on I's. This flux has been calibrated in [56]
for the year 2008.
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Figure 3.32: Geometry and Boundaries of the aquifer (left). The mesh of the studied
domain (right).

The physical parameters used in the simulation are listed in Table 3.11.

Parameters symbol value Unit
Bottom of the aquifer ZB 0 [m]
Porosity of the medeuim ¢ 0.15 [

Sea level Vo 200  [m]
Hydraulic conductivity D 1.156  [m/day]
Density of freshwater Py 1000 [kg-m~3]
Density of saltwater Ps 1025  [kg-m~3]
Density contrast 0% 0.025 [

Well raduis — 10;40  [m]
Storage coefficient Sy 0.0 ]
Freshwater inflow Qinflow 26.0 m3/day

Table 3.11: Parameters and properties of the aquifer (cf. [56])

The direction of the flow in the Tripoli plain can be assumed mainly horizontal
since its thickness (200 m) is negligible compared to its horizontal surface (18 Km).
This ensures the validity of the Dupuit approximation and allows us to vertically
integrate the freshwater and saltwater equations in 3D.

Due to the increase in population over the past decades in the city of Tripoli, the
high demand for drinking water threatens the freshwater potential. Figure 3.33
represents the pumping areas as described in [56, 57]. Private wells are located
in the center of Tripoli city and represented by a blue rectangle in Figure 3.33.
In addition, six active public wells maintained by the Tripoli Water Authority are
considered and presented by yellow markings in Figure 3.33. Four wells are located
in the village of "Bahsas” and two others in the neighborhoods of "El-Jisr” and
"Malouleh”.
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Figure 3.33: Location of pumping zones (cf. [56]). The rectangle in blue corresponds
to the private wells and the public wells are represented by a yellow zone. The yellow
zone in the south of the aquifer contain 4 wells in Bhsas while the two other wells
are in El-jisr and Malouleh respectively.

Table 3.12 summarized the associated pumping rates for public wells.

Wells Number of wells Pumping rate [m?/day] Well raduis [m]
Private wells — 21 000 -

Bahsas 4 4680 40

Malouleh 1 3264 10

El-Jisr 1 4896 10

Table 3.12: Wells position and associated rates.

Four scenarios are used to predict the extent and progression of the salt wedge in
the lower Tripoli aquifer:

e "NOP”: represents the no pumping scenario and corresponds to the results
of the year 2008. In this case, the plain is assumed to be in hydrostatic
equilibrium and the model is run under steady state conditions.

e "REC”: refers to a scenario with 150 L/day as required by the water author-
ities after 10 years of exploitation.

e "10 Y”: refers to a scenario with the current pumping rate of 250 L/day for
10 years of exploitation.

e "20 Y”: refers to a scenario with the current pumping rate of 250 L /day after

20 years of exploitation.

3.4.4.3 Numerical results

In this subsection, we will present numerical reults obtained using our developed
module to predict seawater intrusion into Tripoli case study. We performed the
simulations with an initial time step of 0.01 s and a maximum time step of 20
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days. The tolerances for the Newton’s method and the linear solver BICGSTAB
are respectively 1078 and 1075, For this simulation, Newton’s method converges
quickly with less than 4 iterations while the CPU time required is less than 13 min.
In the following, we will compare the result obtained with our developed model 2p-
SWI implemented in DuMu® with the one presented in [57] in differents situations.
The comparison between our numerical results and those presented in [57] showed
good agreement between both calculations.

We consider the hydrogeological data and the physical parameters described above.
The model is run under steady state conditions. The obtained results are labeled
as "NOP” pumping scenario and used as initial conditions for the other scenarios.
Figure 3.34 presents the evolution of the freshwater/saltwater interface in 2008 in
the natural conditions.
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Figure 3.34: Evolution of the saltwater/freshwater interface in 2008. "NOP” sce-
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Figure 3.35: Evolution of the saltwater/freshwater interface in 2018 with a rate of
150 L/day as recommended by the water authorities.
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Figure 3.36: Evolution of the saltwater/freshwater interface in 2018 with a rate of
250 L/day.
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Figure 3.37: Evolution of the saltwater/freshwater interface in 2028 with a rate of
250 L/day.

Up to 2008, the aquifer is not subjected to any external forces and is assumed to
be in natural equilibrium. A significant movement of the interface towards the
interior of the domain is observed. In Figure 3.35, the salt bevel is stable and the
saltwater/freshwater interface has not moved during 10 years of pumping at the
rate of 150 L/day recommended by the water authorities. Using the current rate
of 250 L/day for 10 years of exploitation, we can see a significant advance of the
interface in Figure 3.36 towards the landward side, especially in the position of the
private wells. In Figure 3.37, the salt wedge has intruded about 300 m into the
domain after 20 years of pumping.

We illustrate in 3.38 the piezometric head of freshwater in natural conditions. We
can see that the equipotentials are regular and vary from 200 m at the coast to
206 m at the landside. In Figure 3.39, we illustrate the position of the freshwater
head v in different situations. In Figure 3.39a), the pumping rate in private wells
as recommended by the water authorities is about 150 L/day. We can observe that
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the water potential is stable and has not changed during 10 years of activity while
it decreases with a rate of 250 L/day for the same period. During 20 years of over-
exploitation with a rate of 250 L /day, the freshwater level is decreased in the whole
plain and an exceptional depression is located around the position of the pumping
wells.

206

7000
6000 205
5000 204
4000

203
3000

202
2000
1000 201

0

Y (m)

0 2000 4000 GOOO 8000 mLu oo 0h0 meD cu‘bn mLD BDLD

: X
Presented in [ 7] Implemented in DuMu

Figure 3.38: Evolution of the piezometric head of freshwater in 2008.
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"10Y” scenario. ¢) After 20 years of pumping with 250 L/day: "20Y” scenario.

In this section, we presented a comparison between our results and those presented
in [57] for a homogeneous test case dealing with the impact of demographic change
on seawater intrusion in the lower Tripoli aquifer in Lebanon. We can see good
agreements between the two calculations, which ensures the validity of our developed
model. The numerical results of the test case "Tripoli aquifer” showed the ability
and capacity of our model to predict the seawater intrusion in real scale test cases.

3.5 Conclusion

In this chapter, we have developed a fully coupled, fully implicit approach of the
sharp interface seawater intrusion problem. The first part deals with the numer-
ical scheme of the mathematical model. The coupled system is discretized by a
cell-centered finite volume method in space. For the time discretization, we used
an implicit Euler method, which allows us to take large time steps. The CPU
time is, therefore, significantly decreasing while maintaining a good accuracy of
the scheme. The nonlinear system is solved by Newton’s method, wherein each
iteration a linear system is solved by a preconditioned gradient BiConjugate STA-
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Bilized (BiCGSTAB). The time step is chosen according to the number of iterations
required by the Newton method to achieve convergence in the last iteration. There-
after, We have developed and implemented a new module, called 2p-SWI, in the
context of the parallel open-source platform DuMu¥, based on DUNE. A short
description of the platform is also provided. Afterwards, the 2p-SWI module has
been validated in several examples.

The first test case is described in [67]. Numerical simulations are compared to an
analytical solution proposed in [61]. The obtained results are satisfactory and in
good agreement with those in [67]. Next, we have considered the field-scale free
aquifer test case [70]. Our numerical simulations are compared to those in [70].
The numerical results demonstrate the accuracy and robustness of our approach.

After that, we have applied our model to the Souss-Chtouka field case located in
the southwestern of Morocco. The numerical model is based on available hydrogeo-
logical data in real scale by simulating the progress of seawater intrusion during 80
years. Until 1968, the aquifer is supposed to be in hydrostatic equilibrium. To do
so, the model is first performed under steady-state conditions. The obtained results
constitute, therefore, the initial values of the transition model. After 80 years of ex-
ploitation, the salt front has moved to the landside. Also, the level of the freshwater
head decreases in the entire basin. The numerical results show that marine intru-
sion is dependent on several factors, such as the amount of extraction carried out
and the location of wells close to the shoreline. It should also be noted that marine
intrusion is favored in areas of high permeability, even in the absence of pumping.
Afterwards, we validated our implemented module on a real test case corresponding
to the Tripoli aquifer in the northeast of Lebanon. Numerical simulations over 20
years of exploitation are presented. The comparison of our numerical results and
those presented in [57] showed a good agreement, which ensures the validity of our
module to provide efficient and accurate results in real scale test cases.
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4.1 Introduction

In this chapter, we present a finite volume scheme and numerical simulation of the
sharp-diffuse interfaces model into coastal aquifers, which was recently introduced
in [25, 26]. We present the derivation of the mathematical model in section 4.2.
Such flows are governed by a coupled system of two parabolic partial differential
equations describing a two-phase immiscible seawater/freshwater flow and integrat-
ing the dynamics of transition zones. The non-degeneracy of the equations comes
from the presence of the term modeling the transition zones.

In section 4.3, we developed a fully coupled, fully implicit finite volume scheme to
discretize the governing equations. Precisely, we employ a TPFA method in space
on a structured mesh where the orthogonality condition is satisfied. We apply an
implicit Euler scheme for the time discretization, which allows us to take large time
steps and thus reduce the CPU time. An upwind scheme is used to approximate
the convective flux. In this context, we have developed and integrated a two phase
diffuse module in the framework of DuMuX. The validity of the implemented
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module is examined through the study of the numerical convergence of the scheme.
Moreover, a 2D simulations on different grid resolution prove the ability of the
developed module to predict the position of the interface in the presence of the
transition zones. This has been discussed and presented in section 4.3.

Thereafter, we propose to compare the numerical results of our 2D module with
those obtained with the classical 3D model for miscible displacements. The 2D
model yields information on the position of the salt front whereas the 3D model
describes the evolution of the salt concentration. Numerical simulations of both
models are afterwards compared to those presented in [23]. The numerical results
showed that this approach gives physically consistent and performance results. Fi-
nally, section 4.4 presents some concluding comments.

4.2 Mathematical model of the sharp-diffuse interfaces prob-
lem

In this section, we present the mathematical modeling of seawater intrusion using a
mixed sharp-diffuse interfaces approach [24, 25]. Let us mention that the derivation
of this model is done in [25]. Therefore, we only present here the outlines to obtain
the governing equations modeling saltwater intrusion using the mixed approach.
Freshwater and saltwater fluxes are modeled by mass conservation and Darcy’s
laws for each fluid. By neglecting the vertical variation of the fluids, the flow is
assumed to be horizontal. The problem is therefore reduced to a 2D model that
takes into account the dynamics of the transition zones. Neglecting the saltwater
storage coefficient, the governing equations modeling the freshwater and saltwater
flows are as follows

Sfbf% — div (b;DVu) + F(u) — F(Z) = Qy, (4.2.1)

— div (1 +7)bsDV0) + F(Z) = Q.. (4.2.2)

where u is the freshwater head, Z is the salt front elevation and v is the saltwater
head. The other notations are summarized in Figure 4.1 and given as follows

e Sy: the storage coefficient of freshwater,
® by = u — Z: thickness of the freshwater.

bs = Z — Zp: thickness of the saltwater.

Q;: quantity of the fluid ¢ = f, s pumped or injected per unit of surface.

D: the hydraulic conductivity of freshwater.

* v = %: the density contrast and p; is the density of the fluid ¢ = f, s.

F(.): the approximated flux on the saturated/unsaturated and freshwa-
ter /saltwater zones.
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The aquifer is presented by a domain Q x (Zg, Z7) with Q C R? represents a part of
its horizontal surface. The function Zp [resp. Zr| describes its lower [resp. upper]

topography.
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Figure 4.1: Schematic representation of a coastal aquifer.

For modeling the transition zones, a phase field model developed in [10] is employed.
For more details on the approximation of the fluxes across the transition zones, the
authors can refer to [24]. The expression for the approximate fluxes describing the
dynamics of diffusive transition zones is as follows:

0
F(u) = W{ai: — §div (DVa) ]
oz
F(2) = ¢(% - 0AZ).
(2)=o(%
where ¢ and § are respectively the porosity of the medium and the width of the
transition zones. The elevation of the salt front is written vZ = (1 + y)v — u, while
the parameter § is used to combine the two cases: free and confined aquifers,

5= 1, if the aquifer is free,
1 0, if the aquifer is confined.

Let Q be an open polygonal domain, 9Q = I',x = (x1,22) € R? and ]0,T[ a time
interval. Let Qp =]0,T[xQ and 0Qr =]0,T[xJ. Summing equations (4.2.1)-
(4.2.2) and invoking the expression of the approximated fluxes, the mathematical
system is given by

.
(Spbs + Bo) ‘3;‘ — div (D(bs + by) V) — div (YDb,VZ) — Bodiv (¢DVu) = Qf + Qs in Qr,
qﬁ%—f — div (Dbs V) — div (yDb,VZ) — &div (¢DV Z) = Q, in Qr,
DVu-i=0, DVZ-i=0, DbVu-1n=0 on OQrp,
D(bs +bf)Vu-1=0, Db;VZ-1=0 on 0Qr,
u(.,0) =up, Z(.,0)=2p in €,
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where the main unknowns are, from now on, the freshwater head u and the salt
front elevation Z. The initial conditions u°(x) and Z°(x) are given for u and Z
at (t = 0) to describe the initiale state of the aquifer while 7 is the unit outward
normal to 0€2. The other physical parameters used in the system are defined above.

The problem consists of a coupled system of two nonlinear parabolic partial dif-
ferential equations simulating two immiscible fluids and tacking into account the
dynamics of the transition zones.

4.3 Numerical simulations of the sharp-diffuse interfaces
model

Let us mention that the finite volume numerical scheme for the sharp-diffuse inter-
faces model using the TPFA finite volume method is similar to that presented in
chapter 3. Therefore, this subsection discusses numerical simulations of this model
using the TPFA method to predict seawater intrusion in coastal aquifers.

The numerical scheme afterwards is implemented and integrated in the framework
DuMuX. We validate our scheme on different test cases. First, we procceed to the
numerical convergence of the scheme in the case of a free aquifer. Besides, we have
tested our 2pdiff-SWI module against an analytical solution derived from Ferris
model [45]. The obtained results match well with the analytical solution and are in
good agreement with those presented in [7, 23]. Our results are completely equiva-
lent to the results given in [7, 23] thus validate our methodology and demonstrate
the usability and capacity of our module to simulate marine intrusion into coastal
aquifers.

4.3.1 Test 1: Pumping of freshwater

Here, we consider a test case described in [25] dealing with the effect of pumping
on the displacement of the salt front in an unconfined aquifer where diffusion in the
transition zones is not neglected. First, we proved the validity of our sharp-diffuse
interfaces model implemented in DuMu® by studying the numerical convergence of
the TPFA scheme. Different meshes resolution are used to visualize the convergence
of the solutions to the reference solution. Numerical results, proving the efficiency
and accuracy of our model to predict saltwater intrusion, are presented.

4.3.1.1 Test description

We consider a free aquifer of thickness 10 m and horizontal surface 2 =
]—=50m, 50 m[ x |—20m,20m[. Homogeneous Neumann boundary conditions are
imposed on the boundaries to let the interfaces evolve freely. We pump a constant
amount of freshwater with different rates ranging from 0.8 m3/day to 0 accord-
ing to the position (x1,x2) for three days. The main pumping point is located at
(r1 = 15m, 22 = 0m) with a maximum rate of 0.8 m?/day. The rate decreases as
it approaches the boundaries. .
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Numerically, the pumping (or injection ) is modeled by a term source imposed in
a specified part of the domain. In this case, let the term source of the freshwa-
ter equation @y = —0.8 exp (—0.01 ((w —15)2 + yQ)). The initial position of the
saltwater /freshwater interface is computed with an analytical solution proposed in
[61]. The position of the intersection of the interface with the base of the aquifer is
initially set at 30 m.

The physical parameters and properties of the aquifer are summarized in Table 4.1.

