Isabelle Greff

  • Help
  • Find
  • Facebook
  • Twitter
Laboratory of Mathematics and its Applications of PAU (LMAP)

Contacts

Director of the LMAP

Gilles CARBOU

gilles.carbou@univ-pau.fr (gilles.carbou @ univ-pau.fr)

 

Administrative management

gestion-lmap@univ-pau.fr (gestion-lmap @ univ-pau.fr)

 

Secretary

secretariat-lmap@univ-pau.fr (secretariat-lmap @ univ-pau.fr)

Tél : 05 59 40 75 13
05 59 40 74 32

Fax : 05 59 40 75 55

You are here:

Isabelle Greff


  • isabelle.greff @ univ-pau.fr
  • Education
  • Research interests
  • Publications

Education

  • January-September 2010: Délégation CNRS 
  • Since September 2006: Maître de conférences position, University of Pau, France.
  •   2003-March 2006 : Post-doctorat, Max-Planck Institute for Mathematics in Sciences, Leipzig.  

Group Scientific Computing: Director: Professor Dr. Dr. h.c. Wolfgang Hackbusch.

Keywords: Multiscales Problems, Hierarchical matrices.
 

  • 1999-2003: PhD Thesis : Box-schemes : Theoretical and Numerical study. University of Metz. Advisor: Professor Jean-Pierre Croisille.

Keywords: Finite Elements, Mixed Methods, Nonconforming Methods, Elliptic problems, Convection-diffusion equations

Research interests

  • Finite elements modelisation of composite materials
  • Multiscale, Homogenisation
  • Finite elements, Finite volumes  
  • Lagrangian and Hamiltonian systems

Publications

[1] M. Dambrine, I. Greff, H. Harbrecht, B. Puig, Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness. Journal of Computational Physics, 330, 943-959, 2017.

[2] F. Dubois, I. Greff, C. Pierre, Raviart Thomas Petrov-Galerkin Finite Elements. In Finite volumes for complex applications 8, p. 341-350. Lille, 2017.

[3] M. Dambrine, I. Greff, H. Harbrecht, B. Puig, Numerical solution of the Poisson equation with a thin layer of random thickness. SIAM Journal of Numerical Analysis, 54(2), 921-941, 2016.

[4]  L. Bourdin, J. Cresson, I. Greff, P. Inizan, Variational integrators for Lagrangian systems in the framework of discrete embeddings. Applied Numerical Analysis, 71, 14--23, 2013.

[5] L. Bourdin, J. Cresson, I. Greff, A continuous/discrete fractional Noether's theorem. Communication in Nonlinear Sciences and Numerical Simulations, 18, 4, 878--887, 2013.

[6] F. Dubois, I. Greff, T. Helie On Least Action Principles for Discrete Quantum Scales J.R. Busemeyer et al. (Eds.): QI 2012, LNCS 7620, pp. 13--23, 2012. Springer-Verlag Berlin Heidelberg 2012.

[7] L. Grasedyck, I. Greff, S. Sauter, The AL Basis for the solution of elliptic problems in heterogeneous media. SIAM Journal Multiscale Modeling and Simulation, 10,1, 245--258, 2012.

[8] J. Cresson, I. Greff, P. Inizan, Lagrangian for the convection-diffusion equation. Mathematical Methods in the Applied Sciences, 35, 15, 1885--1895, 2012.

[9] J. Cresson, I. Greff, Non-differentiable embedding of Lagrangian systems and partial differential equations. Journal of Mathematical Analysis and Applications, 384, 2, 626–646, 2011.

[10] J. Cresson, I. Greff, A non-differentiable Noether theorem. Journal of Mathematical Physics, 52, 2, 10 pages, 2011.

[11] I. Greff, W. Hackbusch, Numerical Method for Elliptic Multiscale Problems. Journal of Numerical Mathematics, 16, 2, 119-138, 2008.

[12] I. Greff, Nonconforming box-schemes for elliptic problems on rectangular grids. SIAM Journal on Numerical Analysis, 45, 3, 946-968, 2007.

[13] J-P. Croisille, I. Greff, An efficient box-scheme for convection-diffusion equations with sharp contrast in the diffusion coefficients. Computers & Fluids, 34, 4-5, 461-489, 2005.

[14] J-P. Croisille, I. Greff, Some nonconforming mixed box schemes for elliptic problems. Numerical Methods for Partial Differential Equations, 18-3, 2002, 355-373.

[15] J-P. Croisille, I. Greff, A box scheme for convection-diffusion equations. 3th International Symposium on Finite Volumes for Complexe Applications, 2002, 325-332.

[16] I. Greff, Box schemes : Theoretical and Numerical study (french). PhD Thesis, University of Metz, 2003.