• Aide
  • Recherche
  • Facebook
  • Twitter
Laboratoire de mathématiques et de leurs applications (LMAP)
Vous êtes ici :

Isabelle GreffMaître de conférences

  • Equipe "Méthodes Numériques et Fluides Complexes"
  • Parcours
  • Compétences
  • Publications

Parcours

Isabelle Greff

January-September 2010: Délégation CNRS  

Since September 2006: Maître de conférences position, University of Pau, France. 

2003-March 2006 : Post-doctorat, Max-Planck Institute for Mathematics in Sciences, Leipzig.

Compétences

Finite elements modelisation of composite materials

Multiscale, Homogenisation

Finite elements, Finite volumes  

Lagrangian and Hamiltonian systems  

Publications

[1] M. Dambrine, I. Greff, H. Harbrecht, B. Puig, Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness. Journal of Computational Physics, 330, 943-959, 2017.

[2] F. Dubois, I. Greff, C. Pierre, Raviart Thomas Petrov-Galerkin Finite Elements. In Finite volumes for complex applications 8, p. 341-350. Lille, 2017.

[3] M. Dambrine, I. Greff, H. Harbrecht, B. Puig, Numerical solution of the Poisson equation with a thin layer of random thickness. SIAM Journal of Numerical Analysis, 54(2), 921-941, 2016.

[4]  L. Bourdin, J. Cresson, I. Greff, P. Inizan, Variational integrators for Lagrangian systems in the framework of discrete embeddings. Applied Numerical Analysis, 71, 14--23, 2013.

[5] L. Bourdin, J. Cresson, I. Greff, A continuous/discrete fractional Noether's theorem. Communication in Nonlinear Sciences and Numerical Simulations, 18, 4, 878--887, 2013.

[6] F. Dubois, I. Greff, T. Helie On Least Action Principles for Discrete Quantum Scales J.R. Busemeyer et al. (Eds.): QI 2012, LNCS 7620, pp. 13--23, 2012. Springer-Verlag Berlin Heidelberg 2012.

[7] L. Grasedyck, I. Greff, S. Sauter, The AL Basis for the solution of elliptic problems in heterogeneous media. SIAM Journal Multiscale Modeling and Simulation, 10,1, 245--258, 2012.

[8] J. Cresson, I. Greff, P. Inizan, Lagrangian for the convection-diffusion equation. Mathematical Methods in the Applied Sciences, 35, 15, 1885--1895, 2012.

[9] J. Cresson, I. Greff, Non-differentiable embedding of Lagrangian systems and partial differential equations. Journal of Mathematical Analysis and Applications, 384, 2, 626–646, 2011.

[10] J. Cresson, I. Greff, A non-differentiable Noether theorem. Journal of Mathematical Physics, 52, 2, 10 pages, 2011.

[11] I. Greff, W. Hackbusch, Numerical Method for Elliptic Multiscale Problems. Journal of Numerical Mathematics, 16, 2, 119-138, 2008.

[12] I. Greff, Nonconforming box-schemes for elliptic problems on rectangular grids. SIAM Journal on Numerical Analysis, 45, 3, 946-968, 2007.

[13] J-P. Croisille, I. Greff, An efficient box-scheme for convection-diffusion equations with sharp contrast in the diffusion coefficients. Computers & Fluids, 34, 4-5, 461-489, 2005.

[14] J-P. Croisille, I. Greff, Some nonconforming mixed box schemes for elliptic problems. Numerical Methods for Partial Differential Equations, 18-3, 2002, 355-373.

[15] J-P. Croisille, I. Greff, A box scheme for convection-diffusion equations. 3th International Symposium on Finite Volumes for Complexe Applications, 2002, 325-332.

[16] I. Greff, Box schemes : Theoretical and Numerical study (french). PhD Thesis, University of Metz, 2003.