Parameters | § 0] Dm/day] | S
Values 0.1 0.3 39.024 0.0

Table 4.1: Parameter values for the pumping scenario.

4.3.1.2 Numerical convergence

First, we proceed to the study of the numerical convergence. We calculate the
solution of the problem for different cells. The initial mesh is refined several times.
For example by a factor 2. We consider the following grids as presented in Table
4.2

Grid levels | Number of cells
40=10x4

160 =20 x 8

640 = 40 x 16
2560 = 80 x 32
10240 = 160 x 64
40960 = 320 x 128

S T W N~

Table 4.2: Different grids used in the numerical convergence.

We calculate the reference solution on a fine grid corresponding to 40960 = 320 x 128
cells. We start by making several sections in space and time. In Figure 4.2, we plot
the section in space from the point (-50, 0) to the point (50, 0). The section
passes through the main part of the pumping. Figure 4.2 shows the evolution of
several quantities in a free aquifer subjected to pumping for 3 days. We observe
the convergence of the solution calculated on different grids towards the reference
solution.

In addition, we consider a plot selection over time taken at point (-10, 0) that
belongs to the main part of the pumping. Figure 4.3 shows the evolution of the
freshwater head, the saltwater head and the elevation of the salt front over time.
We see that during 3 days of pumping, the solution calculated on different grids
converges towards the reference solution.
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Finally, we make an analysis of the error starting from an initial value 40 cells,
then we will calculate the numerical convergence order. The tables 4.3-4.5 below
represent the standard (2 and [ relative norms as well as the order of convergence.

Cells 40 160 640 2560 10240

Freshwater head v | 1.05e72 | 4.92¢73 | 2.4e™3 | 1.16e72 | 5.22¢ 4
Saltwater head v | 8.9¢™3 | 4.23¢73 | 2.07e™2 | 1.0le 3 | 4.52¢ 4
Elevation Z 6.03e72 | 2.96e72 | 1.46e72 | 7.13e 3 | 3.18¢73

Table 4.3: Numerical convergence of the scheme in [?-relative norm.

Cells 40 160 640 2560 10240
Freshwater head u | 8.35¢72 | 4.18¢72 | 1.95¢72 | 8.29¢73 | 2.79¢3
Saltwater head v | 5.74e 2 | 2.73¢72 | 1.23¢72 | 5.3¢73 | 1.8¢73
Elevation Z 2.03 1.08 0.48 0.2 6.98¢ 72

Table 4.4: Numerical convergence of the scheme in [°° norm

Number of cells 40 | 160 | 640 | 2560 | 10240
Freshwater head v | — | 1.09 | 1.03 | 1.04 | 1.15
Saltwater head v — | 1.07 | 1.03 | 1.03 | 1.16
Elevation Z — | 1.02 | 1.01 | 1.03 | 1.16

Table 4.5: Order of convergence

Figure 4.4 shows the exact total amount of freshwater pumped against the numerical
amount. The aquifer is closed. The total amount of freshwater pumped over 3
days is founded exactly using the numerical model. As a consequence, the mass
conservation law is satisfied. Numerically, we represent the pumping process in the
term source by a negative value and the injection by a positive value.

-0,001 T T T

— Total exact quantity

W Total numerical quantity

-0,002 = =

0,003 =

Total quantity of freshwater (n*3/s)

-0,004 - —

0,00 I | I | .
0 86400 172800 259200
Time (s)

Figure 4.4: Conservation of the total amount of freshwater pumped

The last stage of our study concerns the CPU time and the number of iterations
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required by Newton’s method to achieve convergence. Table 4.6 summarizes the
CPU time and the number of iterations calculated on different grids.

Cells 40 160 640 2560 | 10240 | 40960
Time CPU (s) | 0.06 | 0.249 | 0.971 | 4.06 | 17.46 | 80.29

Table 4.6: CPU time and the number of iterations required by Newton’s method
to converge

By refining the initial grid several times, the program takes more time to complete
the process. The CPU time therefore gradually increase.

Simulations have been performed with an initial time step of 10 s and a maximum
time step of 0.5 day. The time step size increases if Newton’s method converges
with less iterations in the last time iteration and decreases otherwise. This process
is manipulated during the simulation according to the function SuggestStep Time-
Size() implemented in DuMu®. The tolerances for the Newton method and the
BICGSTAB solver are respectively 1078 and 1076, In this test, Newton’s method
converges in less than 4 iterations.

4.3.1.3 Numerical results

This subsection aims to illustrate the displacement of the interface of the salt front
and the ground water level in a free aquifer subjected to pumping during 3 days. In
this test, we consider an uniform rectangular resolution of 80 x 32 in the direction
x1 X xg. In Figure 4.5, we can see that the "upconing” is appeared and grow
up quickly and a local depression is located at the main zone of pumping. The
presence of the freshwater/saltwater transition zone and the saturated/unsaturated
zone promotes diffusion and advancement of the free surface and salt front.

The velocity of freshwater and saltwater flows during 3 days of pumping is illustrated
in Figure 4.6. The flow velocity of both fluids is maximum in the main pumping
zone. Moreover the direction of the freshwater flow tends downward while tends to
upper for the saltwater fluid. Furthermore, the direction of freshwater flow tends
downward, corresponding to the decrease in freshwater level, while the saltwater
flow tends toward the upper surface. This proves the ability of our model to predict
saltwater intrusion into an unconfined aquifer and its ability to provide physically
satisfactory results.
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Figure 4.5: Evolution of the elevation of sharp-diffuse interfaces (left) and the fresh-
water head (right) in 1,2 and 3 days.
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Figure 4.6: Velocity of freshwater (left) and saltwater (right) flows during 3 days of
pumping.
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4.3.2 Test 2: Tidal effects

The purpose of this test is to assess the validity of our implemented module in the
case of a free aquifer. For this purpose, we consider a test case presented in [7, 25],
which mainly focuses on the interface displacement coupling with tidal fluctuation
effects. We propose to compare our numerical results with an analytical solution
derived from the Ferris model [45]. The obtained results are promising and show a
good agreement for both calculations. Afterwards, we compare our obtained results
to those presented in [7, 25] in different situations. The numerical simulations prove
that our module is efficient and able to predict sewater intrusion in a free aquifer
taking into account the width of the transition zones and sea fluctuations effects.

4.3.2.1 Test description

We consider a free aquifer represented by ]0, 50[ x ]0, 50[. The depth of the aquifer is
fixed at 10 m. We combine the problem, of rotary character, with tidal effects. The
oscillations of the sea progressively generate pressure waves close to the aquifer. For
this test case, we use the parameters proposed in [30] after a scaling of our aquifer.
We take D = 39.024m/day for the hydraulic head of freshwater and ¢ = 0.3 for
the porosity. We impose a Dirichlet boundary condition at the seashore, which
corresponds to {z; = —50}, for the salt front Z (while the freshwater head u
evolves freely on the impermeable side). The Dirichlet value is calculated using
an analytical solution proposed in [7, 45]. Homogeneous boundary conditions are
imposed on the rest of the boundary. The amplitude of the transition zone § is
evaluated from the equation for the width of the dispersive zone (eq. (2) in [30]).
Its value is approximately 6 = 0.1. We performed the simulations with an initial
time step of 0.01 s and a maximum time step of 1 day.

4.3.2.2 Numerical results

In order to ensure the validity of our developed module in the case of a free aquifer,
we propose to compare our numerical results issued from our developed module
with an analytical solution computed with Ferris model. In this case, the aquifer
is not subjected to any external forces. For these simulations, we consider two
uniform rectangular mesh with mesh 1 = 100 x 100 and mesh 2 = 200 x 200 in
the x1 X xo direction. Figure 4.7 illustrate the position of the interface obtained
with this present model compared to the analytical solution after a period and a
half-period sea fluctuations.
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Figure 4.7: Convergence of the interface obtained with the present model towards
the analytical solution derived from Ferris model. Times T = 0.5 day (left) and T
= 1 day (right).

By refining the mesh twice, we can observe the convergence of the numerical solution
to the analytical solution derived from the Ferris model at both times T" = 0.5,1
days. After one day, the interface evolves freely on the landside and returns to its
initial position on the seaward side. The wave pressure causes oscillations on the
seaside and accelerates the movement of the interface in the whole domain. Next, we
propose to compare our obtained results with those presented in [6] in two different
cases. The objective here is to evaluate the ability of our module to handle different
physical phenomena. For the spatial discretization, we use the resolution of mesh 1.
We illustrate in Figure 4.8 the evolution of the interface at different times without
any external force while Figure 4.9 presents its position during a pumping scenario.
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We place a hydrograph artifacts at © = —35 to illustrate the behavior of the salt
interface over time. Figure 4.10 shows the results predicted by the hydrograph
artifacts for the sharp interface model (§ = 0.0) and the sharp-diffuse interfaces
model (0 # 0). The obtained results for both models are then compared to the
analytical solution derived from Ferris. Afterwards, our numerical results for both
models (sharp and sharp-diffuse interfaces model) are compared to those presented
n [25]. The Dirichlet value at the seaside evolves over time and take into account
the tidal effect. The impact of tidal fluctuations is illustrated in both situations.
The interface evolves freely as in natural conditions despite the oscillations at the
seashore. In addition, pumping effects are observed at the well position.

-1,

[~ hiz=-35 : Solution computed with Ferris mode]
15) ¢ Appreximated solution eomputed with 4 = O(1)

— Sharp-diffuse interface model
— - Solution computed with Ferris solution

Depth (m)

Time (days)
Y T T T T

— Analytical solution computed with Ferris model T-  hlr=-35) : Solution computed with Ferris madel
— . Sharp interface model = hix=-35) : Approximated solution computed with § =0

Depth (m)

Time (days)
Implemented in DuMu® Choquet and al [25]

Figure 4.10: Oscillations on the salt front elevation, predicted by the hydrograph
artifacts (6 = 0 (left) and 6 # O(right)) and comparison between both models.

The first comment we can make is the similarity of our results implemented in
DuMuX (left) with those presented in [25]. The oscillations are more noticeable
in the model with (§ # 0). Comparing the two models to the analytical solution
derived from the Ferris model, we observe that the model with a sharp-diffuse
interfaces matches the analytical solution well. The evolution of the freshwater
head u in this case for both models is illustrated in Figure 4.11.

Now, we concentrate on the behavior of the freshwater head when setting up seaside
oscillations and with Neumann homogeneous BCs for both variables v and Z. In
Figure 4.12, we present the result presented by the hydro-graph over time.
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Figure 4.12: Evolution of the freshwater head u with and without oscillations in
the boundary.

We distinguish here two cases: with and without oscillations on the boundary.
By imposing the Dirichlet value calculated with the Ferris model, we can observe
sinusoidal oscillations caused by tidal effects at the hydrograph located at 1 = —35.
Using homogeneous Neumann boundary conditions, we observe that the water table
level decreases and stabilizes after 0.25 days.

4.3.3 Test 3: 3D variable density test

We consider a test case described in [23] that aims to numerically compare the
3D variable density model with the 2D sharp-diffuse interfaces model. The 3D
model describes the evolution of the salt concentration while the 2D model gives
the position of the salt front and takes into account the width of the transition zone.
For the validation of our 2D and 3D models implemented in DuMuX, we propose
to compare our numerical results obtained for both models with those presented in
[23]. The CPU time required for the 2D simulations is less than one minute, while
it takes about 2 hours and 30 minutes for the 3D model.
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4.3.3.1 Test description

We consider a confined aquifer presented by Qsp = |—5, 5[ x |0, 3] x |—3, 0] which
its horizontal surface is given by Qap = |—5,5[ x ]0,3[. The depth of the aquifer
for the 2D model is fixed at —3. The physical parameters and data used in the
simulations are summarized in table 4.7.

Parameters values
Diffuse interface width ¢ [m] 0.2
Freshwater head Zp [m)] 0.0
Porosity [-] 0.3

Hydraulic conductivity D [m/d] 39.02
Storage coefficient S¢[m™!] 0.0
Diffusion coefficient [m/s] 1077
Longitudinal dispersivity oy, [m] 0.2
Transverse dispersivity og[m] 0.0

Table 4.7: Parameters and properties of the aquifer

For the mesh, we use a uniform rectangular mesh of 200 x 60 for the 2D model and
a resolution of 50 x 50 x 50 for the 3D model in the direction x1 X x9 X x3. The
initial time step is set at 0.01s while the maximum time step is fixed at 0.1 day for
both 2D and 3D models. Now, let’s specify the initial conditions for both models.
The freshwater head is set to Zp = 0.0 while the initial position of the interface is
given in Figure 4.13. In the salt part, the concentration is fixed at 0.2055, while it
is zero in the freshwater side. The concentration in the transition zone is set to 0.1
with a width of 0.2 m. A 3D presentation of the quasi-interface is shown in Figure
4.14.

21e0]

0.15

Deplhz(m)

0.1

0.05

Sbe!

Variable density model 3D Sharp-diffuse model 2D

Figure 4.13: Initial conditions : initial salt concentration for the 3D model (left)
and initial position of the transition zone between freshwater/saltwater for the 2D
model (right).
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Figure 4.14: 3D presentation of the initial position of the interface.

4.3.3.2 Numerical results

In this sub-section, we will present numerical results for each model (3D and 2D
models) implemented in DuMu* compared to those of [23]. We consider the data
and the physical parameters described above. Different cases dealing with saltwater
pollution of an aquifer are analyzed.

Case 1: rotating interface problem

In this test, we focus on the behavior of the interface at normal conditions where
the aquifer is not subjected to any external forces (i.e., @1 = Q2 = 0.0 ). To do
so, we consider that the boundaries of the domain are impermeable. The storage
coefficient Sy is neglected and we fix the density contrast v = 0.025. The figure
4.15 shows the evolution of the salt concentration and the salt front obtained by

the 3D and 2D models.

3D density variable.

Cherfils and al [23].

0 T T T T T T T T T

® Cherfils and al
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o
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Sharp-diffuse interfaces model 2D.

Figure 4.15: Evolution of the freshwater and saltwater flows in the normal conditions
during T" = 10 days.

The first remark we can make concerns the consistency between our results and
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those presented in [23]. The simulations start with a quasi-horizontal interface and,
under the density contrast the interface evolves freely to reach its equilibrium state
after 10 days. On the other hand, we can see that the diffuse interfaces issued from
the 2D model is consistent with the 50 % contour of the transition zone in the 3D
model. This can be confirmed with the result presented in figure 4.16.

«
T

Depth z (m)

Figure 4.16: Representation of sharp-diffuse interfaces and 3D density variable re-
sults (50 % salinity contour and 5 % and 95% salinity contour) for T=>5 days.

The dotted lines indicate 5 and 95 % salinity contours in the 3D model while the
solid line represents the salt front elevation issued from the 2D model. We can see
a good agreement between the results issued from both models. We illustrate in
Figure 4.17 the gradient of the freshwater head.
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Figure 4.17: The velocity field in the rotating interface problem at ¢t = 10 days.

Case 2: pumping process

We associate to the previous test a pumping well with a surface of 1 m? and a depth
of 0.5 m with a pumping rate fixed at 0.6 m3/day per unit volume. This process
is modeled numerically by positing Q2 = —0.6 x[—2 _3]x[1,2]x[-0.5,0) and @1 = 0.0.
We have reduced the effect of the density contrast v = 0.0025 to better visualize
the pumping effect. The interface is assumed to be fixed at the edge of the sea.
Dirichlet boundary conditions are imposed on the right hand side of the domain.
The model is performed for 5 days.
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Cherfils and al [23]. 2D model 3D density variable

Figure 4.18: Numerical results for pumping scenario: z3 = 0.5 (top) z2 = 1.5
(center) and xo = 2.5 (below).

