Julien DiazDirecteur de recherche Inria
- Membre de l'équipe projet Makutu
- Responsable de l'Équipe "Modélisation, Expérimentation, Simulation, CALcul haute performance"
Adresse : Bâtiment IPRA - Université de Pau et des Pays de l'Adour, Avenue de l'Université - BP 1155, 64013 PAU CEDEX- Analyse et simulation numérique; Approximation; Calcul haute performance; Calcul scientifique; Modélisation mathématique; Méthodes de discrétisation ; Propagation d'ondes
- julien.diaz @ univ-pau.fr
Parcours
Parcours
- 2018-présent Directeur de Recherche à l'INRIA Bordeaux Sud-Ouest
- 2007-2018 Chargé de Recherche à l'INRIA Bordeaux Sud-Ouest
- 2006-2007 Post-Doc à l'Université de Bâle
- 2005-2006 Post-Doc à EDF
Diplômes
Habilitation à Diriger des Recherches en Mathématiques Appliquées, Avril 2016 Université de Pau et des Pays de l’Adour
Thèse en Mathématiques Appliquées, Février 2005; Université Paris VI
Responsabilités
- Responsable de l'Équipe Mescal du LMAP (2019-)
- Membre du Bureau du Comité des projets de l'Inria Bordeaux Sud Ouest (2020-)
- Membre du Conseil Scientifique de l'Inria (2014-2019 )
- Membre du Comité Technique de l'Inria (2014- )
- Membre du Conseil d'Administration de l'Inria (2014- )
- Membre de la Commission d'Évaluation de l'Inria (2008-2014)
Thèmes de recherche
Aspects numériques et mathématiques des phénomènes de propagation d'ondes élastodynamiques et acoustiques.
Schémas d'ordre élevé en espace et en temps pour la discrétisation de l'équation des ondes
Mots clés:
Élements finis d'ordre élevé, Méthodes de Galerkine Discontinues, Maillages non conformes, Pas de temps locaux.
Conditions aux limites artificielles
Mots clés:
Couches absorbantes parfaitement adaptées (PML), Conditions absorbantes d'ordre élevé, Estimations d'erreur, Méthode de Cagniard-de Hoop.
Solution analytique de problèmes de propagation d'ondes
Mots clés:
Méthode de Cagniard-de Hoop , Milieux bicouches, Acoustique, Élastodynamique, Poroélastique.
Encadrement
PhD in progress
- Vinduja Vasanthan co-advised with H. Barucq
- Stefano Frambati co-advised with H. Barucq
- Rose-Cloé Meyer co-advised with H. Barucq
- Pierre Jacquet co-advised with H. Barucq.
PhD
- Chengyi Shen Études expérimentales et numériques de la propagation d'ondes sismiques dans les roches carbonatées en laboratoire, co-advised with D. Brito. Defended en June 2020.
- Elvira Shishenina Space-Time Discretization of Elasto-Acoustic Wave Equation in Polynomial Trefftz-DG Bases, co-advised with H. Barucq. Defended on December 2018
- Izar Azpiroz Contribution to the Numerical Reconstruction in Inverse Elasto-Acoustic Scattering, co-advised with H. Barucq. Defended on February 2018
- Marie Bonnasse-Gahot Simulation de la propagation d’ondes élastiques et visco-élastiques en régime harmonique par des méthodes Galerkin discontinues d’ordre élevé en maillage non-structuré adaptées au calcul haute performance (Simulation of elastic and viscoelastic wave propagation in harmonic domain by high-order Discontinuous Galerkin method in a High Performance Computing framework), co-advised with S. Lanteri. Defended on December 2016
- Jérôme Luquel. Imagerie de milieux complexes par équations d’ondes élastiques (Imaging of complex elastic media), co-advised with H. Barucq. Defended on April 2015
- Lionel Boillot Propagateurs optimisés pour les ondes élastiques en milieux anisotropes (Optimized propagators for elastic waves in anisotropic media), co-advised with H. Barucq. Defended on December 2014.