Figure 4.18 shows the evolution of the concentration and the salt front in a confined
aquifer subjected to pumping. To visualize such a behavior in this case, we made
three slices. Then, we consider the slice defined on xo = 1.5 and on zo = 2.5. The
pumping effect appears more in slice xo = 1.5. Under the impact of a significant
pumping flux, an "upconing” is is formed and tends towards the horizon. The same
behavior is shown in the 2D model in both slices. This leads to the conclusion
that the 2D model fits well with the realistic 3D model. We perform the same
experiment for a higher pumping rate and a higher density contrast. Let Qo =
—4.0X[—2,—-3]x[1,2]x[-0.5,0 and v = 0.025. The objective of this experiment is to
assess the validity of the 2D sharp-diffuse interfaces model with a large amount of
pumping.

Cherfils and al [23]. Sharp-diffuse 2D model 3D density variable.

Figure 4.19: Evolution of the concentration (3D model) and the salt front (2D
model) under a large amount of pumping: slice on xy = 1.5.

In Figure 4.19, the upconing shown by the sharp-diffuse 2D model is not a pike as
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it is known for the classical sharp interface model. This is due to the existence of
the width of the transition zone in the system of equations.

Case 3: injection process

In the following experiment, we add some form of injection to the problem. This is
numerically modeled by a positive value imposed in a specific part of the domain.
In our case, suppose that Q2 = 0.7x[12]x[1,2]x[-0.5,0] and v = 0.00025
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Figure 4.20: Numerical results during an injection experiment. zo = 0.5 (top),
x9 = 1.5 m (center) and x2 = 0.5 (bottom)

Figure 4.20 illustrates the evolution of the transition zone during a 5 day injection
scenario. A local depression in the injection zone is observed in both models. The
density contrast is decreased. The salt front thereby tends downwards under the
large freshwater flux injected. The effects of the injection are visible in the 2D
model, especially in the third slice y = 1.5 m. The transition zone in the 3D model
is wider due to dispersion and diffusion effects, which is not visible in the 2D model.

Case 4: Double pumping scenario

Here, we present two test cases for a large aquifer with two exploitation zones. We
represent the aquifer by Qsp = ]—10,10[ x |0, 5[ x |—5,0[. Its horizontal surface is
given by Qap =]—10,10] x ]0, 5]. The depth of the aquifer for the 2D model is fixed
at -5. Dirichlet boundary conditions are imposed at the seaside (z; = —10) and the
initial conditions are shown in Figure 4.21.
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Figure 4.21: Initial conditions: initial salt concentration for 3D model (left) and
initial position of the salt front for the 2D model (right).

We consider two zones of pumping wells with different rates. Let Q1 = 0.0 and
Q2 = —1.8 X[_5.5,-4.5]x[2,3]x[-0.50] — 1.0X[4.5,5.5]x[2,3]x[~0.5,0]- The density contrast
is fixed at v = 0.0025. Figure 4.22 presents numerical results for a double pumping
wells during 7.5 days.
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Figure 4.22: Numerical results for double pumping wells. Slice zo = 0.5 m (top),
slice 2o = 1.5 m (center) and slice x2 = 2.5 m.

The pumping effect is visualized in both models. Two upconings are formed and
tend to the surface under the high pumping rate. The 2D model is able to visualize
the pumping effect as does the 3D model and the transition zone is large due to the
force applied in this region.

Case 5: pumping and injection experiment

For the last test, we combine the effect of injection and pumping at the same time.
We choose a production well at the left and an injection well at the right. The
source term in this case is given by Q1 =0.0 and Q2 = —1- X|_5.5,—4.5]x[2.3]x[-0.5.0] T
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0.4X[4.5.5x[2.3]x[0.5.0]- Figure 4.23 represents the numerical results of the corre-
sponding test.
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Figure 4.23: Numerical results: injection and pumping, T' = 10.5 days v = 0.00025.

The pumping effect does not appear too much and a stabilization of the interface
in the whole domain is observed due to the injection process. Also in this case, we
can see that the 2D model yields physically efficient and accurate results.

Remark 4.3.1. We have compared our results with those presented in [23] for both
2D and 3D modes for a test case handling the contamination of a confined aquifer by
saltwater in different situations. The obtained results proved a good agreement for
both models, which ensures the validity of our methodology. This comparison is used
to show the ability of the 2D model to predict seawater intrusion in different cases.
The numerical results proved that the sharp-diffuse interfaces 2D model provides
physically efficient results and take into account the width of the transition zone.

4.4 Conclusion

This chapter deals with a finite volume numerical method for modeling seawater in-
trusion problem using the mixed sharp-diffuse interfaces approach in coastal aquifer.
First, we outlined the main steps of the derivation of the mathematical model. The
construction of the numerical scheme is established by integrating the governing
equations on each control volume and evaluating the flows on each edge. We adopt
a fully coupled, fully implicit TPFA finite volume method for the discretization of
these equations in space while we use an implicit Euler scheme for the discretization
in time. An upwind scheme is used to approximate the convective fluxes.



Chapter 4. A finite volume method for numerical simulation of the sharp-diffuse
90 interfaces model

Afterwards, the numerical scheme is integrated and implemented in the framework
DuMu¥X. The developed module has been validated by performing a numerical
convergence of the scheme. The numerical simulations showed that the existence of
a diffuse freshwater/saltwater and saturated /unsaturated zones favors the advance
and diffusion of the salt front and water surface level. Moreover, we tested the
ability of our developed module to take into account physical and hydrogological
phenomena. such as tidal fluctuations. To do so, we consider a test case described
in [7, 25] that aims to illustrate the impact of tidal fluctuations caused by waves
motion on the displacement of interfaces. Our numerical results are compared to
an analytical solution derived from Ferris model and showed good agreement with
the results presented in [7, 25] in different cases. Besides, the validity of our module
is examined by comparing our results obtained for the 2D model with the classical
3D model for miscible fluid flows. Our results for both models (2D and 3D) are
then compared with those presented in [23] and presents good correspondence.

From these series of simulations, it can be seen that the 2D sharp-diffuse interfaces
model can provide an efficient and accurate results and take into account various
hydraulic and physical phenomena with a reasonable CPU time. The numerical
analysis of an extension of this method to a more efficient and accurate scheme to
deal with heterogeneity and anisotropy on an unstructured mesh will be discussed
in the next chapter.
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5.1 Introduction

This chapter aims to present the convergence of the finite volume Multi-Point Flux
Approximation (MPFA) scheme for a sharp-diffuse seawater intrusion problem. The
derivation of the mathematical model is presented in Chapter 4. Here, we consider
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a sharp-diffuse interfaces model in an anisotropic and heterogeneous free aquifer.
Such a process is governed by a coupled system of two parabolic partial differential
equations simulating respectively the freshwater head and the salt front elevation.
To handle such a system numerically, we propose a fully implicit MPFA finite volume
approach that solves the governing equations at each time step using Newton’s
method. In fact, this method tackles the non-linearity of the problem, the anisotropy
and the heterogeneity of the aquifer on unstructured mesh, which improves the
efficiency and accuracy of the numerical computations of such system. In section
??. we present the numerical discretization of the system of equations. For the
approximation of the convective flux, we use an upwind scheme. To discretize in
time, we employ an Euler implicit scheme.

The present chapter has several objectives. First, we will develop a fully coupled
fully implicit approach which combines advantages of the MPFA method to accu-
rately solve the diffusion terms with an upwind method for space discretization on
unstructured grids. The second objective of this paper is to present a proof of the
convergence of this scheme. The proof of convergence is established due to some
compactness properties. Moreover, we have demonstrate the weak convergence of
the discrete gradient of the freshwater head and the salt front elevation. Passing
to the limit, we have proved that the approximate solution is a weak solution to
the continuous problem. Lastly, we have developed and implemented this scheme
in a new module in the context of the parallel open source platform DuMu® [1],
based on the Distributed and Unified Numerics Environment (DUNE) [2], allowing
simulations for large-scale field applications involving seawater intrusion in coastal
aquifers. The overall objective of this part is the development of a new-generation
framework and reservoir simulator suitable for massively parallel processors. Some
numerical examples are presented, one of which is related to flows in a fractured
porous medium.

The outline of the paper is as follows. Section 5.2 is devoted to the statement
of the problem. Namely, in this section, we introduce the system of equations
for the sharp-diffuse interfaces model in a free coastal aquifer [24, 25]. Then we
formulate the main assumptions on the data. In Section 5.3 we recall the general FV
framework and formulate the fully coupled fully implicit MPFA FV scheme that will
be studied. A discrete maximum principle, that will be used in the energy estimates
for the scheme, is proven in Section 5.4. In Section 5.5.2, we first establish some
energy estimates followed by the existence of discrete solution to the F'V scheme.
In Section 5.5.3, we establish some compactness results corresponding to space and
time translate estimates. In Section 5.6, the convergence of the scheme is proved
by compactness arguments. In Section 5.7, a description of the implementation of
our strategy in DuMuX is given. Then, to validate our approach, we consider two
test cases. The first test case is a simulation in a homogeneous domain, while the
second one is in a heterogenous free surface aquifer where two intersecting fractures
are considered. Finally, concluding remarks are summarized in section 5.8.
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5.2 Mathematical model

We consider an open bounded domain  of R?, describing the projection of the
aquifer on the horizontal surface, over a time period ]0,7[. Let Qp =]0,T[x(,
OQp =]0,T[x9Q and 7 the unit outward normal to 92. We consider the sharp-
diffuse interfaces model for seawater intrusion problem in coastal free aquifers de-
scribing two immiscible phase seawater/freshwater flow and tacking into account
the width of transition zones. Then the mathematical model is given by a coupled
nonlinear system of parabolic PDEs (see [25]) where the main unknowns are the
freshwater head w [m] and the salt front elevation Z [m]:

624 _ div (DV(u)) — div (DV(Z)) — div (6DVa) =0 in O,

)
» ¢% — div (Dbs(Z) V) — div (DV(Z)) — div (66DVZ) =0 in Qr,
DVu-ii=0, DVZ-i=0, Dby(Z)Vu-ii=0 on A0,
DV (u)-n=0, DVe(Z) = on Oy,
L u(0,.) =uo(.), Z(0,.)=Zp(.) in Q.

¢ [%)] is the porosity of the medium, D [m - day~!] the hydraulic conductivity of the
freshwater, ps, ps [kg-m™3] the densities of the fresh and the saltwater, v = %
[%] the density contrast, § [m] the width of the transition zone, Zp [m] the bottom
of the aquifer, bs(u) = u — Zp [m] the thickness of the aquifer, bs(Z) = Z — Zp [m]
the thickness of the freshwater, p(u) = % (u—2Z 3)2, ugp and Zj are given functions.
We have to mention, that for simplicity, we have neglected the source terms and

taken v = 1.

The main assumption on the data are as follows:

(A.1) The tensor D is assumed to be bounded symmetric and uniformly elliptic in
Q. There exists constants DT > D~ > 0 such that

0< D |EP < D)€ <DTIEJP < 0o for any € € R? and € # 0, a.e. in Q.

(A.2) The porosity belongs to L>°(£2), and there exists two positives values ¢~ and
¢+ such that 0 < ¢~ < ¢(z) < 9T < 00 a.e. in Q.

(A.3) ug and Zy are in L%(Q) and the initial thicknesses satisfy: 0 < ug — Zg <
M, 0< Zy—Zp <M, ae. in ) where M is a positive constant.

Remark 5.2.1. The assumptions (A.1)-(A.3) are classical and physically meaningful
for seawater intrusion into coastal free aquifers. They are similar to the assumptions
made in [2/, 27] that dealt with the existence of a weak solution. Let us mention that
with the assumption (A.3) and by introducing “sufficiently pumping” source terms,
a mazximum principle is shown in [27] that is the thicknesses u—Z and Z — Zp are
bounded and positive.

5.3 Finite volume discretization

We now introduce our notation and the general form of the FV approximations
that will be considered in the rest of the paper. We formulate a fully coupled
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fully implicit cell-centered FV scheme for the spatial discretization and a first-order
(backward Euler) scheme for the integration in time. We present an MPFA [3, 7]
method which has high potential to improve efficiency and accuracy of numerical
simulations for seawater intrusion in anisotropic and heterogeneous porous media.
Furthermore, the orthogonality condition of the mesh is no more required which is
necessary for the TPFA, see for instance [41].

5.3.1 Discretization and notations

For sake of simplicity, we consider an uniform partition {tg,--- ,txy} of [0,7] with
Ot = tp41—1ty the time step size and " = ndt for all n € {0, ..., N}. Furthermore, let
(Th)n>0 be an admissible triangulation in the sense of [42], such that Q = Uge7; K.
OK = K \ K the boundary of K. Let us note by & = it U Eexg the interior and
exterior edges of the 7,. We denote o = K \ L the interface between the adjacent
triangles K and L. Let |K| be the 2-dimensional Lebesgue measure of K and |o| the
1-dimensional Lebesgue measure of 0. P = ( (TK)keT, » (wg)o_eg) is a set of points
in Q with zx represents the barycentric point of the control volume K while x, is
the point of continuity on the edge o. V is the set of vertices of the mesh 7, and we
note by Vi the set of vertices of the triangle K. The size of the mesh 7} can be given
by h = Ir(nea%z diam (K). We construct for each K € 7T three sub-volume controls

K, as presented in Figure 5.1. We note F;, P; and P, the vertices of the triangle
K. The points Pj;, Py; and Pj;, are the midpoints of the edges (P;P;), (P;FPy) and
(P} Py) respectively. We denote O'}Q (resp. G%Q ) the segment made by the points
P; and Pjj[resp. Py;] with a measure noted |o | [resp. |07 []. Let Mgl Z_ [resp. Tig2 1]
the outward unit normal vector to U}Q [resp. O'%(i]. For any vertex r € {3, j, k}, the
sub-volume control K, is the quadrilaferal made by zg, P, P, and P, as shown

in Figure 5.1 .

Figure 5.1: The control volume K and associated notations.

Let us state the following notations:

o Dy = ﬁfKD(:c)dx, oK = ﬁfK(ﬁ(x)dx
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o ug(t) ~ ﬁfKu(x,t) dz, v = ug(t,) and ul = ﬁfKuo(:p)dx, t e
Jtn, tny1]

o Zi(t) ~ T\I Z (z,t) dz, Z% = Zk(t,) and 2% = ﬁfKZo(x)dx, for
t €ltn, tnyi].

e The discrete space-time solution corresponds to an approximate solution of
the continuous problem (P) given by

ull(t,z) = uptt for x € K and t €)ty, tyi1),
th(t,a:) = Z}‘{‘H for x € K and t €]ty, tpt1].
|PiP;)a 5 1 We
PPl 3
note by €, 1= :UKP,L/QJ and €, 2 = xKPI/Qk The vectors ,uo, and ,JU%( satisfied

Following [20], the point P ; is set on the segment (P P;;) such

the followmg property

i ra € 1a =1,
TR I (5.3.1)
figs—1d - Cold = 0, for all Id=1,2.

Definition 5.3.1 (Discrete gradient). We denote u”,, the discrete values on the
T

continuity points (zy)ecs. Using (5.8.1), the discrete gradients of uff and Z,‘it on
the quadrilateral K, are written as in [20] by

Vil = (u"}tl - u’}(“) ,ua + (u”i1 "+1) fio3, (5.3.2)
Vi, 23 = (ZZ; Z"+1> Aot <Z:§: Z”“) Hos, - (5.3.3)

5.3.2 Fully coupled fully implicit finite volume scheme

In this subsection, we provide a description of the fully coupled fully implicit FV
scheme for the system (P) modeling sharp-diffuse interfaces for seawater intrusion
in heterogeneous porous media. It is based on the MPFA method for fluxes and
diffusive terms and upstream for advective terms with implicit Euler’s time dis-
cretization. The main idea of the MPFA scheme [3, ?] is to obtain a consistent
approximation of the flux on each edge of the control volume. Moreover, This
scheme gives a linear formulation of the flux across the edges.

The main unknowns are the freshwater head (u')ke7, and the salt elevation

(Z?(H)Kg—h for any n € {0,..., N — 1}. By integrating the coupled system (P) in
[tn, tnt1] X K, we obtain the following scheme:

1 tn+1
o (Wptt —ul) — ]K\/ Z [DVy(u) + DVp(Z) 4+ 60¢DVu| -fig ,dodt =0,
tn

occdK 9
(5.3.4)
1 tn+1
brc (27 — 73) — =) > / [Dby(Z2)Vu + DV (Z) + 66DV Z] - i, do dt = 0,
n cecdK "’

(5.3.5)
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with 7ig o is the external normal to o. Using a fully implicit approach and Z /

€K
Z Z , yields to the following equations
r=i,j,k Id=1,2 "K
oK (U?<+1 - U?{) E Z E, 1 )+ F, 1 (Zh )+ Go.g{d (uff) =0,
‘ ’ r=i,j,k Id=1,2 "
(5.3.6)
d)K(Z[n(—H n Z Z H]d Zh,uh)—l—de (Zh)—l_Gaf(dT(Z}it):O’
r=i,j,k Id=1,2
(5.3.7)

where 1 old is the external normal to oL K and the exact diffusive sub-fluxes on each

half edge 0 K, d (r=i,j,k,Id=1,2) are given by the following expressions:

Fopa (uf / Dicly V9 (uh> g do, (5.3.8)
Fop (Z)7) / Dicly, ¥ (Zh ) A do, (5.3.9)
and
Gota (up') = = | 0¢x) n DK 1 Vuy) iy do, (5.3.10)
ol g
Gggr(z;?) = _/Gféi 5¢K\U%DK|U%VZ,?.ﬁ(,%da. (5.3.11)

In addition, the exact convective sub-flux is as follows

H,1a (20, udl) = —/M bs (Z,‘it)mg%{d DK‘U% vugt-ﬁ(,%da. (5.3.12)

Ky

Now, the construction of the MPFA scheme requires a consistent approximation of
the sub-fluxes on each half edge of the control volume K. However, each vertex
r = {i,7,k} is associated with two half edges 0’%(T and O’%(T. The exact sub-fluxes
(5.3.8)—(5.3.12) are then approximated by the numerical sub-fluxes on each half
edge of the control volume. By using the discrete gradient operator (5.3.2)—(5.3.3)
on K, in the diffusive term, the numerical sub-fluxes on each inner half edge are
given, for all K € Tj, and around each vertex r = {4, j, k}, by

Fope ) = 1ok 1D | (ot = o)) g+ (w0 = o)) g, | .
K (o7 Kr K
(5.3.13)
Fop (20 = 1ot i | (023 = 25 ) iy, + (2341 = o) ) g, | s
(5.3.14)
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and
Gy ) = ~lotd oowDic | (st = i) iy (g = ) g, | g
(5.3.15)

oK

(5.3.16)

IKr

Gy (2) = —|old \wKDK[(z:# Z”“)/JU <Zn+1 znﬂ)% ] i
Ky Ky Ky

For the convective flux, we evaluate the function bs(Z) in the equation (5.3.12) by
an upwind scheme. Using the discrete gradient definition in the equation (5.3.2),
the numerical convective sub-flux on each half-edge is expressed as follows

H 1 (Z) ) = —|ofe | Db, (Z&)“P Vi, uy - gt (5.3.17)
Kr
with
bs (ZHY)  if — |0l | Dk Vi udt i, 1 >0,
b, (Z ) _ [ ol f+1) , 7%, " (5.3.18)
Id bs (ZL ) if ‘U ’DKVK uh Id < 0.

L is the neighboring element of K which has in common the edge UI d

Finally, the scheme of the problem (P) is expressed by the followmg nonlinear
coupled (5.3.19)-(5.3.25) system:

VKeTpandVn=0,--- ,N—1,

oK (ui™ = ui)

9

St 3 Stk [ (st - o) ) sy + () - o) g, |

r=i,j,k Id=1,2

ot Y S oD | (o) - o) ) i, + (025 - oZE) ) i, |

r=i,j,k Id=1,2

— 0t Z Z 5¢K|U§(dT|DK [(u??{‘j n+1> ,LLo' + <un§'{‘: u?(-f-l) MU%{T:| .ﬁgf(dr

r=i,j,k Id=1,2
(5.3.19)

ox|K| (ZF - Z)

ot Y S okt ine | (e - o) ) i, + (w25 - oz )

r=i,j,k Id=1,2

T

r=i,j,k Id=1,2

=0,

N
2
ok,

— 5t Z Z |0, ’DKb Z(St)up |:<un;(-1 n+1> NU + <un§—|{—rl n+1> Mo‘ ] .

nld
K

nId
K

=0t Y Y Sokloil|Di KZ:;: - Z;;H) Aot + <Z:§;1 Z”“) MU;{J igra = 0.

r

r=i,j,k Id=1,2

The flux continuity on each half edge reads

Dy Ks@(ungl) plu "“)) fior + <s0(ung{1) @(%“)) ugzr] iy
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+ Dp, [(SO(UZ;S) - SO(UEH)) ﬁgir + <<p(u2%rr1) _ (p(uz—&—l)) ﬁair] i =0,
(5.3.21)

Dic | (e(zag) = oz ) sy + (9020 = (23 ) g, | 7

Ky Kr

+ Dy, KQO(Z:frl) - SO(ZZH)) ﬁ"b + <¢(Z:2+1) _ <,0(ZZ+1)> ﬁvir] =0

Ly Ly
(5.3.22)
(g g+ (2 ) | 5
+D [(u”“ qu) fior + <u:j1 u’i“) fig2 ] My =0, (5.3.23)
Dx [(zg#l Z}}H) Aol + (Zj;jl Z}}“) ﬁgzr] Tl
+ Dy, [(Z"ﬁl ZZ“) o+ <Z:%“ Z;L“) i 2 } fly =0, (5.3.24)

dt\up n+1 n+l) = n+1 n+l )\ = —
Dgbs(Z)")e [(uol — Uy >ug}(T + <u0_% —uly )'ujf’%w] T

Kr
+ Dibs(Z])5" Kuzlﬂ - uZ“) gt + <u+ - uﬁ“) fio3,

Ly

The discrete initial conditions are given by

1 1
ufy = / uo(z)dz, 2% = / Zy(x) da, VK €T (5.3.26)
K| Jk K| Jk

5.4 Discrete maximum principle

In this section, we prove a discrete maximum principle for the approximate solutions
freshwater head and the salt front elevation respectively. To do so, we suppose the
existence of at least a solution to the numerical scheme. The existence result is
proved in the next section. The nonnegativity of the thickness of the freshwater and
saltwater issued from the numerical scheme is presented in the following proposition.

Proposition 5.4.1. Let assumptions (A.1)—(A.3) be fulfilled. Then the following in-
equalities hold:

Zi — Zp >0 and u — Z3 >0, for any K € Ty, and n € {0,..., N — 1}.

The approximate freshwater and saltwater thicknesses are non-negative.
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Proof. We demonstrate this result by induction. This statement is hold up for n=0.

We assume that this property is valid for any & < n, and we will demonstrate the

validity of this property for £k = n + 1. We select a control volume K such that

Z = min {Z7} and Wt = min {u}"'}. Let us start by proving Zi-H! — Zp >
LeTy, LeTy

0, i.e. we want to show the non-negativity of the saltwater thickness.

= Z"Jr1 Zp and we assume that w%ﬂ < 0. We multiply

the saltwater equation (5.3.20) by (w "H) = min{w, 0} < 0. We obtain

To do so, we note by w

‘K| (Z;L(Jrl_z?() (w[nyl)i—l-Al—%—Ag—l-A?,:O,

¢K
with

Av= 30 X0 (@) T2 Vi with VI = —|oR DKV i - Tppa

r=i,j,k Id=1,2

_ Id n—|—1 n+1 —

A= =D 3 3 Ik () Vi (Z5) .
r=i,j,k Id=1,2

_ § § : Id +1 +1 =
Ag——(S(Z)KDK |0—K’!‘ ?{ ) VKrZIn{ ~n0§(d.
T

r=i,j,k Id=1,2

We start by proving that the convective term A; is positive. Using the upstream
values of bs(Z91)"P, we get

o if V”+1 > 0, then by (Z‘;t)ul,?d = by (Z}X1). Therefore,

K K’r

b ( Jt)up Vn—H( TIL{+1) b (Zn—H) Vn—i—l( ;L(—i—l)* _ 0’

where we used the fact that the function bs(Z%"!) is extended by 0 whenever
75 < Zp (e wiitt <0).

o If V”+1 < 0, one has b (Z‘St)ufd =bs (Z}*1). So,
K 9K
b (ZTL+1) Vn+1 ( ;L(+1)_ Z b (ZTL+1) VTL+1 ( HK+1)_ —0.

Combining the two cases, we get

b ( §t)up Vn+1( nKJrl) > b (Zn+1)vn+1( ;L(Jrl)* —0.

Following the same steps we get that As is also positive. As a result
K| (2051 — Z2) (W) <.
Since (w}?l)_ is negative and using the induction assumption of Z7, we get
Zptt — Zg > Z) — Zp > 0.

That yields a contradiction with wii"t = ZH — Zp < 0. Hence,

Z}‘(‘H > Zpforanyn=0,.N—1land K €T.
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Now let us prove that u"Jrl Zy ntl > 0, i.e. the freshwater thickness is non-negative.

We note by ( il Z"H) = rnln{u”Jrl Z"HL ,0}. We multiply the freshwater
equation (5.3.19) and the saltwater equation (5.3.20) by (v — ZH)™ < 0. Sub-
tracting the freshwater equation from the saltwater equation, we get

: |

with
Bim—boxDx Y X Iobt (- ZE) Vi (7 - 2 o
r=i,j,k Id=1,2
By= Y, > (i =2 [_DKVKT@(U?Lt)'ﬁU? —b(23), v
r=i,jk Id=1,2 r 14 Vold

To prove that these terms are positives, we follow the same idea as done in the
previous step. To compute Bj, we multiply equations (5.3.23) and (5.3.24) by

(u"ﬂl Z:;f) . Substrating the first one from the second and adding the

oK, Kr
result to By, we get

B1 5¢KDK Z Z Id | n+1 Z?(+1)_ VK (unK+1 Z}?’l) . ﬁg—}(T
r=i,5,k Id=1,2
— (un;(drl Z:;é:) (G* (ZnJrl) _ GZ%T( n+1) + G* (Zn+1) _ G*KT (u%+1)> )

Using the non-decreasing property of the function G7,, with respect to u?;rl —Z;L(H,

TKy
we have

* n+1 n+1 n+1 n+1 * n+1 n+1 n+1 n+1
-G f(d(uL -7y )(u -z r) Z—GU?( v —Zy )<u"f(dr Zald) :

This yields to the following inequality

By >6¢xDk > > K|V, (u™ — Zi) Vi, (uptt — Zpt)”
r=i,j,k Id=1,2

> 0.

It remains to prove that By is positive. We have

Z Z Zn+1 n+1) [_ DK|U%|VKT<P(Uzt)-ﬁU§g — by (Z6t)up
r=i,j,k Id=1,2 " T

Using the following inequality —(¢(b) — ¢(a)) > —bs(a)(b — a) for any a,b € R, we
obtain that

—|o |DEV K, o(ud)) -7, 1 > — ot | Db (i) V e ull -7 old

Z bs( n—&-l)vn-‘rl'

Therefore

K Ky KT K'r

_|O-K |DKVKT<P(U]1) ﬁa{(dr — by ( 5t)up VnJrl > (b (urIL(Jrl) bs ( 5t)up >Vn+1‘
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o If VZ;;I > 0, then (bs(upt) — bs(ZF)) V:;;l = 0, since the function bs(u) is
Ky Ky

extended by zero if u < 0 (i.e. vt — ZpH < 0).

o If V! < 0,  then <b (uih) — bs (2910, >V”+1 >
K

o KT - K,

(b (™) = Bu(Z5 ) VI =
Combining both cases, we get that By is positive. As a result, we have

(Ko (ui = 25 = (ufe = Z3)) (i = 231) ™ <o,

Therefore, we have u}}“ — Z?(H > 0 according to the induction assumption on
u?(ﬂ Z}‘('H which gives

u}?’l Z3H for every n = 0,..N — 1 and K € T.

This completes the proof of Proposition 5.4.1. 0

5.5 Energy estimates and compactness results

In this section we first present some energy estimates followed by the existence of
discrete solutions to the FV scheme and a compactness result which will be used
for the convergence of the numerical scheme.

5.5.1 A priori estimates

In this subsection, we present a set of preliminary results which are needed for the
analysis of the scheme.

Proposition 5.5.1. Let assumptions (A.1)-(A.3) be fulfilled. Then there exists a
constant C > 0 independent of h and &t such that

Zat > Di Y KAV e(ul) - Vi (uff)

=0 KcT;, r=i,jk

+ Zét S Di Y K Vi (2] Vi, (Z2t> <C.

= KeTy, r=i,j,k

Proof. First, we multlply equation (5.3.19) by ux! and equations (5.3.21)-(5.3.22)
and (5.3.23) by |04 \u"“. Adding the equahtles and summing over K € T, we get

> oxlK| (uptt — uk) widt + AL+ Ay + A3 =0, (5.5.1)
KeTy

with
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d —
ot 3 e Y X Aot | (ot - el g, + (g - ol ) g, | g
d N - —
ot | (oD = o) g, + () = i) ) g, | i

Y e Y X ottt | (wzm) - oz ) g, + (25D - 28 ) g, | g

KeTy, r=i,j,k Id=1,2

bl ru”“[(MZ:;)—@(Z?JH)%I (o2 - oz ) i, | .