- Florent Ventimiglia Schémas d’ordre élevé et pas de temps local pour les ondes élastiques en milieux hétérogènes (High order schemes and local time stepping for elastic waves in heterogenous media) , co-advised with H. Barucq. Defended on June 2014.
- Cyril Agut. Schémas numériques d’ordre élevé en espace et en temps pour l’équation des ondes (High-Order Schemes in space and in time for the wave equation), co-advised with H. Barucq. Defended on December 2011.
- Véronique Duprat. Conditions aux limites absorbantes enrichies pour l’équation des ondes acoustiques et l’équation d’Helmholtz (Enriched absorbing boundary conditions for acoustics wave equation and for Helmholtz equation), co-advised with H. Barucq. Defended on December 2011.
- Caroline Baldassari. Modélisation et simulation numérique pour la migration terrestre par équation d’ondes (Modelling and numerical simulation for terrestrial migration by wave equations), co-advised with H. Barucq. Defended on December 2009.
Projets
Transfer
I develop numerical schemes for the simulation of seismic wave propagation and I supervise in the implementation of the new schemes in the platform of Total.
These developments are achieved in collaboration with PhD students funded by Total in the framework of the strategic action Depth Imaging Partnership (DIP) . I am currently coadvising the PhD thesis of Pierre Jacquet (with H. Barucq). I was also coadvisor of the PhD theses of Marie Bonnasse-Gahot, defended in december 2015, Jérôme Luquel, defended in april 2015, Lionel Boillot defended in December 2014, Florent Ventimilgia, defended in June 2014n and Caroline Baldassari, defended in December 2009.
Software
Numerical Simulation of Waves Propagation in time-domain and in harmonic Domain.
-
Hou10ni
This code has been realized in collaboration with Hélène Barucq and Élodie Estécahandy. It is based on the Interior Penalty Discontinuous Galerkin Method and computes the solution to acoustics wave propagation problem in heterogeneous media. It is able to consider both time-domain and harmonic-domain (Helmholtz). The extension to elastodynamics equation in 2D and to the coupling between elastic and acoustic has been implemented by Élodie Estecahandy
- 2D version: this version can compute the solution to acoustic, elastodynamic or elasto-acoustic equations. It allows for the use of arbitrary high-order elements and curved elements,
- 3D version : this version can compute the solution to acoustic and elastodynamic wave equation. The implementation of arbitrary high-order elements and curved elements and the extension to elasto-acoustic is a work in progress.
Analytical Solutions of Wave Propagation Problems in Stratified Media.
The two following pieces of software have been realized in collaboration with Abdelâaziz Ezziani. The parallelization of the 2D version has been realized in collaboration with Nicolas Le Goff.
-
Gar6more 2D v2.0
This code computes the analytical solution of waves propagation problems in 2D homogeneous or bilayered media, based on the Cagniard-de Hoop method. In the homogeneous case, the medium can be acoustic, elastic or poroelastic; infinite or semi-infinite with a free boundary or a wall boundary condition at its end. In the bilayered case, the following coupling are implemented (the source is assumed to be in the first medium) :
- acoustic/acoustic
- acoustic/elastic
- acoustic/poroelastic
- elastic/elastic
- poroelastic/poroelastic
For more information, please refer to the Gar6more2D webpage
-
Gar6more 3D v2.0
This code computes the analytical solution of waves propagation problems in 3D homogeneous or bilayered media, based on the Cagniard-de Hoop method. In the homogeneous case, the medium can be acoustic, elastic or poroelastic; infinite or semi-infinite with a free boundary or a wall boundary condition at its end. In the bilayered case, the following coupling are implemented (the source is assumed to be in the first medium) :
- acoustic/acoustic
- acoustic/elastic
- acoustic/poroelastic
- elastic/elastic
- poroelastic/poroelastic
For more information, please refer to the Gar6more3D webpage