Ky Kr
and
Az =
St Z Dy ddx Z Z _‘ n+1 [< Zzl n+1)ﬁ + (un%:l unKJrl) MU%J 'ﬁgﬂdr
KeTy, r=4,j,k Id=1,2 "
+ |O‘ |un:;1 [(ug}trl n+1> Ma + <un{1 n+1> MUK :| ng{(d .
We use the following formulas from [20], |a}{r\ﬁg}< = ]KT|/IU}< ) and ’U%(T‘ﬁoﬁ =

| K| fig2. E in the last terms, we obtain after factoring

A=t Y D S0 IR

+1 +1 Lyt +1 +1 ALyt
(i) = ot ) (g =it Y g, P+ () = o)) (gt =t Uiy, P

T T

(st ot (! =) (st =) (]! =) Yo, -,

Tk,
=6t Y Dr Y K|V (uff) Vi ul.
KeTy, r=i,j,k

A =6ty Dx Y |Kr|[

KeTy, r=i,5,k

(e - o) (gt = ) g P+ (w2 - ozi) (g - ) lig, P

[ T

+ (o - otz (wngt ) + (e - ez ) (! - i) Yy, i,
=0t Y. Dk Y KAV (7)) Vil

KeTy r=i,j,k

2 2
A3=6t Y Dg » |K,,|[< n:1 UVI;H) |ﬂg}w|2Jr <un; u?(ﬂ) |ﬂa§(r|2
KeTy, r=i,5,k

2 un un+1 unJr 1 n+1 — :|
+ U}{r K %{T IUO'K IL’LU%{T ’

=0t > Dx Y |K|Vku) Viu)
KeTy, r=i,j,k
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Summing the result over n = 0 to N — 1, equation (5.5.1) can be written as
Aon + A1y + Aon + Asn =0, (5.5.2)

where

Aoy = Z > oK (up —uj) wi™,

n= OKETh

Ay = Z& Z Dk Z K |V, o)) - Vi u)!,

- K€7’h r= i,j,k

AQN = Z ot Z Dk Z |K7"VKTQO(Z;§) vK’V‘“h’
n=0 KeTy, r=i,j,k

Agy = Z 6t Y Drdx Y K6V up - Vi, uj)f

= KeTy, r=i,j,k

Next, using the identity: for any a,b € R, (a — b)a = %[(a —b)2 + (a® — b?)], Aon
can be written as

KeT, n=0
1 1
KeTy, KeTy n=0 KT
1 1
> 501 3 K| (u)” = —50" [wlEa)
KeTy

From the fact that ¢ is a non-decreasing Lipschitz continuous function with A its
Lipschitz constant, we obtain the following estimate for the term Ajy:

AlN—ZétZDK > 1K

= KeTy, r=i,j,k
(sow”;) o)) (gt = g P+ (o) = ot ) (! = ) g, P
v (et et (vt =) + (ot = ot ) (g - i) Y, -
1 1 2 1 1 2
1 — 2 = 2
>3 0t S D 3 [ (et = o)) g P () = et ) g |
o (som“) — ol (ot = o) ) iy, g, ]

>2 25 S D Y 1K AVie(ul) - Vige (ulf)

n:() KeTy, r=i,j,k
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In an analogue way, we get

AQN—Z& S D Y K]

n=0 KcT;, r=i,j,k

(et - o) (gt = ) iy P+ (w02 - ozi)) (g =) lig, P

Kr

# (o - oz (wngt ) + (e - oz ) (! - ) i, i,

r r

N-1
1 n+1 n+1 n+1 n+1 - 2
>>\nz;)6t > Dk Y. IKT\[(cp(ZU}Q)—MZK )> (cp(ua}w) p(ui) ) I |

= KeTy, r=i,j,k

+ (e - o) (with - ol ) g, P

(go<ZK;:;j> — otz (tung?) - et
@) - etz (o) = o)) Yy, g, )

Kr Ky

_l’_

_|_
N T
©

N-1
2% ot Y Dic D 1KV 92 Vi (ul)
n=0 KeTy, r=i,j,k
and
Asn —62& > Drox Y K|

= KeTy, r=i,j,k

(unj-l ur[z(—&-l) <un1|—1 n+1> ’/’LU |2 (ung—l u?[t{-ﬁ-l) <un;-1 n+1> ‘///02 ‘2
Ik Ik Ik
n+1 n+1 n+1 n+1 n+1 n+1 n+1 —
U —u + | u —u U — U ) 2 ]
)<K K) <K K)(x K)“"K ot ]

T

N— 2 2
5 ) = o)) 17 ") o)) i
TZ > D X 1l () = et ) g, P+ (g - o) g, P
n=0 KeT,

r=i,j,k
+ (et = o)) (ot = o) iy, i, |
6~
>0 D6t > Dr Y K Vi,p(u)) Vi, euy).
n=0 KT, r=i,j,k
Adding the last inequalities and using equation (5.5.2), we obtain

(iwﬁz)Nf& > Di Y KAV e(l) - Vi (uff)

n=0 KT, r=1i,5,k

Zat S D Y 1KV o(Z0) Vi () < 56" luolifaqy (5:53)

= KeTy, r=i,j,k

We now pass to the proof of the discrete gradient estimates for the saltwater equa-
tion. We proceed in the same way. We multiply equation (5.3.20) by Z}‘{H and
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equations (5.3.22), (5.3.24) and (5.3.25) by |o%d |Z"+1. Adding the equalities and

summing over K € 7, and over n =0,--- ,N — 1, We “obtain
Bon + Bin + Ban + Bay =0, (5.5.4)
where
N-1
Boy =3 > oxlKI (2 = 2k) 23,
n=0 KTy

Biy = Zét S Dk Y b (Z ) K|V g a8 Vg, 20

n=0 KeTy, r=i,j,k
N-1

Bon = Z ot Z Dk Z | K |V, ¢ (Z?{H) Vi, Zi,
n=0 KeTy, r=i,j,k

N—-1
Bov=3 6ty Drdsx S K |Vk, 20 Vi, Z}.
n=0 KT, r=i,j,k

Using the identity: for any a,b € R, (a — b)a = 3[(a — b)* + (a® — b?)], we have

Boy = Z ox|K|(Z¥)" — 5 Z oxl K| (2%) Z 3 oxlK| (73 - 2p)°,

KeTh KeTh n=0 KTy,

1
> _§¢+”Z0H%2(Q)

For Bin, we use the convexity of ¢ and the following inequality bs(a)(b — a) >
©(b) — ¢(a) for any a,b € R, then it follows

BlN_ZétZDK > Kb (20, [

= KeTy, r=i,5,k

<an—;1 Z?(—H) <un2(—1 n+1> ’NJ |2 + <Z:§-;1 _ Z?(—H) <un%1 n+1> ’HO’K |
( <Zn:1 Z;L(—‘rl) (ung(—l u'r[z{—&-l) (Zn;—l Z}’L{-‘rl) <un£1 u?’[L{—‘rl) >MUK ﬁa’%{’ri|

>]:§_::5t S px Y |Kr|[

KeTy r=i,j,k

(™ - otz) (un? = i Yoy, P+ (w02 = oz (gt = ) g, |

T

+ (( Zn+1 (Zn+1)> (ugftl unKJrl) + (‘P(Zgjl) _ ()O(Z;L(Jrl)) <uZ;r1

Ky Ky

>/\>—*

T

KeTy, r=i,j,k

r

( @) - o) (ol - o) g,

”“) Vi), i

NZ 0 o X il (wizz) - etz ) (et - et )l P
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+ (et - o) (ptngh - o)
+(etzg = ez} (et = o)) iy, g, )
1 N—-1
6 )
) 6t Y Dx Z K|V, o(Z) - Vi, e (Wf) -
n=0  Ke€T, r=i,5,k

To estimate By and B3y, we use the same idea as done in Asy and Aspy, to obtain

Bon = Z(St > Dk Y K |Vie (ZT) Vi, Z3,
= KeTy, r=i,j,k

Z& >, Dic Y K Vo) Vi (21

= KeTy, r=i,j,k

and

Bsy = Zét > Dibor Y K|V, Z Vi, 23

n=0 KG'T;, r=i,j,k
Z 5t Y Di Y K Vi e(Z))- Vi, (Z;‘j).
- K€7’h r= l,],k

Adding the previous inequalities and using equation (5.5.4), we get the following
estimate

( )Zét > Dk Y |IKAVK9(Z)) Vi@ (th)

= KeT, r=i,j,k
1
+5 Zat > Dic Y KAV o(Z0) Vi () < 56711 ZolEaay (5:5:5)
n=0 KeTy, r=i,j,k

Using the estimates (5.5.3) and (5.5.5), we obtain

Zét > Y IKADK Vi pluf) - Vi (uf)

n=0 KeTy, r=i,5,k

+ Z5t Yo > KDV p(Z)) - Vi, e (szt>

= KeTy, r=i,5,k

+ i ot Z Z K| Dk Vi, o(Z)) - Vi, ¢ (U2t>

n=0 KeTy, r=i,j,k
1 /\(b+ 2 2
< .
< o 2 (Bl + i)

1
Finally, using the following inequality, for any a,b € R? 5 (llall® +118]1?) < (lall* +
[6]|2 + a.b) in the previous inequality (with a = Vg, o(Z%), b = Vi, o(ul)), we
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obtain

Z5t > > KDk Vi, p(uf)) - VK<P< )

n=0  Ke&T,r=i,jk

- Z«st S Y KDV (Z0) Vie (200) < ©

n=0  K&T,r=i,jk
wher C—W(|Z||2 )+ lluoll? ) This concludes the proof of
ere = e n 1) ollz2 (o wllge(q) )- s concludes the proof o

Proposition 5.5.1 ]

5.5.2 Existence of the discrete solution

In this subsection, we will prove an existence result for the nonlinear system of
equations (5.3.19)—(5.3.25). To this end, we follow the strategy proposed in [20, 73]
and we use Leray-Schauder’s fixed point theorem.

Proposition 5.5.2. Let assumptions (A.1)-(A.3) be fulfilled. The coupled system
(5.3.19)—(5.3.25) admits a discrete solution

U= (u'rIL{—&-l un;{—17u:;‘rl and Z = (Z’VH—I Zn+1 Zn+1
K

>K€Th,r€{z,j k},ne0,N—1] Kr i )KETh,re{z,j k},nel0,N— 1]

Proof. Let (U,Z) be a solution of the system (5.3.19)-(5.3.25). Let E =
2
(R[O’N_I]XT’E> and we define the mapping

Gg: FE — FE
(U,Z) — <UZ)

such that <I~J, Z) is the solution of the following set of equations: for all K € Ty,

¢K’K| ( n+1 ﬂ?()

ot Y ok rDK[( i) - w(urﬁl))ﬁa;{rJr(w(uzg) ol +>)uK]nK

r=i,j,k Id=1,2
+1 +1 +1 +1 —
r=i,j,
S z soxlotd i | (27! —K) fio, + ( ~ ) g, | g =0,
r—ijk Td=1,2 K " " "

oxc|K| (25 = 2k

ot Y S okt iDw | (o2 - o) ) iy, + (02D - o2 ) i, |

r=i,jk Id=1,2 "

Id § ~n+1 1 ~n+1 ~n+1\ - —
ot S okt pannzz, | (i - a ) i, () i, |

r=i,j,k Id=1,2 "
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ot Y X soulofd D (2 - 28 ) g, + (220 - 28 ) iig, | ige =0

r=i,jk Id=1,2

Dic | () = o)) oy, + (g = o)) g, | -

Kr

w01 () = o™ g+ (00 = o) ) s | it =0

Ly

Dic | (w(zap) = o2k ) iy + (90250 023 ) i, | -7

+01 | (2 - o2 ) iy, + (o2~ 2 ) g | -0 =0

Ly

+1 +1 “ntl =ntl) - -
DK |:<un}< u”[l( )MU}(T + <U’Z%( _u?( >:u’0'%(T:| “No

n+1 ~n+1 ~n+1 ~n+1 )\ - =
—|—DL|:<’IL£ —uy )ugi —|—<u0_% —uy )ugz}ﬂno—o,

-DK |:<Z;l}-:1 Zn+l> /J/O— 4 <Z:§i—1 _ Z}l{"rl) ﬁa%r:| 'T_io—

T

+ Dy, [(Z;;l Z”“) Aoy + (Zj;%“ - Zg“) ﬁagr] iy =0,

ot\up ~n+1 ~n+1 ~n+1 _ ~n+l1) - =
Dbs(Z, )a” [(u 1 —Ug )No}(r + (Uoi U >/‘a§(J No

Kr T

+ Drbs (Z5t)up [(ﬂzgl @2+1> "joi,« n <ﬂggl _ ﬂz-i-l) ﬁ(’QJ ity =0.

T

The initial conditions are given by

- 1
af = |K|/u0 and Z%:m/KZg(a:)dx

This system of equations is linear and has a unique solution since the associated
matrix is symmetric and diagonally dominant. Therefore, the function G is well de-
fined in . Moreover, the functions ¢ and b, are continuous and the diffusion tensor
D is symmetric bounded and uniformly elliptic, we obtain that G is a continuous
mapping in E.

Now, by construction, for any « € [0, 1], the problem (U, Z) = aG (U, Z) has exactly
the same solutions as the numerical scheme (5.3.19)—(5.3.25) with agp, auy and aZj
instead of ¢, up and Zy. Moreover, for any a € [0, 1], we have, ||aug| < |luoll,
llaZo|| < || Zo||, and A is also a Lipschitz constant for ap. Then the same a priori
estimate in Proposition 5.5.1 is also satisfied for any « € [0, 1] and for any solution
of (U,Z) =ag(U,Z).

Finally, we have verified all the assumptions of the Leray Schauder theorem [20,
33, 73]. The function G has then a fixed point and the numerical scheme (5.3.19)-
(5.3.25) admits at least a solution. Proposition 5.5.2 is proved. O
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5.5.3 Space and time translates estimates

In this subsection, we derive compactness tools corresponding to space and time
translate estimates for the approximate solutions, which allow the application of
Kolmogorov’s theorem [19, 42]. We start with the definition of the discrete gradient
in  as introduced in [20]:

Vgu‘;f: Z Z VKru‘;f

KeTy r=i,5,k

The discrete semi-norm in the space L? (O, T, HI(Q)) is defined by

1
2
ol = §jat§j X1l (g =Pl P ! g )

n=0  K€eT, r=t,j,k

Now we present the following lemma about space translations.

Lemma 5.5.1. Under our standing assumptions, we extend u‘ff by 0 outside of [0, T] x
Q. Then, there exists a constant C independent of the discretization parameters such
that the following inequality holds

2
/ [, [t ta e m) = ol )]t < 20911l + €8 a1
for any n € R2. |n| is the Euclidean norm of R?.

Proof. The proof can be done by arguments similar to those from Lemma 4.3 in
[20], therefore it is omitted here. O

The estimate for the time translation is given by the following lemma.

Lemma 5.5.2. Under our standing assumptions, for every s € RT, the following
uniform in s holds true:

T—s )
/ / Lt +s,2) — p(uy (t,x)| dedt <Cs (5.5.6)
where C is a constant independent of the discretization parameters and s.

Proof. Let s €]0,T[. Since ¢ is a non-decreasing, Lipschitz function with A its
Lipschitz constant, the following inequality holds

/T / Lt +s,2)) — p(ull (t,x))rdxdtg )\/OTSA(t) dt,

A(t)z/g(gp(uff (t+s,2)) — p(ut (t,x))) (uff (t+s,z) —ul (¢, x))dx, vVt €]0,T — s[.
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Let no(t) € {0, ..., N — 1} such that t, ) <t <ty + 1 and ny(t) € {0,..., N — 1}
such that t,,, ;) <t +s <1, ) + 1. The following equality yields

A1) =Y (o (uk?) = ¢ (w®) ) x antt+s(”“—u’}<>lKl,

KeTy,

1, if t,41 belongs to [t,t + s],
t,t =
Xn(t,t 4 ) { 0, otherwise.

Using the definition of the FV scheme (5.3.19)-(5.3.25) and changing the order of
the summations between n and K, one gets

A(t) = 5tNZan(t,t + ) Z [gp (u;‘{l(t)> ® (u}?(ﬂ) }
n=0

KeTy

<3S ok y—[vm (;?)+VKT¢ (uit)—i—écf)KVKTu?f iy

r=i,j,k Id=1,2

This can be written as follows
A(t) = Ar(m(t)) — A1(no(1)) + A2(na(t)) — A2(no(t)) + Az(na (1)) — As(no(t)).

Let p = ni(t) or p =ngp(t). One has

—5t2xntt+s Z Dk Z > ok {VKrw(U‘ff) 'ﬁg;gr]sO(U%)’

KGTh r=i,j,k Id=1,2
—6t2><ntt+s > oSS ek [Vae () i | (k)
KGTh r=t,5,k Id=1,2 "
—6tZXntt—|—s D22 D [ upt! ﬁa%}gp(u%).
KeTy r=i,j,k Id=1,2 "

In order to obtain an estimate for Aj(p), we use the local conservation property
of the discrete sub-fluxes on the half-edges. We multiply equation (5.3.21) by
—|old \go(u 1a ). Adding the obtained results to Ai(p), we get
K

—5tZXntt+s Z ZIKI

KETh r=i,j,k
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Then using the inequality, ab < 1/2(a? + b?) for any a,b € R, leads to

p+ V-l
Ailp) £ 5= D dtxaltit+s)x 3 3 K
n=0

KeT, r=ijk

2 2
5 (-0 e o o) -0t ]

Id=1,2

We proceed in the same way to compute As and As, on has

+ N-—
Z Stxn(tt+5) > > K

KeTy, r=i,j.k

2 2
X (ol — o) ) e+ (0 (Z000) =0 (Z5) g P
Id=1,2 r v "

As(p) <

@‘@

and

<D+5Z6txntt+s Y K

KeTy r=i,5,k

2 2
X Z ( <u Id> —C,O(U%)> ‘ﬁgngQ—}— <unz;ll u?gﬂ) ‘ﬁafgrﬁ'

Id=1,2

For the third term As, ¢ being a strictly non—decreasing Lipschitz function, there

exists €74 € R for Id = 1,2 such that ‘gp (u”“) "H ‘ = ¢’ (&14) u"jfil u?(Jrl‘.
We denote by C = min{y’ (£1), ¢’ (£&2)}, then we have
As( <5tD+(5ZXnt tts) Y > K
KeTy r=ij.k
2 2
< X (o () 0 ) e (o (wift) =0 (™) Vg P

Id=1,2

To facilitate the computations, we rewrite the above inequality as follows

D+
<2 [(2 567 )(Bo+ E1) + (1+C)Es + Eg},

Alt) < 3

with

Eo—(stZXntH-S > 5 ke (wg) - () [l

KeTy, r=i,5,k Id=1,2

2
By = 6t Z altt+s) S S Y K lle <uagf)> —¢ (ulg“)) ‘ |figra |2,

KeTy, r=i,5,k Id=1,2

Eg_étZXntt—l—s Y% |K|¢(ug§> o ™) g

KeTy r=i,5,k Id=1,2
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3—5tZXTL

We have t €]0,T — s, no(t) € {0,...., N — 1}, m = ng(t) if and only if t € [t;, tyt1]-
As a consequence

T—s
/ Eydt
0
N—

> [ (X

2
e (2) - otz g

KEThr 1,7,k Id=1,2

IN

2
@ (U?g) - w(u%)’ Iﬁaggrp dt,

m=0 KeTy, r=i,5,k Id=1,2
N-1 - ) )
m m hrd
< / Z (s e 33 3 1Kl (ue ) — o i) [ g
m=0 = KeTy r=t,j,k Id=1,2
Since
trsn N1
/ 37 Xalt,t+5)dt < s,
tm n=0

the following inequalities hold

T—s
/ Epdt < s|lp <uzt>
0

In the same way from fOT_S Xn(t,t 4+ s)dt < s, we obtain

T—s
5. and /0 E,dt <sllp (Uh) [k 75,0t

T—s T—s
/0 Eydt < sl <Uh> Hl Th, 68 and /O Esdt < sfj¢ (uh> Hl JTh,0t

Adding the previous inequalities and using Proposition 5.5.1 lead to the desired
result

T—s 2
/ / t+s,2)) — p(up) (t7:c))} dzdi < Cs,

where C' is a constant independent of the discretization parameters and s. This
completes the proof of Lemma 5.5.2. O

5.6 Convergence results

In this section, we present some convergence results based on the estimates estab-
lished in the last sections and Kolmogorov’s theorem and we show that the limit of a
sub-sequence of the approximate solution (5.3.19)—(5.3.25) tends to a weak solution
of the continuous problem, as discretization parameters go to zero.

Theorem 5.6.1. Let assumptions (A.1)-(A.3) be fulfilled. Let (Tp,, )men+, be a se-
quence of an admissible triangulation of 0, hy, being the size of the mesh Ty, and
Otm is the time step size. Let (uatm Z‘Stm) be a sequence of discrete solutions to the
FV scheme (5.3.19)-(5.5.25). Then, we can extract a sub-sequence which converges
in an adequate sense to a weak solution (u,Z), when h,, and dt,, tends to zero as
m — 00, and satisfying the following results:
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1. Convergence results
® (uii;”) — ¢ (u) strongly in L?(0,T;9Q), 5tm —u  ae inQp,
® (Zg;rrz) — ¢ (Z) strongly in L* (0,T;9Q), Z,‘if;” — Z  a.e. inQr,
2
A" (@Z") — Vo (u) weakly in (L2 (0,T; Q)) ,

AV (ng;”) — Vo (Z) weakly in (L2 (0,7;Q) )2.

2. The limit (u,Z) is a weak solution to the continuous problem (P) in the fol-
lowing sens

/ /gbudzdt—/T/D w(u)+w(2)+5¢vu) ~V¢dxdt+/ﬂuo(az)¢(0,x) da = 0,
/ /gbaCZd dt — / / Z2)Vu + V(Z )+5¢VZ>-VCdzdt%—/QZo(x)C(O,J:)dx:0,

¥(.0) € (G 0.150))

Proof of Theorem 5.6.1

Step 1. Convergence results. From the space and time translations Lemmas 5.5.1
and 5.5.2 and due to Kolmogorov’s theorem, the sequence gp( 5'1;") - is rela-
tively compact in L2(0,T; ). Therefore, there exists a sub—sequence,n;tGill denoted
by ¢ (uffﬁ)meN*, which converges strongly to ¢ in L2(0,T;9), as m — oo. The
function ¢ being a strictly non-decreasing, so there is a continuous reciprocal func-
tion ¢! such that

5tm — ! (f) a.e. in Q.

Thanks to the L bound given in Proposition 5.4.1, we deduce from Lebesgue’s
dominated convergence theorem that u5tm S u=¢! (g) strongly in L2(0,T; Q)
as hpy,, 6ty

We follow the same method as done for @( 5tm). We can prove the space and
time translation estimates for ¢ (Z,‘jf:) Then, we apply the same arguments to
obtain the compactness of ¢ (Zfbfnm) using Kolmogorov’s theorm. This yields to the

existence of a sub-sequence, still denoted by ¢ (Zf:nm), wich converges, as m — 0o,

strongly in L2(0,T;Q). Using again Lebesgue’s dominated convergence theorem,
we deduce that ng;" — Z strongly in L2(0,T; Q) as Ay, 0t — 0 when m — oo.

Now, we demonstrate a weak convergence of the discrete gradient. Proposition 5.5.1
gives an estimate of the discrete gradient in the space (LQ(O, T; Q))2, one has

Npm—1 Npm—1

S otnl V2% (ue ) I3+ Y stV (Z0) I3 < C.
n=0 n=0
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From this estimate, one can deduce that V®¢ <uif;"> < resp. V2p (Z,ifnm)> is
bounded uniformly in (L2(0, T; Q))2 Then, there exists a sub-sequence such that
V2 < 62") — (¢, and V®p (Z‘Stm> — (o weakly in (Lz(O,T; Q)>2 as m — oo.
Using the strong convergence of ¢ u&m and the weak convergence of the discrete

gradient V®¢ < ff’") we obtain by passing to the limit

T
0 Q

as m — oo for any V € (C5°(Q x (O,T)))Q. This prove by the way that
Vo(u) = (1 (resp. Vo(Z) = (2) in the sense of distribution and ¢ (u),¢ (Z) €

L2 (0, T;H' (Q) ) O
Step 2. Passage to the limit. Let ¢ € Ap = {¢ € C§°(0,T} Q) | Vi -7 =0 on 0Qr

and ¢¥(.,T) = 0}. We denote ¢”+1 = (zg,t") and wnm = Y(z, 1 ytny1)) for

Id =1,2. We multlply equatlon (5.3.19) by ¢t and equatlons (5.3. 21) (5.3.22)
and (5.3.23) by ]a WJ" for rq—12. Adding the equalities and summing on n =

0,..., N,, — 1 and over K 15 Th,,- That yields to

Tim + Tom + T3m + Thm = 0,

with
Npm—1
Ty = Z Z ’K|¢K n+1 n) ?(—1—17
n=0 K&cTh,,
Np—1

Tom = Z Ot Y D KDk Vi (i) - Vi ufl,

KeTy,, r=i,j.k
Np—1
T3 = Z Otm Z Z | K| Dk Vi, @ (ZZZ”> 'VKﬂﬁ;‘ifT,
n=0 KeTy,, r=i,jk
Np—1
Thm = Z Stm > Y K |dor DKV up™ -V .

KeTy,, r=ij.k

We rearrange the summation of 77,, and by using @b%m =Y(zg,T) =0, we get

Npm—1
Tim=— Y 3 Kol (6 — k) + Y IKlow (uhm o )
n=0 KGEm Kenm
Np—1 tn+1 13¢($K t) 0 0
X ¥ [ [t 5 Kok
n=0 KeT,,, * " K K€Thm,

Now, by the strong convergence of 1 (rk,0)keT;, ,one has

Jim 3 (Kloxulot = [ ofe)ueie.0)dx

KeTh,,
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By the regularity of the function 1, the 9y (zk,.)ke7;,, converges uniformly to-
wards 0y1p(z,.). We deduce from Lebesgue’s dominated convergence theorem that

lim Ty = — /qs 2 )uo(z dem—/ /qS u(t, 2)9p(t, z) dadt.

We next prove the following limit

T
lim 75, :/ /Dch(u) -Vipdadt

Using the definition of the discrete gradient on €2, we get
T
Tom :/ / DgV®p (uiﬁj) VOpm da dt.
0 Q

Following the above , the discrete gradient V®¢ < Etm) converges weakly towards

V(u) in (L2 (0,T59Q) ) Due to the regularity property of the function 1, ngétm
converges uniformly to V4. Under the assumption (A.1), we deduce by passing to
the limit that -

lim Ty, :/ /DVgo(u) -V dz dt.

In the same way, we obtain the following limits

T
lim Tgm:/ /Dch -Vydxdt and lim Tgm:/ /6¢DVU~V¢dxdt.
0 Q

m—ro0 m—ro0

For the saltwater equation, we follow the same steps as previously. For any € Ar,
we multiply equatlon (5.3.20) by (- = ((zk, t") and equations (5.3.25), (5.3.22)
and (5.3.24) by |o%d |C"+1. Adding the equalities and summing over K € T, and

overn =0,---, N, 1 We obtain

Elm + EQm + E3m + E4m = 07

with
Np—1
B 3 3 Ilex (257 - 20 G
n=0 KeT
Npm—1

B = 3 0t 3 B DV b(A 0 Vi Vi
KeTh,, r=i,j,k

7n_1

By = Z St Y KDk Vi o (Z;ifnm) Vi G

KeTy,, r=ijk
Npm—1

Eym= Y Otm Y Y |K|0¢xDxVi, Zpm Vi, G,

KeTy,, r=i,jk

As done previously, we have the following limits

T
hm Eyp = — /gb )Zo(x)¢(x,0) da:—/o /qu(:n)Z(t,:z:)ant’x) dzdt,
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T
lim Eng/ /Dch -Viydxdt and lim E4m/ /5¢DVU~V¢dxdt.
0 Q

m—0o0 m—r0o0

We next determinate the limit of Fs,,, To do so, we consider the residual function
Ry, defined by

T
Rom = / / Dby(Zytm)V2uplm - VR dadt — / / Dby(Z)Vu- V¢ de dt,
0 Q

= Ry, + Ra2,,,
with
Ro,, = / / bs(Zpm )V Oulm vi’g‘”m — b (Z)VPum N0t s, | dadt,
Rao, = / / bs( VD ‘”m vi’gétm Vu- V(| dzdt.

The goal here is to show that Rs,, tends to zero when passing to the limit. Due
to the strong convergence of ngnm towards Z and the continuity of the function b,

one has bs(Z,f;m) — bs(Z) as m — oo. By using the regularity of the test function

¢ and the compactness criterion of Vguii*j, we deduce that
Ro1,, = 0, as m — oo.

By the compactness estimate of the discrete gradient and the weak convergence of
Vguﬁ;’l — Vu when m — 0o, we obtain

R, — 0, as m — oc.

Consequently,

T
lim / / Dby(Zytm)V2uplm - VR¢gm dadt = / / Dby(Z)Vu- V¢ de dt,
0 Q

m—00

which completes the proof of Theorem 5.6.1. O

5.7 Numerical results

In this section, we present the numerical results for two test cases modeling different
scenarios of the sharp-diffuse interfaces model for seawater intrusion. The first
test case is a simulation in a homogeneous domain, while the second one is in a
heterogenous free surface aquifer where two intersecting fractures are considered.

All our developments have been implemented in DuMuX. It provides many tools
to solve numerically PDEs and allowing, among other things, the management of
mesh, discretization or linear and nonlinear solvers. The code is an object-oriented
software written in C++ and has massively parallel computation capability. The
modular concept of DuMu¥ makes it easy to integrate new modules adapted to our
numerical schemes.

In this context, we have developed and implemented in DuMu® a new module,
named 2p — SW1, which allows to solve the coupled system (5.3.19)—(5.3.25). The
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primary variables are the depth of the saltwater/freshwater interface Z and the hy-
draulic head of freshwater u. The spatial discretization employs a TPFA or MPFA
finite volume method. The time discretization is done by an implicit Euler scheme.
The nonlinear system is solved by the Newton method and a BiConjugate Gradient
STABilized (BiCGSTAB) method preconditioned by an Algebraic Multigrid (AMG)
solver, is used to solve the linear systems. This solver is integrated in the ISTL-
Library of DUNE. Dynamic time stepping is used when integrating the equations
involved. Time step sizes during transient simulations are dynamically recalcu-
lated depending on the convergence behavior of the nonlinear procedure (Newton
method). The simulations start with a certain time step which can be increased or
reduced, depending on the number of iterations allowed in each nonlinear iteration.
Let us mention that throughout all numerical experiments, we observed that in no
instance more than a maximum of 10 iterations was needed for the convergence of
Newton’s method. Consequently, for this study the adopted strategy for the man-
agement of the time step is sufficient. Therefore, there is no need to use other types
of local time-stepping strategies proposed in the literature.

All computations were performed on a Del PC with Intel Core(R) CPU E3-1505M
Processor (3.00 GHz) and 8 GB RAM. One of the objectives of this paper is to de-
liver computational performance also suitable for limited computational resources.
Let us mention that in view of the CPU times required for the examples treated
in this paper, all the simulations were performed sequentially. However, the new
module developed can be used on multicore/multinode systems. The parallelization
in DuMu®X is carried out using the DUNE parallel library package based on MPI
providing high parallel efficiency and allowing simulations with several tens of mil-
lions of degrees of freedom to be carried out, ideal for large-scale field applications.
DuMu® has the ability to run on anything from single processor systems to highly
parallel supercomputers with specialized hardware architectures.

Our approach has been validated by solving several tests, including numerical con-
vergence of the schemes [?]. The numerical results are satisfactory and replicated to
those in the literature. The results of these simulations are omitted since nothing
startling was found. Instead, we concentrate on the results obtained in two test
cases. Finally a remarkable property of the scheme is that the discrete maximum
principle (nonnegativity of the thickness of fresh and salt water in the aquifer) is
satisfied wich is crucial to obtain physically meaningful approximate solutions. This
has been verified in all our simulations.

5.7.1 Studied domain and physical data

We consider two test cases by adapting the geometry and data of an example pro-
posed in [25] dealing with the evolution of transition zones under significant so-
licitations. The example considers a 10 m thick free surface aquifer which the
horizontal surface is represented by Q = ]—50 m, 50 m[ x |—20 m, 20 m[. Homo-
geneous Neumann boundary conditions are imposed on the boundaries to allow the
interfaces evolve freely. For the initial conditions, a fixed hydraulic head of fresh-
water u = —1 m is imposed and a vertical interface separates the freshwater and
saltwater zones.
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The example presented above serves to visualize the numerical behavior of the
transition zone considering two situations. In the first situation, the aquifer is
supposed to be homogeneous, whereas it is taken to be heterogeneous in the second
situation. In both situations, two pumping wells, with different flow rates, are also
involved. The freshwater extraction rate in the pumping wells is assumed to be
constant per day: Qy = Q1 Xj-30, 31[x]-10, —9.5] T @2 X]30, 31.5[x]12, 12.5[, Where X is
the characteristic function of a subdomain. The properties and parameters of the
aquifer are summarized in Table 5.1.

Parameters | v[] | d[m] | ¢[] | Q1[m?/day] | Q2 [m?>/day]
Values 0.025 | 0.1 0.3 3 20

Table 5.1: Parameters and properties of the aquifer.

When dealing with the homogeneous case, the horizontal surface is discretized by
a structured mesh with the orthogonality condition being satisfied. The numerical
scheme is established using a TPFA method. In the heterogeneous case, the current
problem is coupled with a fracture possessing a high conductivity. The domain in
this case is discretized using an unstructured triangulation mesh. To deal numeri-
cally with such a system, we use the MPFA method. The impact of heterogeneity
on the displacement of transition zones is illustrated by numerical investigations.
In the following, we present the obtained numerical simulations of each case.

We performed the simulations with an initial time step of 10 seconds and a maximum
time step of 1 hour. The tolerances for the Newton method and the BICGSTAB
method are respectively 107% and 1075. In this case, Newton’s method converges
rapidly in less than 4 iterations.

5.7.2 Test case 1: homogeneous aquifer

In this case, we focus on the evolution of the transition zones in an homogeneous
free aquifer subjected to over-exploitation. The hydraulic conductivity in this case
is equal to D = 4.5 107 m/s. Figure 5.2 shows the structured mesh of 21164
cells used in the numerical simulations. To visualize the extent and advancement of

Figure 5.2: Structured mesh of a homogeneous aquifer (21164 cells).

the saltwater intrusion as a function of the location, vertical cross-section through
the two pumping wells are performed. Figure 5.3 shows the position of the freshwa-
ter /saltwater transition zone at the vertical cross-section 1 through the two pumping
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wells, in the free aquifer subjected to pumping during 3 and 10 days. Figure 5.4

Crass-section 1

Figure 5.3: Displacement of the freshwater/saltwater transition zone at vertical
cross-section through pumping wells in the homogeneous case after 3 days (left)
and 10 days (right).

shows the velocity field in the aquifer after 10 days of over exploitation. It can be
seen that the flow velocity is the highest at the pumping wells position and that
the freshwater flows upward. The evolution of the freshwater/saltwater interface

Freshwater Velocity (m/s)
1.76-08 166 265 35 4ded 5ed 6.8e-05

Figure 5.4: Freshwater flow velocity in the homogeneous case after 10 days.

is shown in Figure 5.5. It can be observed that "upconings” create beneath the
pumping wells and grow up quickly. A local depression, located at the main zone
of pumping, is also developed. The presence of the freshwater/saltwater transition
zone and the saturated/unsaturated zone promotes diffusion and advancement of
the free surface and salt front as it can be seen in Figure 5.6.

Figure 5.5: Displacement of the freshwater/saltwater interface 2D plot in the ho-
mogeneous case after 3 days (left) and 10 days (right).
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Figure 5.6: Evolution of the freshwater head 2D plot in the homogeneous case after
3 days (left) and 10 days (right).

5.7.3 Test case 2: fractured aquifer

In this case, the impact of heterogeniety on the transition zone is examined. The
aquifer described previously is no more homogeneous but crossed by a network of
two fractures. The main one is situated in the middle of the aquifer in the length
direction, whereas the second one is inclined and located at the right part of the
aquifer. The hydraulic conductivity is equal to D = 4.510"'m/s in the fracture
(blue region) and D = 4.5107% m/s elsewhere. The corresponding mesh (Figure 5.7)
is obtained by an unstructured triangulation of 20651 cells and 10418 vertices used
in the numerical simulations.

Figure 5.7: Unstructured mesh in the heterogenous case with two intersecting frac-
tures (20651 cells).

To monitor the location and the extent of the transition zone, three vertical cross-
sections are chosen. The first one passes through the two wells (cross-section 1),
the second, instead, is lying along the main fracture (y=0, cross-section 2) and
the third one is lying in the direction of the inclined fracture (cross-section 3).
Figure 5.8 shows different behaviors of the transition zone. It can be seen, with
respect to the first vertical cross-section, significant vertical progress of the interface
and development of two upconings underneath the pumping wells, one of which
is exacerbated corresponding to the high flow rate. The second vertical cross-
section shows the high mobility of that the transition zone due the high hydraulic
conductivity of the fracture. The interface and the transition zone move further
and rotate quickly. The third vertical cross-section illustrates the impact of the
fracture on the displacement of the interface and the transition zone. One can
notice, particularly, on the right-hand side of the domain the high mobility of the
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interface and the transition zone with respect to the high hydraulic conductivity of
the fracture. There is always a meaningful movement of the salt bevel over the days
to achieve its maximum value after 10 days of over-exploitation. The existence of
the fracture and the transition zones favor the diffusion and advancement of the
salt bevel. An advancement of the transition zone due to the greatest amount

Cross-section 1 Cross-section 1

Zim)
Zim)

Cross-section 2. Cross-section 2

Tm
Zm)

2(m)

Figure 5.8: Displacement of the freshwater/saltwater transition zone for different
sections in the heterogeneous case after 3 days (left) and 10 days (right).

constitutes a threat for the quality of freshwater extrude in the pumping wells.
The existence of the fracture accelerate the freshwater and saltwater flows and
contributes to the advancement of the transition zone (Figures 5.9-5.11). After 10
days of over-exploitation, the salt bevel converges to the equilibrium state.

The obtained results are satisfactory and the numerical computations for the cou-
pled system have demonstrated that this approach yields physically realistic flow
fields in highly heterogeneous medium.

5.8 Conclusion

In this chapter, we have studied the convergence of an MPFA finite volume method
for a sharp-diffuse interfaces model in an heterogeneous free aquifer. A fully implicit,
fully coupled finite volume method has been developed to discretize the governing
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Freshwater Vielocity (m/s)

16e-07 0.0001 0.0002 0.0003 44e-04
|

Figure 5.9: Freshwater flow velocity in the heterogeneous case after 10 days.

Z{m)

Figure 5.10: Displacement of the freshwater/saltwater interface 2D plot in the het-
erogeneous case after 3 days (left) and 10 days (right).
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Figure 5.11: Evolution of the freshwater head 2D plot in the heterogeneous case
after 3 days (left) and 10 days (right).
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equations. This approach deals well with the anisotropy and heterogeneity of the
soil and provides accurate and efficient approximations on an unstructured mesh.
The construction of the numerical scheme is established by integrating the governing
equations on each control volume and evaluating the fluxes on each half edge. To
linearise the coupled system at each time step, we employ a Newton’s method
wherein each iteration a linear system is solved by an iterative Krylov method.

After that, we have shown that the numerical scheme preserves the positivity of the
freshwater and the saltwater thicknesses. Moreover, we have proved an existence
result to the nonlinear fully implicit numerical scheme using a fixed point theorem.
The strong convergence of the approximate solution to the weak solution of the
continuous problem is established via some recent compactness tools corresponding
to the space and time translate estimates. In addition, we have proved the weak
convergence of the discrete gradients of the freshwater head and salt front elevation.
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We have developed and implemented this scheme in the DuMu* framework. To
ensure the validity of our method, we have studied the numerical convergence of
the scheme. To do so, we have considered two test cases. The first test case is
a simulation in a homogeneous domain, while the second one is in a heterogenous
free surface aquifer where two intersecting fractures are considered. The obtained
results proved that our new module based on recent numerical tools is accurate,
efficient and able to solve a 2D seawater intrusion model tacking into account the
dynamics of the transition zones.
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Chapter 6

Conclusion and perspectives

In this chapter, we summarize the main contributions and achievements made in this
work in the context of simulating seawater intrusion in coastal aquifers. We have
presented accurate and efficient algorithms to solve a seawater intrusion problem
using different approaches. A brief presentation of the state of the art of existing
approaches is proposed. First of all, we have presented the derivation of the math-
ematical model using the sharp interface model in a free and confined aquifer. To
numerically deal with such a system, we have considered a fully coupled, fully im-
plicit finite volume TPFA method on a triangulation mesh where the orthogonality
condition is satisfied. The nonlinear system is linearized using Newton’s method,
in which a linear system is solved at each iteration using iterative Krylov solvers,
provided by the external DUNE library. To predict the extent of salt front eleva-
tion and water table level in large-scale aquifers, we have integrated the numerical
scheme in the framework DuMuX. The implemented module is based on recent and
efficient numerical tools allowing accurate predictions. Different 1D, 2D test cases
are used for the validations of our module, including real tests. The obtained results
correspond well to those presented in [8, 67, 71]. The numerical module is then ap-
plied to the Souss Chtouka plain and the Tripoli aquifer. Numerical solutions based
on available hydrogeological data proved the ability of our methodology to predict
the progress and the extent of the salt-wadge for several years of over-exploitation
of the nappe.

The sharp interface approach assumes that the two fluids are separated by an abrupt
interface. This encouraged us to adopt a mixed sharp-diffuse interfaces approach,
introduced recently in [24] that takes into account the dynamics of transition zones.
In this context, we have developed a fully implicit, fully coupled finite volume
method for the numerical resolution of such system. One again, the numerical
scheme is implemented in the DuMuX framework. The developed module is vali-
dated on test cases dealing with the progression of the salt front coupled with sea
fluctuations. After that, we have compared the numerical result of the 2D model
with those obtained with the classical 3D model for miscible displacements. The
numerical results are satisfactory and showed good agreement with those presented
in [23].

At the real scale, the aquifer is heterogeneous and anisotropic, which is why it is
necessary to use a more suitable numerical method on unstructured meshes. In
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this work, we have therefore developed a fully coupled, fully implicit MPFA finite
volume method for the numerical approximation of the sharp-diffuse model. The
numerical analysis of this scheme is presented. We have proved the nonnegativity
of the approximate freshwater and saltwater thicknesses. After that, an existence
result of the discrete solutions is established by proving a fixed point to the non-
linear system. In order to satisfy the assumptions of Kolmogorov’s theorem for the
convergence of the approximate solution, we proved some compactness tools corre-
sponding to space and time translate estimates. Afterwards, we have presented the
theorem of the strong convergence of the discrete solutions. Passing to the limit, we
have demonstrate that the approximate solution is a weak solution to the continu-
ous problem. The MPFA numerical scheme is implemented and integrated in the
DuMu® framework. Let us mention here that all our development and improve-
ment are done in versions 2.12 and 3.0. Our new module is tested and validated in
a strongly heterogeneous free aquifer.

We note finally that we encountered difficulties to find reliable and well documented
heterogeneous and anisotropic benchmarks. In many articles, some data are missing.
We think that a well documented benchmark for a seawater intrusion problem in
heterogeneous and anisotropic aquifers would be very useful for the community.
Further work on these important issues is in progress.


https://dumux.org/

Bibliography

1]

DuMuX DUNE for multi-{ Phase, Component, Scale, Physics, ...} flow and
Transport in Porous Media. Available online: hitp://www.dumuz.org (accessed
on 1 June 2021).

DUNE, the Distributed and Unified Numerics Environment. Available online:
https: //www.dune-project. org (accessed on 1 June 2021).

I. Aavatsmark. An introduction to multipoint flux approximations for quadri-
lateral grids. Computational Geosciences, 6:405-432, 2002.

A. Abdelkrim, B. Amaziane, M. E. Ossmani, and K. Talali. A fully implicit
finite volume scheme for a seawater intrusion problem in coastal aquifers. Water,
12(6):1639, 2020.

N. Abouelmahassine. Modélisation Préliminaire du Biseau salé par Eléments
Finis dans la Zone Cotiere de Souss—Chtouka. Master’s Thesis, Ecole Moham-
madia d’Ingénieurs, Rabat, Morocco, 2002.

A. Abudawia. Analyse numérique d’une approximation élément fini pour un
modele d’intrusion saline dans les aquiféres cotiers. PhD thesis, Université du
Littoral Cote d’Opale, France, 2015.

A. Abudawia, A. Mourad, J. H. Rodrigues, and C. Rosier. A finite element
method for a seawater intrusion problem in unconfined aquifers. Applied Nu-
merical Mathematics, 127:349-369, 2018.

A. Abudawia and C. Rosier. Numerical analysis for a seawater intrusion problem
in a confined aquifer. Mathematics and Computers in Simulation, 118:2-16,
2015.

A. Aharmouch and B. Amaziane. Development and evaluation of a numerical
model for steady state interface and/or free surface groundwater flow. Journal
of hydrology, 434:110-120, 2012.

[10] S. M. Allen, M. Samuel, and J. W. Cahn. A microscopic theory for antiphase

boundary motion and its application to antiphase domain coarsening. Acta
metallurgica, 27:1085-1095, 1979.

[11] R. Babu, N. Park, S. Yoon, and T. Kula. Sharp interface approach for regional

and well scale modeling of small island freshwater lens: Tongatapu island. Wa-
ter, 10:1636, 2018.



128 Bibliography

[12] S. Badaruddin, A. D. Werner, and L. K. Morgan. Water table salinization due
to seawater intrusion. Water Resources Research, 51:8397-8408, 2015.

[13] J. Bear. Dynamics of fluids in porous media. American Elsevier, 1972.

[14] J. Bear and A. H. D. Cheng. Modelling Groundwater Flow and Contaminant
Transport. Springer: Dordrecht, The Netherlands, 2000.

[15] J. Bear, A. H. D. Cheng, S. Sorek, D. Ouazar, and 1. Herrera. Seawater Intru-
sion in Coastal Aquifers, Concepts, Methods and Practices. Kluwer Academic
Publishers: Dordrecht, The Netherlands, 1999.

[16] J. Bear and A. Verruijt. Modelling Groundwater Flow and Pollution. D. Reidel
Publishing Company: Dordrecht, The Netherlands, 1987.

[17] B. Bouzouf and Z. Chen. A comparison of finite volume method and sharp
model for two dimensional saltwater intrusion modeling. Canadian Journal of
Civil Engineering, 41:191-196, 2014.

[18] B. Bouzouf, D. Ouazar, M. Himi, A. Casas, I. Elmahi, and F. Benkhaldoun.
Integrating hydrogeochemical and geophysical data for testing a finite volume

based numerical model for saltwater intrusion. Transport in porous media,
43:179-194, 2001.

[19] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations.
Springer Science & Business Media, 2010.

[20] X. Cao, S. F. Nemadjieu, and I. S. Pop. Convergence of an mpfa finite volume
scheme for a two-phase porous media flow model with dynamic capillarity. IMA
Journal of Numerical Analysis, 39:512—-544, 2019.

[21] A. Cheng. Multilayered Aquifier Systems. In Fundamentals and Applications.
CRC Press Published: New York, NY, USA, 2000.

[22] A. Cheng and D. Ouazar. Coastal Aquifer Management-Monitoring, Modeling,
and Case Studies. CRC Press: New York, NY, USA; Washington, DC, USA,
2003.

[23] L. Cherfils, C. Choquet, and M. M. Diédhiou. Numerical validation of an
upscaled sharp—diffuse interface model for stratified miscible flows. Mathematics
and Computers in Simulation, 137:246-265, 2017.

[24] C. Choquet, M. M. Diédhiou, and C. Rosier. Mathematical analysis of a sharp—
diffuse interfaces model for seawater intrusion. Journal of Differential Equations,
259:3803-3824, 2015.

[25] C. Choquet, M. M. Diédhiou, and C. Rosier. Derivation of a sharp-diffuse
interfaces model for seawater intrusion in a free aquifer. numerical simulations.
SIAM Journal on Applied Mathematics, 76:138—158, 2016.

[26] C. Choquet, M. M. Diédhiou, and C. Rosier. Mathematical analysis of a sea-
water intrusion model including storativity. SIAM Journal on Mathematical
Analysis, 49:29-63, 2017.



Bibliography 129

[27] C. Choquet, C. Rosier, and L. Rosier. Well posedness of general cross-diffusion
systems. Journal of Differential Equations, 300:386-425, 2021.

[28] J. Chun, C. Lim, D. Kim, and J. Kimn. Assessing impacts of climate change
and sea-level rise on seawater intrusion in a coastal aquifer. Water, 10:357, 2018.

[29] M. Cobaner, R. Yurtal, A. Dogan, and L. H. Motz. Three dimensional simula-
tion of seawater intrusion in coastal aquifers: A case study in the goksu deltaic
plain. Journal of hydrology, 464:262-280, 2012.

[30] J. Cooper and H. Hilton. A hypothesis concerning the dynamic balance of
fresh water and salt water in a coastal aquifer. Journal of Geophysical Research,
64(4):461-467, 1959.

[31] G. Dagan and J. Bear. Solving the problem of local interface upcoming in a
coastal aquifer by the method of small perturbations. J. Hydrol, 6:15-44, 1968.

[32] G. Dagan and D. G. Zeitoun. Seawater-freshwater interface in a stratified
aquifer of random permeability distribution. Journal of Contaminant Hydrology,
29:185-203, 1998.

[33] K. Deimling. Nonlinear functional analysis. Courier Corporation, 2010.

[34] M. M. Diédhiou. Approche mizte interface nette/diffuse pour les probléemes
d’intrusion saline en sous-sol: Modélisation, analyse mathématique et illustra-
tions numériques. PhD thesis, Université de La Rochelle, France, 2015.

[35] H. Diersch and O. Kolditz. Variable-density flow and transport in porous
media: approaches and challenges. Advances in water resources, 25:899-944,
2002.

[36] H. J. G. Diersch. FEFLOW: Finite Element Modeling of Flow, Mass and
Heat Transport in Porous and Fractured Media. Springer: Berlin/Heidelberg,
Germany, 2014.

[37] J. Droniou. Finite volume schemes for diffusion equations: Introduction to and
review of modern methods. Math. Models Methods Appl. Sci., 24(08):1575-1619,
2014.

[38] J. J. Dupuit. Traité théorique et pratique de la conduite et de la distribution
des eaux, volume 1. Carilian-Goeury, 1854.

[39] H. I. Essaid. A comparison of the coupled fresh water-salt water flow and the
ghyben-herzberg sharp interface approaches to modeling of transient behavior
in coastal aquifer systems. Journal of Hydrology, 86:169-193, 1986.

[40] H. I. Essaid. A multilayered sharp interface model of coupled freshwater and
saltwater flow in coastal systems: model development and application. Water
Resources Research, 26:1431-1454, 1990.

[41] R. Eymard, T. Gallouét, and R. Herbin. Convergence of finite volume schemes
for semilinear convection diffusion equations. Numerische Mathematik, 82:91—
116, 1999.



130 Bibliography

[42] R. Eymard, T. Gallouét, and R. Herbin. Finite volume methods. Handbook of
numerical analysis, 7:713-1018, 2000.

[43] M. Fahs, B. Koohbor, B. Belfort, B. Ataie-Ashtiani, C. Simmons, A. Younes,
and P. Ackerer. A generalized semi-analytical solution for the dispersive Henry

problem: effect of stratification and anisotropy on seawater intrusion. Water,
10:230, 2018.

[44] M. Fahs, A. Younes, and T. A. Mara. A new benchmark semi-analytical so-
lution for density-driven flow in porous media. Advances in water resources,
70:24-35, 2014.

[45] J. G. Ferris. Cyclic fluctuations of water level as a basis for determining aquifer
transmissibility. Technical report, US Geological Survey, 1952.

[46] A. Gemitzi and D. Tolikas. Hydra model: Simulation of salt intrusion in coastal
aquifers using visual basic and gis. Environmental Modelling & Software, 22:924—
936, 2007.

[47] R. E. Glover. The pattern of fresh-water flow in a coastal aquifer. Journal of
Geophysical Research, 64:457-459, 1959.

[48] R. R. Goswami and T. P. Clement. Laboratory-scale investigation of saltwater
intrusion dynamics. Water Resources Research, 43, 2007.

[49] W. Guo and C. D. Langevin. User’s guide to SEAWAT a computer program for
simulation of three-dimensional variable-density ground-water flow. Technical
report, 2002.

[50] M. Hamidi, S. Reza, and S. Yazdi. Numerical modeling of seawater intru-
sion in coastal aquifer using finite volume unstructured mesh method. WSFEAS
Transactions on Mathematics, 5:648, 2006.

[51] M. Hamidi and S. R. Sabbagh-Yazdi. Modeling of 2D density-dependent flow
and transport in porous media using finite volume method. Computers & Fluids,
37:1047-1055, 2008.

[52] H. R. Henry. Effects of dispersion on salt encroachment in coastal aquifers,
in 7 seawater in coastal aquifers”. US Geological Survey, Water Supply Paper,
1613:C70-C80, 1964.

[53] G. J. Houben, L. Stoeckl, K. E. Mariner, and A. S. Choudhury. The influence
of heterogeneity on coastal groundwater flow-physical and numerical modeling

of fringing reefs, dykes and structured conductivity fields. Advances in water
resources, 113:155-166, 2018.

[54] M. S. Hussain, A. A. Javadi, and M. M. Sherif. Three dimensional simulation
of seawater intrusion in a regional coastal aquifer in UAE. Procedia Engineering,
119:1153-1160, 2015.

[55] P. S. Huyakorn, Y. S. Wu, and N. S. Park. Multiphase approach to the numer-
ical solution of a sharp interface saltwater intrusion problem. Water Resources
Research, 32:93-102, 1996.



Bibliography 131

[56] O. Kalaoun. Modélisation de l’intrusion saline dans l'aquifére de Tripoli-Liban:
impact des changements globauz. PhD thesis, Université de Toulouse III-Paul
Sabatier, France, 2015.

[57] O. Kalaoun, A. A. Bitar, J. P. Gastellu-Etchegorry, and M. Jazar. Impact of
demographic growth on seawater intrusion: Case of the Tripoli aquifer, Lebanon.
Water, 8:104, 2016.

[58] O. Kalaoun, M. Jazar, and A. A. Bitar. Assessing the contribution of demo-
graphic growth, climate change, and the refugee crisis on seawater intrusion in
the Tripoli aquifer. Water, 10:973, 2018.

[59] N. Karahanoglu and V. Doyuran. Finite element simulation of seawater intru-
sion into a quarry-site coastal aquifer, Kocaeli-Darica, Turkey. FEnvironmental
Geology, 44:456-466, 2003.

[60] H. Ketabchi, D. Mahmoodzadeh, B. Ataie-Ashtiani, and C. T. Simmons. Sea-
level rise impacts on seawater intrusion in coastal aquifers: Review and integra-
tion. Journal of Hydrology, 535:235-255, 2016.

[61] H. G. Keulegan. An example report on model laws for density current. US
National Bureau of Standards, Gaithersburg, Md, 1954.

[62] B. Koohbor, M. Fahs, B. Ataie-Ashtiani, C. T. Simmons, and A. Younes.
Semianalytical solutions for contaminant transport under variable velocity field
in a coastal aquifer. Journal of hydrology, 560:434-450, 2018.

[63] G. Kopsiaftis, V. Christelis, and A. Mantoglou. Pumping optimization in
coastal aquifers: comparison of sharp interface and density dependent models.
Furopean Water, 57:443-449, 2017.

[64] H. J. Lin, D. R. Rechards, C. A. Talbot, G. T. Yeh, J. R. Cheng, H. P. Cheng,
and N. L. Jones. A three-dimensional finite-element computer model for simu-
lating density-dependent flow and transport in variable saturated media: version

3.1. US Army Engineering Research and Development Center, Vicksburg, MS,
1997.

[65] F. Liu, V. V. Anh, I. Turner, K. Bajracharya, W. J. Huxley, and N. Su. A
finite volume simulation model for saturated—unsaturated flow and application
to Gooburrum, Bundaberg, Queensland, Australia. Applied mathematical mod-
elling, 30:352-366, 2006.

[66] C. Llopis-Albert and D. Pulido-Velazquez. Discussion about the validity of
sharp-interface models to deal with seawater intrusion in coastal aquifers. Hy-
drological Processes, 28:3642-3654, 2014.

[67] P. Marion, K. Najib, and C. Rosier. Numerical simulations for a seawater
intrusion problem in a free aquifer. Applied Numerical Mathematics, 75:48-60,
2014.

[68] G. M. McDonald and A. W. Harbaugh. A modular three-dimensional finite-
difference ground-water flow model, volume 6. US Geological Survey Reston,
VA, 1988.



132 Bibliography

[69] S.S. Mehdizadeh, S. E. Karamalipour, and R. Asoodeh. Sea level rise effect on
seawater intrusion into layered coastal aquifers (simulation using dispersive and
sharp-interface approaches). Ocean & coastal management, 138:11-18, 2017.

[70] S. S. Mehdizadeh, F. Vafaie, and H. Abolghasemi. Assessment of sharp-
interface approach for saltwater intrusion prediction in an unconfined coastal
aquifer exposed to pumping. Environmental earth sciences, 73:8345-8355, 2015.

[71] S.S. Mehdizadeh, A. D. Werner, F. Vafaie, and S. Badaruddin. Vertical leakage
in sharp-interface seawater intrusion models of layered coastal aquifers. Journal
of hydrology, 519:1097-1107, 2014.

[72] J. Mercer, S. Larson, and C. Faust. Simulation of salt-water interface motion.
Groundwater, 18:374-385, 1980.

[73] A. Michel. A finite volume scheme for two-phase immiscible flow in porous
media. SIAM Journal on Numerical Analysis, 41:1301-1317, 2003.

[74] A. Mourad. Identification de la conductivité hydraulique pour un probléme
d’intrusion saline: Comparaison entre l'approche déterministe et ’approche
stochastique. PhD thesis, Université du Littoral Cote d’Opale, France, 2017.

[75] A. A. H. Oulhaj. Conception et analyse de schémas non-linéaires pour la
résolution de probléemes paraboliques: application aux écoulements en milieux
poreuzx. PhD thesis, Université de Lille 1, France, 2017.

[76] A. A. H. Oulhaj. Numerical analysis of a finite volume scheme for a seawa-
ter intrusion model with cross-diffusion in an unconfined aquifer. Numerical
Methods for Partial Differential Fquations, 34:857-880, 2018.

[77] T. J. Povich, C. N. Dawson, M. W. Farthing, and C. E. Kees. Finite ele-
ment methods for variable density flow and solute transport. Computational
Geosciences, 17:529-549, 2013.

[78] P. Ranjan, S. Kazama, and M. Sawamoto. Numerical modelling of saltwater-
freshwater interaction in the Walawe river basin, Sri Lanka. TAHS-AISH publi-
cation, pages 306-314, 2007.

[79] A. Ranjbar and N. Mahjouri. Development of an efficient surrogate model
based on aquifer dimensions to prevent seawater intrusion in anisotropic coastal
aquifers, case study: the Qom aquifer in Iran. Environmental earth sciences,
77:418, 2018.

[80] S. A. Sakr. Validity of a sharp-interface model in a confined coastal aquifer.
Hydrogeology Journal, 7:155-160, 1999.

[81] W. E. Sanford and L. F. Konikow. A two-constituent solute-transport model
for ground water having variable density. United States Geological Survey Water
Resources Internal Report, 85:4279, 1985.

[82] M. L. Sebben, A. D. Werner, and T. Graf. Seawater intrusion in fractured
coastal aquifers: A preliminary numerical investigation using a fractured henry
problem. Advances in water resources, 85:93-108, 2015.



Bibliography 133

[83] U. Shamir and G. Dagan. Motion of the seawater interface in coastal aquifers:
a numerical solution. Water Resources Research, 7:644-657, 1971.

[84] L. Shi, L. Cui, N. Park, and P. S. Huyakorn. Applicability of a sharp-interface
model for estimating steady-state salinity at pumping wells—validation against
sand tank experiments. Journal of contaminant hydrology, 124:35-42, 2011.

[85] M. Siena and M. Riva. Groundwater withdrawal in randomly heterogeneous
coastal aquifers. Hydrology and Farth System Sciences, 22:2971-2985, 2018.

[86] O. D. L. Strack. A single-potential solution for regional interface problems in
coastal aquifers. Water Resources Research, 12:1165-1174, 1976.

[87] F. Vafaie and S. S. Mehdizadeh. Investigation of sea level rise effect on salt-
water intrusion in an unconfined coastal aquifer using sharp-interface approach.
International Journal of Global Warming, 8:501-515, 2015.

[88] V. N. Vappicha and S. H. Nagaraja. An approximate solution for the transient
interface in a coastal aquifer. Journal of Hydrology, 31:161-173, 1976.

[89] C. I. Voss. A finite-element simulation model for saturated-unsaturated,
fluid-density-dependent ground-water flow with energy transport or chemically-
reactive single-species solute transport. Water Resources Investigation Report,
84:4369, 1984.

[90] A. D. Werner. Correction factor to account for dispersion in sharp-interface
models of terrestrial freshwater lenses and active seawater intrusion. Advances
i water resources, 102:45-52, 2017.

[91] A.D. Werner. On the classification of seawater intrusion. Journal of hydrology,
551:619-631, 2017.

[92] A. D. Werner, M. Bakker, V. E. A. Post, A. Vandenbohede, and D. Barry.
Seawater intrusion processes, investigation and management: recent advances
and future challenges. Advances in Water Resources, 51:3-26, 2013.

[93] A. Younes and M. Fahs. A semi-analytical solution for the reactive henry
saltwater intrusion problem. Water, Air, & Soil Pollution, 224:1779, 2013.

[94] A. Younes and M. Fahs. Extension of the Henry semi-analytical solution for

saltwater intrusion in stratified domains. Computational Geosciences, 19:1207—
1217, 2015.

[95] A. Zidane. Risk of subsidence and aquifer contamination due to evaporite
dissolution: Modelization of flow and mass transport in porous and free flow
domains. PhD thesis, University of Basel, Switzerland, 2013.



	General introduction
	Introduction
	Motivation and problem setting
	The objective of the thesis
	The sharp interface module
	The sharp-diffuse interfaces module

	Thesis structure

	Mathematical modeling of seawater intrusion in coastal aquifers
	Introduction
	A state of the art on marine intrusion models
	Sharp interface approach
	Variable density approach
	Sharp-diffuse interfaces approach

	Mathematical modeling of the sharp interface model
	Continuity equation
	 Darcy's law
	Assumptions
	Integration of the equations
	Mathematical model of the sharp interface problem

	Conclusion

	A finite volume method for numerical simulation of the sharp interface model 
	Introduction
	A fully implicit finite volume numerical scheme
	Discretization and basic notations 
	Resolution of the nonlinear system

	Implementation of the numerical scheme
	Numerical simulations 
	Test 1: The rotating interface problem
	Test 2: a field-scale free aquifer problem 
	Test description
	Numerical convergence
	Numerical results

	Test 3: Souss-Chtouka case study
	Geographical location 
	The studied domain and discretization
	 Physical parameters and boundary conditions
	Numerical results

	Test 4: Tripoli aquifer case study
	Geographical location
	The studied domain and physical parameters
	Numerical results


	Conclusion

	 A finite volume method for numerical simulation of the sharp-diffuse interfaces model
	Introduction
	Mathematical model of the sharp-diffuse interfaces problem
	Numerical simulations of the sharp-diffuse interfaces model
	Test 1: Pumping of freshwater 
	Test description
	Numerical convergence
	Numerical results

	Test 2: Tidal effects
	Test description 
	Numerical results

	Test 3: 3D variable density test
	Test description
	Numerical results


	Conclusion

	Numerical analysis of a multi-point flux approximation finite volume scheme for a sharp-diffuse interfaces model
	Introduction
	Mathematical model
	Finite volume discretization
	Discretization and notations
	Fully coupled fully implicit finite volume scheme

	Discrete maximum principle 
	Energy estimates and compactness results
	A priori estimates
	Existence of the discrete solution
	Space and time translates estimates

	Convergence results
	Numerical results
	Studied domain and physical data
	Test case 1: homogeneous aquifer
	Test case 2: fractured aquifer

	Conclusion

	Conclusion and perspectives
	Bibliography

